
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Adopting Handoff on iOS and OS X

Session 219
Michael Jurewitz
Engineering

Frameworks

!

Vince Spader
Cocoa Frameworks Engineer

!

Keith Stattenfield
CoreFrameworks Engineer

What You Will Learn

What is Handoff

Adopting Handoff in your app

In-depth Handoff adoption

What is Handoff?

Mac Screenshot of Safari

Mac Screenshot of Safari

Mac Screenshot of Safari

Mac Screenshot of Safari

Mac Screenshot of Safari

Mac Screenshot of Safari

Adopting Handoff

Decide which activities to support in your app

Create activities in specific parts of your app

Handle continuing incoming activities in your app

Activity

NSUserActivity

NSUserActivity

Activity

Activity

Additional Handoff Support

Streams between applications in two devices

Handoff between native app and website you own

Agenda

AppKit and UIKit support for adopting Handoff

Working with NSUserActivity directly

Native app to website Handoff

Using continuation streams between apps

Adopting Handoff in Your App

!

Vince Spader
Cocoa Frameworks Engineer

Adopting Handoff in Your App
AppKit/UIKit support for Handoff

Creating

Updating

Continuing

Creating User Activities

Creating User Activities
What do users do in your app?

Creating User Activities
What do users do in your app?

Creating User Activities
What do users do in your app?

Creating User Activities
What do users do in your app?

Reading messages

Picking an item from a list

Editing a document

Creating User Activities
What do users do in your app?

Creating User Activities
What do users do in your app?

Creating User Activities
Documents and Responders

Creating User Activities
Documents and Responders

NSDocument, UIDocument, NSResponder and UIResponder now have:

@property (strong) NSUserActivity *userActivity; 

Creating User Activities
Documents and Responders

NSDocument, UIDocument, NSResponder and UIResponder now have:

@property (strong) NSUserActivity *userActivity; 

You can set it like this:

NSUserActivity *userActivity = [[NSUserActivity alloc] 
 initWithActivityType:@“com.company.viewing-message”]; 
userActivity.title = @“Viewing Message”;  
document.userActivity = userActivity;

Creating User Activities
Document-based apps

Creating User Activities
Document-based apps

Add NSUbiquitousDocumentUserActivityType  
to each CFBundleDocumentTypes entry

Creating User Activities
Document-based apps

Creating User Activities
Document-based apps

We set userActivity automatically when the document is in iCloud

Creating User Activities
Document-based apps

We set userActivity automatically when the document is in iCloud

• On OS X, you can KVO

Creating User Activities
Other apps

Creating User Activities
Other apps

NSUserActivityTypes in Info.plist

Creating User Activities
Documents and Responders

Creating User Activities
Documents and Responders

We manage it for you

Creating User Activities
Documents and Responders

We manage it for you
• We call becomeCurrent 

Creating User Activities

NSUserActivity

becomeCurrent

Creating User Activities

NSUserActivity

becomeCurrent

Creating User Activities
becomeCurrent on iOS

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:
• UIKit walks the view controller hierarchy

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:
• UIKit walks the view controller hierarchy

- Including presented view controllers

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:
• UIKit walks the view controller hierarchy

- Including presented view controllers

- The view controller’s view must be in the view hierarchy

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:
• UIKit walks the view controller hierarchy

- Including presented view controllers

- The view controller’s view must be in the view hierarchy

 
When userActivity is set:

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:
• UIKit walks the view controller hierarchy

- Including presented view controllers

- The view controller’s view must be in the view hierarchy

 
When userActivity is set:
• If the view controller is in a transition, we wait until after it’s done

Creating User Activities
becomeCurrent on iOS

When the app is launched, comes into the foreground, or tabs are switched:
• UIKit walks the view controller hierarchy

- Including presented view controllers

- The view controller’s view must be in the view hierarchy

 
When userActivity is set:
• If the view controller is in a transition, we wait until after it’s done

• If the view controller’s view is in the window hierarchy

Creating User Activities
becomeCurrent on iOS

Creating User Activities
becomeCurrent on iOS

UIDocument will not becomeCurrent automatically. 

Creating User Activities
becomeCurrent on iOS

UIDocument will not becomeCurrent automatically. 

