
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

What’s New in Table  
and Collection Views

Session 226
Luke Hiesterman
UI Kit Engineer

Frameworks

Olivier Gutknecht
iOS Engineering Manager

Agenda

Agenda

Table view

Agenda

Table view
• Dynamic Type adoption

Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

 
Collection view

Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

 
Collection view
• Self-sizing cells

Agenda

Table view
• Dynamic Type adoption

• Self-sizing cells

 
Collection view
• Self-sizing cells

• Smart invalidation

Table View
Adopting dynamic type

Dynamic Type

Dynamic Type

Adopting Dynamic Type

Adopting Dynamic Type

Comes free with built-in labels

Adopting Dynamic Type

Comes free with built-in labels

+[UIFont preferredFontForTextStyle:] for custom labels

Dynamic Row Heights
Everything is dynamic

Dynamic Row Heights
Everything is dynamic

Dynamic Row Heights
Everything is dynamic

Dynamic Row Heights
Everything is dynamic

Dynamic Row Heights
Everything is dynamic

Dynamic Row Heights
Everything is dynamic

Dynamic Row Heights
Strategies

Dynamic Row Heights
Strategies

Property—rowHeight

Dynamic Row Heights
Strategies

Property—rowHeight

Delegate—tableView:heightForRowAtIndexPath:

Dynamic Row Heights
Strategies

Property—rowHeight

Delegate—tableView:heightForRowAtIndexPath:

Cell—self-sizing cells

Self-sizing Table Cells

Cell Sizing

Cell Sizing

Cell Sizing

Cell Sizing

Fonts

Cell Sizing

Cell Sizing

Margins

iOS 8 Sizing Flow

iOS 8 Sizing Flow

Row 1

Row 2

Row 3

iOS 8 Sizing Flow

Row 4

Row 1

Row 2

Row 3

iOS 8 Sizing Flow

Row 4Estimated height

Row 1

Row 2

Row 3

iOS 8 Sizing Flow

Row 1

Row 2

Row 3

Row 4Estimated height

iOS 8 Sizing Flow
Create cell

Row 1

Row 2

Row 3

Row 4Estimated height

iOS 8 Sizing Flow
Create cell

Size cell

Row 1

Row 2

Row 3

Row 4Estimated height

iOS 8 Sizing Flow
Create cell

Size cell

Row 1

Row 2

Row 3

Row 4

iOS 8 Sizing Flow
Create cell

Size cell

Row 1

Row 2

Row 3

Row 4

Update contentSize

iOS 8 Sizing Flow
Create cell

Size cell

Row 1

Row 2

Row 3

Row 4

Update contentSize

Display cell

iOS 8 Sizing Flow
Create cell

Size cell

Row 1

Row 2

Row 3

Row 4

Update contentSize

Display cell

Self-sizing Cells
Two ways to cut the cake

Self-sizing Cells
Two ways to cut the cake

Autolayout sizing

Self-sizing Cells
Two ways to cut the cake

Autolayout sizing
• Add constraints to cell.contentView 

Self-sizing Cells
Two ways to cut the cake

Autolayout sizing
• Add constraints to cell.contentView 

Manual-sizing code

Self-sizing Cells
Two ways to cut the cake

Autolayout sizing
• Add constraints to cell.contentView 

Manual-sizing code
• Override -sizeThatFits:

Demo
Dynamic Type and self-sizing cells

Collection View

Olivier Gutknecht
iOS Engineering Manager

Today

Today

Self-sizing cells

Today

Self-sizing cells

Smart invalidation

Self-sizing Cells

Self-sizing Cells

New major feature

Self-sizing Cells

New major feature

Available in flow layout

Self-sizing Cells

New major feature

Available in flow layout

Ready for custom layouts!

Demo
Self-sizing cells

Cell Sizing Strategies

Classic All cell sizes are computed by a collection view layout

Self-sizing Cells Use constraints on the collection view cell content view,  
or override sizeThatFits:

Full Control Use preferredLayoutAttributesFittingAttributes:  
to change other attributes properties or use custom-sizing code

Cell Sizing Strategies

Classic All cell sizes are computed by a collection view layout

Self-sizing Cells Use constraints on the collection view cell content view,  
or override sizeThatFits:

Full Control Use preferredLayoutAttributesFittingAttributes:  
to change other attributes properties or use custom-sizing code

Cell Sizing Strategies

Classic All cell sizes are computed by a collection view layout

Self-sizing Cells Use constraints on the collection view cell content view,  
or override sizeThatFits:

Full Control Use preferredLayoutAttributesFittingAttributes:  
to change other attributes properties or use custom-sizing code

