
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

What's New in Core Data
The new stuff you need to know

Frameworks

Session 225
Melissa Turner
Sr. Software Engineer

Roadmap

Batch updates

Asynchronous fetching

Incremental stores

Concurrency changes

iCloud update

Swift

Batch Updates

Batch Updates
What, why

Make changes directly in the database
• Attributes

Performance optimization

The Old Way
Version one

The Old Way
Version one

The Old Way
Version one

The Problem
Version one

The Old Way
Version two

The Old Way
Version two

The Old Way
Version two

The Old Way
Version two

The Old Way
Version two

The Old Way
Version two

The Problem
Version two

0% 100%

The Problem
Version two

0% 100%

Batch Updates
Where?

-[NSManagedObjectContext executeRequest: error:]
• Takes NSPersistentStoreRequest

• Returns NSPersistentStoreResult

NSBatchUpdateRequest

NSBatchUpdateResult

NSBatchUpdateRequest
How?

Entity

Store(s)

Predicate

Properties to update
• Property as key

• NSExpression describing the desired update as value

NSBatchUpdateResult
What?

Success/failure

Count of rows changed

Object IDs of rows changed

Batch Updates
Updating your database in one easy invocation

Changes are not reflected in the context

Validation rules are not run

Does update optimistic locking version in database
• Create merge conflicts on yourself

Demo
Batch updates—Faster by design

Batch Updates
Updating your database in one easy invocation

Changes are not reflected in the context

Validation rules are not run

Does update optimistic locking version in database
• Create merge conflicts on yourself

Batch Updates
Updating your database in one easy invocation

Changes are not reflected in the context

Validation rules are not run

Does update optimistic locking version in database
• Create merge conflicts on yourself

Asynchronous Fetching

Asychronous Fetching
What, why, where, how?

Way to execute a fetch without blocking

Cancellable

Progress reporting

!

Synchronous Fetching
You know this

Synchronous Fetching
You know this

NSManagedObjectContext

Synchronous Fetching
You know this

NSManagedObjectContext

NSFetchRequest

Synchronous Fetching
You know this

NSManagedObjectContext

NSFetchRequest

Synchronous Fetching
You know this

NSManagedObjectContext

Synchronous Fetching
You know this

NSManagedObjectContext

0% 100%
Status

Synchronous Fetching
You know this

NSManagedObjectContext

0% 100%
Status

Synchronous Fetching
You know this

NSManagedObjectContext

Synchronous Fetching
You know this

NSManagedObjectContext

NSArray

Synchronous Fetching
You know this

NSManagedObjectContext

NSArray

Asychronous Fetching

Returns a future
• NSAsynchronousFetchResult

Callback block executed when fetch is complete

Will update context if specified

NSPrivateQueueConcurrencyType and NSMainQueueConcurrencyType only

!

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchRequest

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchRequest

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchResult

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchResult

NSAsynchronousFetchRequest

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchResult

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchResult

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchResult

Asynchronous Fetching
Fire and forget

NSManagedObjectContext

NSAsynchronousFetchResult

!

NSAsynchronousFetchRequest

New NSPersistentStoreRequest subclass

Initialized with fetch request and completion block

Passed to -executeRequest:error:

NSAsynchronousFetchResult

New NSPersistentStoreResult subclass

Provides results or error after completion

Returned immediately from -executeRequest:error:

Asynchronous Fetching Progress

NSFetchRequest *request = [NSFetchRequest
fetchRequestWithEntityName:”MyEntity”];
NSAsynchronousFetchRequest *async = [[NSAsynchronousFetchRequest alloc]
 initWithFetchRequest: request completionBlock^(id result) {
 if (result.finalResult) {
 … }
}];
[context performBlock: ^() {
 NSError *error = nil;
 asyncResult = [moc executeRequest: asyncRequest error:&blockError];
}];

Asynchronous Fetching Progress

Uses NSProgress

Create your own NSProgress before -executeRequest:error

NSManagedObjectContext will create nested NSProgress

Allows cancellation from NSProgress

Asynchronous Fetching Progress

NSProgress *progress = [NSProgress progressWithTotalUnitCount: 1];
[progress becomeCurrentWithPendingUnitCount: 1];
[context performBlock: ^() {
 [context executeRequest: asyncRequest error:&error]
}];
[progress resignCurrent];

Demo
Asynchronous fetching—Faster by design

Ben Trumbull
Core Data Engineer Manager

Incremental Stores

Incremental Implications
Adjusting your store’s expectations

-executeRequest:withContext:
• Core Data request/response types

• Can add your own

Please fail gracefully

Incremental Implications
New request types

Use -[NSManagedObjectContext executeRequest:error:]
• Does serialization for you

Create a request/response pair

Context will return aggregated result

Default store types will not recognize custom request types

Incremental Implications
Why implement your own?

Minimizing trips to the store
• Fetching disjoint entities

Object refresh

Status checks

Incremental Implications
Asynchronicity

Return future immediately

Message future when request completes

Use performBlock: to update context

Concurrency

Sub Roadmap

Retrospective
• NSLocking

• Thread confinement

• Concurrency types

New advice

!