Share the userActivity: 
[document openWithCompletionHandler:^(BOOL success) { 
 viewController.userActivity = document.userActivity; 
 … 
}];

Creating User Activities
becomeCurrent on OS X

Creating User Activities
becomeCurrent on OS X

AppKit looks for a userActivity:

Creating User Activities
becomeCurrent on OS X

AppKit looks for a userActivity:
• Main window’s responder chain

Creating User Activities
becomeCurrent on OS X

AppKit looks for a userActivity:
• Main window’s responder chain

• Main window controller’s document

Creating User Activities
becomeCurrent on OS X

AppKit looks for a userActivity:
• Main window’s responder chain

• Main window controller’s document

 
We’ll reevaluate when appropriate

Creating User Activities
Documents and Responders

Creating User Activities
Documents and Responders

We manage it for you
• We call becomeCurrent

Creating User Activities
Documents and Responders

We manage it for you
• We call becomeCurrent
• We call invalidate

Creating User Activities

NSUserActivity

invalidate

Creating User Activities

NSUserActivity

invalidate

Updating User Activities

Updating User Activities
Documents and Responders

Updating User Activities
Documents and Responders

NSUserActivity has a userInfo dictionary

Updating User Activities
Documents and Responders

NSUserActivity has a userInfo dictionary

 
Override:

- (void)updateUserActivityState:(NSUserActivity *)userActivity 

Updating User Activities
Documents and Responders

NSUserActivity has a userInfo dictionary

 
Override:

- (void)updateUserActivityState:(NSUserActivity *)userActivity 

The userInfo is emptied each time

Updating User Activities
Documents and Responders

Updating User Activities
Documents and Responders

Something like this:

- (void)updateUserActivityState:(NSUserActivity *)userActivity { 
 [super updateUserActivityState:userActivity]; 
 
 [userActivity addUserInfoEntriesFromDictionary:@{  
 @“messageID”: self.messageID, 
 }]; 
} 

Updating User Activities
Documents and Responders

Something like this:

- (void)updateUserActivityState:(NSUserActivity *)userActivity { 
 [super updateUserActivityState:userActivity]; 
 
 [userActivity addUserInfoEntriesFromDictionary:@{  
 @“messageID”: self.messageID, 
 }]; 
} 

When your info is stale: 
userActivity.needsSave = YES;

Updating User Activities
What to include

Updating User Activities
What to include

Can store NSArray, NSData, NSDate, NSDictionary, NSNull, NSNumber, NSSet, NSString,
NSUUID, or NSURL

Updating User Activities
What to include

Can store NSArray, NSData, NSDate, NSDictionary, NSNull, NSNumber, NSSet, NSString,
NSUUID, or NSURL

File URLs in iCloud or from a document provider are OK

Updating User Activities
What to include

Updating User Activities
What to include

Keep the minimal amount of information in the userInfo

Updating User Activities
What to include

Keep the minimal amount of information in the userInfo
• Just the state

Updating User Activities
What to include

Keep the minimal amount of information in the userInfo
• Just the state

• Avoid platform specifics

Updating User Activities
What to include

Keep the minimal amount of information in the userInfo
• Just the state

• Avoid platform specifics

• NS/UIDocument will add its fileURL with NSUserActivityDocumentURLKey

Updating User Activities
What to include

Updating User Activities
What to include

Think about versioning 

Updating User Activities
What to include

Think about versioning 

Maybe something like: 
- (void)application:(NS/UIApplication *)application  
 didUpdateUserActivity:(NSUserActivity *)userActivity { 
 [userActivity addUserInfoEntriesFromDictionary:@{ 
 @“handoffVersion”: @“2.0”, 
 }]; 
}

Continuing User Activities

Continuing User Activity
App Delegate

Continuing User Activity
App Delegate

We start fetching it from the other device: 
- (BOOL)application:(NS/UIApplication *)application 
 willContinueUserActivityWithType:(NSString *)activityType;

Continuing User Activity
App Delegate

We start fetching it from the other device: 
- (BOOL)application:(NS/UIApplication *)application 
 willContinueUserActivityWithType:(NSString *)activityType;
 
Use this to show the user what’s being continued

Continuing User Activity
App Delegate

Continuing User Activity
App Delegate

- (BOOL)application:(NS/UIApplication *)application 
 willContinueUserActivityWithType:(NSString *)activityType { 
 if ([activityType isEqual:@“com.company.viewing-message”]) { 
 
 id vc = [[MessageViewController alloc] init]; 
 vc.showLoadingIndicator = YES; 
 [self showMessageViewController:vc]; 
  
 return YES; 
 } 
 
 return NO; 
}

Continuing User Activity
App Delegate

Continuing User Activity
App Delegate

We got the activity: 
- (BOOL)application:(NS/UIApplication *)application 
 continueUserActivity:(NSUserActivity *)userActivity  
 restorationHandler: 
 (void(^)(NSArray *restorableObjects))restorationHandler;

Continuing User Activity
App Delegate

We got the activity: 
- (BOOL)application:(NS/UIApplication *)application 
 continueUserActivity:(NSUserActivity *)userActivity  
 restorationHandler: 
 (void(^)(NSArray *restorableObjects))restorationHandler;
 