Cell-sizing Strategies

Cell-sizing Strategies

Cell

Layout-driven attributes

Cell-sizing Strategies

Cell

Layout-driven attributes

Cell

Layout-estimated attributes

Cell-sizing Strategies

Cell

Layout-driven attributes

Cell

Layout-estimated attributes

Cell

Self-sizing cell

Cell-sizing Strategies

Cell

Layout-driven attributes

Cell

Layout-estimated attributes

Cell

Self-sizing cell

Cell

Layout-estimated attributes

Cell-sizing Strategies

Cell

Layout-driven attributes

Cell

Layout-estimated attributes

Cell

Self-sizing cell

Cell

Layout-estimated attributes

Cell

Preferred attributes 
fitting attributes

Flow Layout Support

Flow Layout Support

@property (nonatomic) CGSize estimatedItemSize;

Flow Layout Support

@property (nonatomic) CGSize estimatedItemSize;

Equivalent to estimated row height in table views

Flow Layout Support

@property (nonatomic) CGSize estimatedItemSize;

Equivalent to estimated row height in table views

Set it to a non-zero CGSize

Self-sizing Cells in Flow Layout

Collection View Collection View Layout

Collection View Cell

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

A layout computes a first
approximation using estimated size

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

Cells are created and self-sized

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

The layout receives updated attributes

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

Self-sizing Cells in Flow Layout

Collection View

Collection View Cell

Collection View Layout

And returns final attributes

Collection View Invalidation

Collection View Invalidation

-prepareLayout

Collection View Invalidation

-prepareLayout
-collectionViewContentSize

Collection View Invalidation

-prepareLayout
-collectionViewContentSize
-layoutAttributesForElementsInRect:

Collection View Invalidation

-prepareLayout
-collectionViewContentSize
-layoutAttributesForElementsInRect:

All other calls

Collection View Invalidation

-prepareLayout
-collectionViewContentSize
-layoutAttributesForElementsInRect:

All other calls
-invalidateLayout

Collection View Invalidation

-prepareLayout
-collectionViewContentSize
-layoutAttributesForElementsInRect:

All other calls
-invalidateLayout
-prepareLayout

…the cycle continues

How to Build High-performance Layouts

How to Build High-performance Layouts

Recompute only what you need!

How to Build High-performance Layouts

Recompute only what you need!

Use collection view invalidation contexts

How to Build High-performance Layouts

Recompute only what you need!

Use collection view invalidation contexts

New in iOS 8 iOS 7!

How to Build High-performance Layouts

Recompute only what you need!

Use collection view invalidation contexts

New in iOS 8 iOS 7!

Provide fine-grain information to your layout in invalidation situations

How to Build High-performance Layouts

Recompute only what you need!

Use collection view invalidation contexts

New in iOS 8 iOS 7!

Provide fine-grain information to your layout in invalidation situations

Flow layout is already using invalidation contexts in rotations

How to Build High-performance Layouts

Recompute only what you need!

Use collection view invalidation contexts

New in iOS 8 iOS 7!

Provide fine-grain information to your layout in invalidation situations

Flow layout is already using invalidation contexts in rotations

Now used for self-sizing cells

Invalidation Contexts

Invalidation Contexts

Define your own invalidation context class
+ (Class)invalidationContextClass

Invalidation Contexts

Define your own invalidation context class
+ (Class)invalidationContextClass

Invalidate with contextual information
- (void)invalidateLayoutWithContext(UICollectionViewLayoutInvalidationContext
*)context;

Invalidation Contexts

Define your own invalidation context class
+ (Class)invalidationContextClass

Invalidate with contextual information
- (void)invalidateLayoutWithContext(UICollectionViewLayoutInvalidationContext
*)context;

Override point for bounds change
- (UICollectionViewLayoutInvalidationContext
*)invalidationContextForBoundsChange:(CGRect)newBounds;

Invalidation Contexts

Invalidation Contexts

@property (nonatomic, readonly) BOOL invalidateDataSourceCounts;

Invalidation Contexts

@property (nonatomic, readonly) BOOL invalidateDataSourceCounts;
@property (nonatomic, readonly) BOOL invalidateEverything;

Invalidation Contexts

@property (nonatomic, readonly) BOOL invalidateDataSourceCounts;
@property (nonatomic, readonly) BOOL invalidateEverything;

The collection view set in response to specific types of invalidation

Invalidation Contexts in iOS 8

Invalidation Contexts in iOS 8

Collaboration between your layout and collection view

Invalidation Contexts in iOS 8

Collaboration between your layout and collection view

You can pass information to the collection view to enable smart invalidation

Invalidation Contexts in iOS 8

Collaboration between your layout and collection view

You can pass information to the collection view to enable smart invalidation
• High-performance floating headers

Invalidation Contexts in iOS 8

Collaboration between your layout and collection view

You can pass information to the collection view to enable smart invalidation
• High-performance floating headers

• Avoid visual ‘jumps’ with self-sizing cells

Invalidation Contexts in iOS 8

Invalidation Contexts in iOS 8

Fine-grain invalidation

Invalidation Contexts in iOS 8

Fine-grain invalidation
- (void)invalidateItemsAtIndexPaths:(NSArray *)indexPaths;