Retrospective
Making sense of Stack Overflow

In the Beginning

NSLocking protocol

Developer had to lock the context before use

Developer had to lock the coordinator before use

NSLocking

NSLocking

NSLocking

NSLocking

NSLocking

NSLocking

NSLocking

In the Beginning

NSLocking protocol

Developer had to lock the context before use

Developer had to lock the coordinator before use

Easy to forget a lock or unlock

Thread Confinement
The first step

Developer responsible for making sure only one thread is using a context
• Thread local variables

Developer had to lock coordinator before use

!

Thread Confinement

Thread Confinement

Thread Confinement

Thread Confinement

Thread Confinement
The first step

Developer responsible for making sure only one thread is using a context
• Thread local variables

Developer had to lock coordinator before use

Still difficult to get right

!

Concurrency Types
Making working with the context easier

Context encapsulates threading model

Concurrency types on context
• Private, main thread, confinement

• performBlock:/performBlockAndWait:

Developer no longer had to lock coordinator before use

!

Concurrency Types
Making working with the context easier

NSMainQueueConcurrencyType

NSPrivateQueueConcurrencyType

NSConfinementConcurrencyType

!

Inverting the Previous Order

Inverting the Previous Order

Inverting the Previous Order

Inverting the Previous Order

Inverting the Previous Order

Debugging

Had a mechanism for debugging concurrency
• com.apple.CoreData.ConcurrencyDebug 1

Required downloading a _debug version of the framework

Not available on iOS

!

Today
Preparing developers for tomorrow

OS X 10.10 and iOS 8.0
Same actors

Context encapsulates threading model

Concurrency types on context
• Private, main thread, confinement

• performBlock:/performBlockAndWait:

OS X 10.10 and iOS 8.0
More actors

NSPersistentStoreCoordinator gets performBlock:/performBlockAndWait:
• Existing methods wrap these

Always uses a private queue

OS X 10.10 and iOS 8.0
Debugging made easier

Debugging default now always available
• com.apple.CoreData.ConcurrencyDebug 1

Works on iOS

!

Looking Ahead
Predictions, not promises

Thread confinement obsolete
• That includes NSConfinementConcurrencyType

Bonus API
Because debugging is hard enough already

Name property on NSManagedObjectContext
• Only applies to NSPrivateQueueConcurrencyType

Name property on NSPersistentStoreCoordinator

Visible in Xcode/LLDB while debugging

iCloud

Core Data and iCloud

Transitioning to new infrastructure

Reliability improvements

Performance enhancements

Transparent to developers

iCloud Key Value Store

Great for application preferences

Asynchronously kept up to date

Data limit constraints

iCloud Documents

For document-centric apps

Simple API

Full offline cache on OS X

Unstructured data

Tied to the file system

iCloud Core Data

Keep private structured data in sync

Replicated between devices

Single user data

CloudKit

Client server model

No local storage

Predicate-based queries

Application-centric data

CloudKit

Public data

Structured and bulk data

Large data set

Use iCloud accounts

Client-directed data transfer

Swift
You have questions—We have answers

Core Data MUST¹ Work

¹ See RFC 2119

Swift
Yes

Full access to Core Data from Swift

Subclass NSManagedObject in Swift

Mix and match

Swift
Things to remember—Subclassing

Swift subclasses work mostly like Objective C

Use @NSManaged
• Core Data specific

Module name in data model

!

Class Names in the Model

Class Names in the Model

Comparison
ObjC managed-object subclass

#import <CoreData/CoreData.h>
!

@interface Mailbox : NSManagedObject
!

@property (nonatomic) NSString *name;
@property (nonatomic) NSSet *messages;
!

@end

!

Comparison
ObjC managed-object subclass

#import “Mailbox.h”
!

@implementation Mailbox
!

@dynamic name;
@dynamic messages;
!

@end

!

!

Comparison
Swift object subclass

import CoreData
!

class Mailbox : NSManagedObject {
!

 @NSManaged var name : NSString
 @NSManaged var messages : NSSet

}

Swift
Things to remember—Types

CoreData doesn’t use type constraints

If you do
• Custom subclasses are best

• NSManagedObject otherwise

!

Swift
Things to remember—Types

CoreData doesn’t use type constraints

If you are
• Custom subclasses are best

• NSManagedObject otherwise

!

var myArray = MyManagedSubclass[]
func myFunction<T : MyManagedSubclass>(first: T) {}

!

Demo
Batch updates redux

Roadmap

Batch updates

Asynchronous fetching

Incremental stores

Concurrency changes

iCloud update

Swift

!

http://bugreport.apple.com
We can’t fix what we don’t know about

Bug reports
• Steps to reproduce

• Sample App bonus

Feature requests

Enhancement requests

Performance issues

Documentation requests

http://bugreport.apple.com

More Information

David DeLong
Technology Evangelist
delong@apple.com

Cocoa Feedback
cocoa-feedback@apple.com

Core Data Documentation
Programming Guide, Example, Tutorials
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Related Sessions

• Introducing CloudKit Mission Tuesday 3:15 PM

Labs

• Core Data Services Lab B Wednesday 9:00AM

• Core Data Services Lab B Thursday 10:15AM

• Core Data Frameworks Lab Friday 9:00AM