Reconstruct the user’s activity

Continuing User Activity
App Delegate

We got the activity: 
- (BOOL)application:(NS/UIApplication *)application 
 continueUserActivity:(NSUserActivity *)userActivity  
 restorationHandler: 
 (void(^)(NSArray *restorableObjects))restorationHandler;
 
Reconstruct the user’s activity

 
Call the restorationHandler, passing it an array of documents or responders  
that present the user activity

Continuing User Activity
App Delegate

 restorationHandler(@[vc]);

Here’s an example:  
- (BOOL)application:continueUserActivity:restorationHandler: { 
 NSString *activityType = activity.activityType; 
 if ([activityType isEqual:@“com.company.viewing-message”]) { 
 id vc = [[MessageViewController alloc] init]; 
 …

Continuing User Activity
App Delegate

 
 return YES; 
 } 
 return NO; 
}

 restorationHandler(@[vc]);

Here’s an example:  
- (BOOL)application:continueUserActivity:restorationHandler: { 
 NSString *activityType = activity.activityType; 
 if ([activityType isEqual:@“com.company.viewing-message”]) { 
 id vc = [[MessageViewController alloc] init]; 
 …

Continuing User Activity
App Delegate

 
 return YES; 
 } 
 return NO; 
}

Continuing User Activity
App Delegate

Continuing User Activity
App Delegate

@implementation MessageViewController 
… 
- (void)restoreUserActivityState:(NSUserActivity *)activity { 
 [super restoreUserActivityState:activity]; 
 
 [self setMessageID:activity.userInfo[@“messageID”]]; 
 … 
 id cvc = [[ConversationViewController alloc] init]; 
 … 
 [cvc restoreUserActivityState:activity]; 
} 
… 
@end

Continuing User Activity
App Delegate

Continuing User Activity
App Delegate

@implementation ConversationViewController 
… 
- (void)restoreUserActivityState:(NSUserActivity *)activity { 
 [super restoreUserActivityState:activity]; 
 
 NSString *version = activity.userInfo[@“handoffVersion”] 
 BOOL isOldVersion = [self isOldVersion:version]; 
 
 NSString *recipientKey = isOldVersion ? @“to” : @“rcptID”; 
 self.recipient = activity.userInfo[recipientKey]; 
 [self updateRecipientImage]; 
} 
…

Continuing User Activity
App Delegate

Continuing User Activity
App Delegate

If there was an error: 
- (void)application:(NS/UIApplication *)application  
 didFailToContinueUserActivityWithType:(NSString *)activityType  
 error:(NSError *)error;

Continuing User Activity
App Delegate

If there was an error: 
- (void)application:(NS/UIApplication *)application  
 didFailToContinueUserActivityWithType:(NSString *)activityType  
 error:(NSError *)error;
 
Can be NSUserCancelledError!

Continuing User Activity
Document-based app

Continuing User Activity
Document-based app

On iOS, you continue the user activity: 
- (BOOL)application:continueUserActivity:restorationHandler: { 
… 
 NSURL *url = activity.userInfo[NSUserActivityDocumentURLKey]; 
 MyDocument *doc = [[MyDocument alloc] initWithFileURL:url]; 
 
 restorationHandler(@[doc]); 
 
 return YES; 
…

Continuing User Activity
Document-based app

Continuing User Activity
Document-based app

On OS X, AppKit can use NSDocumentController 
restoreUserActivityState:

Continuing User Activity

application:willContinueUserActivityWithType:

Continuing User Activity

application:willContinueUserActivityWithType:

Continuing User Activity

application:willContinueUserActivityWithType:

Continuing User Activity

Continuing User Activity

application:continueUserActivity:restorationHandler:

Continuing User Activity

Continuing User Activity

Continuing User Activity

application:continueUserActivity:restorationHandler:

Continuing User Activity

application:continueUserActivity:restorationHandler:

restorationHandler(@[window, viewController])

Continuing User Activity

application:continueUserActivity:restorationHandler:

restorationHandler(@[window, viewController])

Window
restoreUserActivityState:

Continuing User Activity

application:continueUserActivity:restorationHandler:

restorationHandler(@[window, viewController])

Window
restoreUserActivityState:

View Controller
restoreUserActivityState:

Continuing User Activity

Continuing User Activity

NSUserActivity In-depth

Keith Stattenfield
CoreFrameworks Engineer

Non AppKit/UIKit uses
NSUserActivity

Non AppKit/UIKit uses
NSUserActivity

Your application creates an activity with an activity type string

 [[NSUserActivity alloc] initWithActivityType:@“com.company.edit.foo”];

