
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

What’s New in Table  
and Collection Views

Session 226 
Luke Hiesterman 
UI Kit Engineer

Frameworks

Olivier Gutknecht 
iOS Engineering Manager



Agenda



Agenda

Table view



Agenda

Table view
• Dynamic Type adoption



Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells



Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

 
Collection view



Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

 
Collection view
• Self-sizing cells



Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

 
Collection view
• Self-sizing cells

• Smart invalidation



Table View
Adopting dynamic type



Dynamic Type



Dynamic Type



Adopting Dynamic Type



Adopting Dynamic Type

Comes free with built-in labels



Adopting Dynamic Type

Comes free with built-in labels

+[UIFont preferredFontForTextStyle:] for custom labels
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Property—rowHeight

Delegate—tableView:heightForRowAtIndexPath:

Cell—self-sizing cells
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Self-sizing Cells
Two ways to cut the cake

Autolayout sizing
• Add constraints to cell.contentView 

Manual-sizing code
• Override -sizeThatFits:
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Self-sizing Cells

New major feature

Available in flow layout

Ready for custom layouts!
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Cell-sizing Strategies

Cell

Layout-driven attributes

Cell

Layout-estimated attributes

Cell

Self-sizing cell

Cell

Layout-estimated attributes

Cell

Preferred attributes 
fitting attributes
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Flow Layout Support

@property (nonatomic) CGSize estimatedItemSize; 

Equivalent to estimated row height in table views

Set it to a non-zero CGSize
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Collection View

Collection View Cell

Collection View Layout

A layout computes a first 
approximation using estimated size
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Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

And returns final attributes
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Collection View Invalidation

-prepareLayout 
-collectionViewContentSize 
-layoutAttributesForElementsInRect: 

All other calls 
-invalidateLayout 
-prepareLayout 

…the cycle continues
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How to Build High-performance Layouts

Recompute only what you need!

Use collection view invalidation contexts

New in iOS 8 iOS 7!

Provide fine-grain information to your layout in invalidation situations

Flow layout is already using invalidation contexts in rotations

Now used for self-sizing cells
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Define your own invalidation context class 
+ (Class)invalidationContextClass

Invalidate with contextual information 
- (void)invalidateLayoutWithContext(UICollectionViewLayoutInvalidationContext 
*)context;



Invalidation Contexts

Define your own invalidation context class 
+ (Class)invalidationContextClass

Invalidate with contextual information 
- (void)invalidateLayoutWithContext(UICollectionViewLayoutInvalidationContext 
*)context;

Override point for bounds change 
- (UICollectionViewLayoutInvalidationContext 
*)invalidationContextForBoundsChange:(CGRect)newBounds;
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@property (nonatomic, readonly) BOOL invalidateDataSourceCounts;
@property (nonatomic, readonly) BOOL invalidateEverything;



Invalidation Contexts

@property (nonatomic, readonly) BOOL invalidateDataSourceCounts;
@property (nonatomic, readonly) BOOL invalidateEverything;

The collection view set in response to specific types of invalidation
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Invalidation Contexts in iOS 8

Collaboration between your layout and collection view

You can pass information to the collection view to enable smart invalidation
• High-performance floating headers

• Avoid visual ‘jumps’ with self-sizing cells
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Invalidation Contexts in iOS 8

Fine-grain invalidation 
- (void)invalidateItemsAtIndexPaths:(NSArray *)indexPaths; 
- (void)invalidateSupplementaryElementsOfKind:(NSString *)elementKind 
atIndexPaths:(NSArray *)indexPaths; 
- (void)invalidateDecorationElementsOfKind:(NSString *)elementKind atIndexPaths:
(NSArray *)indexPaths 
!

@property (nonatomic, readonly) NSArray *invalidatedItemIndexPaths; 
@property (nonatomic, readonly) NSDictionary *invalidatedSupplementaryIndexPaths; 
@property (nonatomic, readonly) NSDictionary *invalidatedDecorationIndexPaths;







Invalidate  
supplementary view



The collection view will query 
layoutAttributes for this index 
path only 
!
layoutAttributesForSupplement
aryViewOfKind:atIndexPath:

Invalidate  
supplementary view



The collection view will query 
layoutAttributes for this index 
path only 
!
layoutAttributesForSupplement
aryViewOfKind:atIndexPath:

And not 
!
layoutAttributesForElementsIn
Rect:

Invalidate  
supplementary view
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Invalidation Contexts in iOS 8

Inform the collection view of a content-size change
@property (nonatomic) CGSize contentSizeAdjustment;



Invalidation Contexts in iOS 8

Inform the collection view of a content-size change
@property (nonatomic) CGSize contentSizeAdjustment;
@property (nonatomic) CGPoint contentOffsetAdjustment;
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Invalidation Contexts in iOS 8

Layout support for self-sizing cells
- (BOOL)shouldInvalidateLayoutForPreferredLayoutAttributes:
(UICollectionViewLayoutAttributes *)preferredAttributes 
withOriginalAttributes:(UICollectionViewLayoutAttributes *)originalAttributes
- (UICollectionViewLayoutInvalidationContext *) 
invalidationContextForPreferredLayoutAttributes:
(UICollectionViewLayoutAttributes  *)preferredAttributes 
withOriginalAttributes:
(UICollectionViewLayoutAttributes *)originalAttributes;



Self-sizing Cells in a Custom Layout



Self-sizing Cells in a Custom Layout



Self-sizing Cells in a Custom Layout

Generate a first approximation by returning layout attributes in 
layoutAttributesForElementsInRect:



Self-sizing Cells in a Custom Layout

The collection view will dequeue and query cells



Self-sizing Cells in a Custom Layout

Cells can self-size with auto layout, sizeThatFits: or 
preferredLayoutAttributesFittingAttributes:



Self-sizing Cells in a Custom Layout

Other layout attributes (position) can then be invalidated: 
shouldInvalidateLayoutForPreferredLayoutAttributes:withOriginalAttributes: 

 invalidationContextForPreferredLayoutAttributes:withOriginalAttributes:



Self-sizing Cells in a Custom Layout

The collection view layout content size must change  
contentSizeAdjustment



Self-sizing Cells in a Custom Layout

The collection view layout offset must change  
contentOffsetAdjustment



Self-sizing Cells in a Custom Layout

The actual implementation is layout specific
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Final Thoughts

Every app should adopt Dynamic Type

Self-sizing cells will help

Use invalidation contexts for high-performance collection view layouts



Related Sessions

• Advanced User Interfaces with Collection Views Marina Thursday 3:15PM



Labs

• Table View and Collection View Lab Frameworks Lab A Thursday 11:30AM

• Cocoa Touch Lab Frameworks Lab A Thursday 2:00PM



More Information

Jake Behrens 
iOS Frameworks Evangelist 
behrens@apple.com 

Table View and Collection View Reference Guides 
https://developer.apple.com/library/prerelease/ios 

Apple Developer Forums 
http://devforums.apple.com

http://devforums.apple.com