Invalidation Contexts in iOS 8

Fine-grain invalidation
- (void)invalidateItemsAtIndexPaths:(NSArray *)indexPaths;
- (void)invalidateSupplementaryElementsOfKind:(NSString *)elementKind
atIndexPaths:(NSArray *)indexPaths;

Invalidation Contexts in iOS 8

Fine-grain invalidation
- (void)invalidateItemsAtIndexPaths:(NSArray *)indexPaths;
- (void)invalidateSupplementaryElementsOfKind:(NSString *)elementKind
atIndexPaths:(NSArray *)indexPaths;
- (void)invalidateDecorationElementsOfKind:(NSString *)elementKind atIndexPaths:
(NSArray *)indexPaths

Invalidation Contexts in iOS 8

Fine-grain invalidation
- (void)invalidateItemsAtIndexPaths:(NSArray *)indexPaths;
- (void)invalidateSupplementaryElementsOfKind:(NSString *)elementKind
atIndexPaths:(NSArray *)indexPaths;
- (void)invalidateDecorationElementsOfKind:(NSString *)elementKind atIndexPaths:
(NSArray *)indexPaths
!

@property (nonatomic, readonly) NSArray *invalidatedItemIndexPaths;
@property (nonatomic, readonly) NSDictionary *invalidatedSupplementaryIndexPaths;
@property (nonatomic, readonly) NSDictionary *invalidatedDecorationIndexPaths;

Invalidate
supplementary view

The collection view will query
layoutAttributes for this index
path only
!
layoutAttributesForSupplement
aryViewOfKind:atIndexPath:

Invalidate
supplementary view

The collection view will query
layoutAttributes for this index
path only
!
layoutAttributesForSupplement
aryViewOfKind:atIndexPath:

And not
!
layoutAttributesForElementsIn
Rect:

Invalidate
supplementary view

Invalidation Contexts in iOS 8

Invalidation Contexts in iOS 8

Inform the collection view of a content-size change

Invalidation Contexts in iOS 8

Inform the collection view of a content-size change
@property (nonatomic) CGSize contentSizeAdjustment;

Invalidation Contexts in iOS 8

Inform the collection view of a content-size change
@property (nonatomic) CGSize contentSizeAdjustment;
@property (nonatomic) CGPoint contentOffsetAdjustment;

Invalidation Contexts in iOS 8

Invalidation Contexts in iOS 8

Layout support for self-sizing cells

Invalidation Contexts in iOS 8

Layout support for self-sizing cells
- (BOOL)shouldInvalidateLayoutForPreferredLayoutAttributes:
(UICollectionViewLayoutAttributes *)preferredAttributes
withOriginalAttributes:(UICollectionViewLayoutAttributes *)originalAttributes

Invalidation Contexts in iOS 8

Layout support for self-sizing cells
- (BOOL)shouldInvalidateLayoutForPreferredLayoutAttributes:
(UICollectionViewLayoutAttributes *)preferredAttributes
withOriginalAttributes:(UICollectionViewLayoutAttributes *)originalAttributes
- (UICollectionViewLayoutInvalidationContext *)
invalidationContextForPreferredLayoutAttributes:
(UICollectionViewLayoutAttributes *)preferredAttributes
withOriginalAttributes:
(UICollectionViewLayoutAttributes *)originalAttributes;

Self-sizing Cells in a Custom Layout

Self-sizing Cells in a Custom Layout

Self-sizing Cells in a Custom Layout

Generate a first approximation by returning layout attributes in
layoutAttributesForElementsInRect:

Self-sizing Cells in a Custom Layout

The collection view will dequeue and query cells

Self-sizing Cells in a Custom Layout

Cells can self-size with auto layout, sizeThatFits: or 
preferredLayoutAttributesFittingAttributes:

Self-sizing Cells in a Custom Layout

Other layout attributes (position) can then be invalidated: 
shouldInvalidateLayoutForPreferredLayoutAttributes:withOriginalAttributes: 

 invalidationContextForPreferredLayoutAttributes:withOriginalAttributes:

Self-sizing Cells in a Custom Layout

The collection view layout content size must change  
contentSizeAdjustment

Self-sizing Cells in a Custom Layout

The collection view layout offset must change  
contentOffsetAdjustment

Self-sizing Cells in a Custom Layout

The actual implementation is layout specific

Final Thoughts

Final Thoughts

Final Thoughts

Every app should adopt Dynamic Type

Final Thoughts

Every app should adopt Dynamic Type

Self-sizing cells will help

Final Thoughts

Every app should adopt Dynamic Type

Self-sizing cells will help

Use invalidation contexts for high-performance collection view layouts

Related Sessions

• Advanced User Interfaces with Collection Views Marina Thursday 3:15PM

Labs

• Table View and Collection View Lab Frameworks Lab A Thursday 11:30AM

• Cocoa Touch Lab Frameworks Lab A Thursday 2:00PM

More Information

Jake Behrens
iOS Frameworks Evangelist
behrens@apple.com

Table View and Collection View Reference Guides
https://developer.apple.com/library/prerelease/ios

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