Activity Type Strings
NSUserActivity

Applications which want to receive activities claim them in their Info.plist

 Either in NSUserActivityTypes or in CFBundleDocumentTypes

Activity Type Strings
NSUserActivity

Activity Type Strings
NSUserActivity

Activity Type Strings
NSUserActivity

All applications from the same developer can exchange activities

Activity Type Strings
NSUserActivity

All applications from the same developer can exchange activities

Applications don’t have to claim the same activity types they create

Applications don’t have to claim any activity types, but can still create them

Activity Type Strings
NSUserActivity

All applications from the same developer can exchange activities

Applications don’t have to claim the same activity types they create

Applications don’t have to claim any activity types, but can still create them

OS X

ePub

PNG

MP3 M4V

Activity Type Strings
NSUserActivity

All applications from the same developer can exchange activities

Applications don’t have to claim the same activity types they create

Applications don’t have to claim any activity types, but can still create them

iOSOS X

ePub

PNG

MP3 M4V MP3 M4V

ePub

PNG

Advanced NSUserActivity
Setting the activity information

Advanced NSUserActivity
Setting the activity information

activity.title = @“ … “

activity.userInfo = @{ … }

 [activity addUserInfoEntriesFromDictionary: @{ … }]

[activity becomeCurrent]

[activity invalidate]

Advanced NSUserActivity
NSUserActivityDelegate

Advanced NSUserActivity
NSUserActivityDelegate

activity.delegate = self;

…

activity.needsSave = YES;

 
Then, when the system needs information from your activity 
- (void)userActivityWillSave:(NSUserActivity *)userActivity

Advanced NSUserActivity
NSUserActivityDelegate

Advanced NSUserActivity
NSUserActivityDelegate

When continued from another device: 
- (void)userActivityWasContinued:(NSUserActivity *)userActivity

Called when this activity was successfully continued on another device

Most applications won’t need this at all

Network

Website Handoff
Native application to web browser

Network

Website Handoff
Native application to web browser

Network

Website Handoff
Native application to web browser

Website Handoff
Native application to web browser

NSUserActivity* activity = [[NSUserActivity alloc]
initWithActivityType:…];
!

activity.userInfo = @{ … }
activity.webpageURL = [NSURL URLWithString: …];

Website Handoff
Web browser to native application

Website Handoff
Web browser to native application

Website Handoff
Web browser to native application

Website Handoff
Web browser to native application

Website Handoff
Web browser to native application

application:continueUserActivity:(NSUserActivity*)userActivity
restorationHandler:(void(^)(NSArray
*restorableObjects))restorationHandler {
 if ([userActivity.activityType
 isEqual:NSUserActivityTypeContinuingFromWebBrowser]) {
 /* resume an activity based on the webpageURL */
 …
 } else if ([userActivity isEqual:@“com.company.type12”]) {
 …
 }

Continuation Streams

Need more than a one-way, one time
exchange of data from creator to receiver

Establishes a bidirectional stream for
some kind of interactive purposes

Continuation Streams

Need more than a one-way, one time
exchange of data from creator to receiver

Establishes a bidirectional stream for
some kind of interactive purposes

Continuation Streams

Need more than a one-way, one time
exchange of data from creator to receiver

Establishes a bidirectional stream for
some kind of interactive purposes

Continuation Streams

Need more than a one-way, one time
exchange of data from creator to receiver

Establishes a bidirectional stream for
some kind of interactive purposes

Continuation Streams
NSUserActivity

NSUserActivity* activity = [[NSUserActivity alloc] initWithActivityType:
@“com.company.interact”];

activity.userInfo = @{ … }

activity.delegate = self;

activity.supportsContinuationStreams = YES;

[activity becomeCurrent];

Continuation Streams
NSUserActivity, on the receiving device

- application:(NS/UIApplication*) continueUserActivity:
(NSUserActivity*)activity restorationHandler:…
{
 if (activity.supportsContinuationStreams) {
 [activity getContinuationStreamsWithCompletionHandler:
 ^(NSInputStream* inputstream,NSOutputStream*
 outputstream, NSError* error) {
 if (!error) {
 /* You can send and receive over these streams! */
 }

ConnectBack
NSUserActivity, back on the initiating device

Lastly, this delegate method is called with the streams

-(void) userActivity:(NSUserActivity *)userActivity
didReceiveInputStream:(NSInputStream *)inputStream outputStream:
(NSOutputStream *)outputStream {
 …
}

So, you've learned

AppKit/UIKit support

NS/UIDocument support

Continuation streams

Website interoperability

More Information

Jake Behrens
Frameworks Evangelist
behrens@apple.com

Documentation
Handoff Programming Guide

http://apple.com

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

Related Sessions

• Cloud Documents Marina Thursday 11:30AM

• Your App, Your Website, and Safari Nob Hill Tuesday 4:30PM

Labs

• Handoff Lab Frameworks Lab B Thursday 9:00AM

• Cocoa Touch Lab Frameworks Lab A Thursday 2:00PM

• Cocoa Lab Frameworks Lab B Thursday 4:30PM

