
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Advanced CloudKit
Storing your application data in the cloud

Session 231 
Jacob Farkas 
Software Engineer

Frameworks



What is CloudKit?
Why am I here?

• Introducing CloudKit Mission Tuesday 3:15PM



What is CloudKit?
Why am I here?

Access to iCloud database servers

• Introducing CloudKit Mission Tuesday 3:15PM



What is CloudKit?
Why am I here?

Access to iCloud database servers

Apple uses CloudKit!

• Introducing CloudKit Mission Tuesday 3:15PM



What You Will Learn



What You Will Learn

CloudKit private database



What You Will Learn

CloudKit private database

Modeling your data



What You Will Learn

CloudKit private database

Modeling your data

Advanced record manipulation



What You Will Learn

CloudKit private database

Modeling your data

Advanced record manipulation

Handling notifications



What You Will Learn

CloudKit private database

Modeling your data

Advanced record manipulation

Handling notifications

iCloud Dashboard
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Convenience API

@interface CKDatabase : NSObject 
!
- (void)fetchRecordWithID:(CKRecordID *)recordID  
        completionHandler:(void (^)(CKRecord *record,  
                        NSError *error))completionHandler;  
!
@end



NSOperation CloudKit API

@interface CKFetchRecordsOperation : NSOperation 
- (instancetype)initWithRecordIDs:(NSArray /* CKRecordID */ *)recordIDs; 
!
@property (nonatomic, copy) NSArray /* CKRecordID */ *recordIDs; 
!
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
!
@property (nonatomic, copy) void (^perRecordProgressBlock) 
                         (CKRecordID *recordID, double progress);  
@property (nonatomic, copy) void (^perRecordCompletionBlock) 
               (CKRecord *record, CKRecordID *recordID, NSError *error); 
!
@property (nonatomic, copy) void (^fetchRecordsCompletionBlock)( 
         NSDictionary /* CKRecordID * -> CKRecord */ *recordsByRecordID,   
         NSError *operationError);  
!
@end
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@interface NSOperationQueue : NSObject 
!

 - (void)addOperation:(NSOperation *)op; 
!
    - (NSArray *)operations; 
!
    - (void)setSuspended:(BOOL)b; 
    - (BOOL)isSuspended; 
!
    - (void)cancelAllOperations; 
!

@end

Starting Operations

CloudKit Operations
Basic NSOperationQueue
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Finding your way around
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Zones

Users

Notifications

Subscriptions

Records

CKFetchRecordChangesOperation

CKFetchRecordsOperation
CKModifyRecordsOperation

CKQueryOperation

CloudKit Operations
Finding your way around

CKDiscoverAllContactsOperation
CKDiscoverUserInfosOperation

CKFetchNotificationChangesOperation

CKFetchRecordZonesOperation

CKFetchSubscriptionsOperation

CKMarkNotificationsReadOperationCKModifyBadgeOperation

CKModifyRecordZonesOperation

CKModifySubscriptionsOperation
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Dependencies

Use dependencies between operations

Dependencies work between queues
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NSOperation Tips
Completion blocks

NSOperation.completionBlock fires asynchronously with dependencies

Use the CloudKit specific completion blocks to process results

@property (nonatomic, copy) void (^fetchRecordsCompletionBlock) 
        (NSDictionary *recordsByRecordID, NSError *operationError);



NSOperation Tips
Priorities

NSOperations can have priorities 
NSOperationQueuePriority { 
 NSOperationQueuePriorityVeryLow, 
 NSOperationQueuePriorityLow, 
 NSOperationQueuePriorityNormal, 
 NSOperationQueuePriorityHigh, 
 NSOperationQueuePriorityVeryHigh 
}; 



The CloudKit Private Database
Storing private user data in CloudKit
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CloudKit Container

Private PrivatePrivate

Private PrivatePrivate

Private PrivatePrivate
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Zones
Partitioning your data

Default 
Zone

Default 
Zone

Custom 
ZoneCustom 
ZoneCustom 
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Atomic Commits
CloudKit relationship advice

CloudKit has relationships

You want consistency

Public database tradeoffs

Custom zones give you atomic commits
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Atomic Commits
Custom zone features

Batch operations succeed or fail as a whole

Failures return CKErrorPartialFailure
• UserInfo dictionary contains individual errors under CKPartialErrorsByItemID

• Some records have real failures

• All others have CKErrorBatchRequestFailed



Some apps need to work while offline 

Data set is small enough to store locally 

Sync is hard

Delta Downloads
Keeping an offline cache
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Sync Different
Implementing an offline cache

Your app should
• Track local changes

• Send changes to the server

• Resolve conflicts

• Fetch server changes with CKFetchRecordChangesOperation

• Apply server changes

• Save server change token
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Zone Subscription
Custom zone features

Different from query subscriptions

Push notifications when zone contents update
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Custom Zones
Notes on design

Compartmentalize data
• Records can’t be moved between zones

• No cross-zone relationships

Determines level of updates
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Advanced Record Operations
Record changes

Changes to CKRecords are tracked locally

Only changes are transmitted
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Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No No

Data Sent Changed Keys Changed Keys All Keys
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Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge
• Attempted record: CKRecordChangedErrorClientRecordKey
• Original local record: CKRecordChangedErrorAncestorRecordKey
• Server record: CKRecordChangedErrorServerRecordKey

Apply diffs to server version

Retry the save with the server record
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Advanced Record Operations

You should almost always use CKRecordSaveIfServerUnchanged
• It’s the default for a reason

Use unlocked saves for
• Highly contentious updates

• Forcing local data to the server (user’s choice)

What update type should I use?
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Saving All Keys
CKRecordSaveAllKeys

Server properties that don’t exist locally aren’t deleted

Unless that property was explicitly removed from the local record
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Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

 
desiredKeys property on
• CKFetchRecordsOperation

• CKQueryOperation

• CKFetchRecordChangesOperation

Partial records can be saved
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Shoebox
Owner

Receipt

Owner

Receipt

Owner

Receipt

References
Fetch items with queries

[[CKQuery alloc] initWithRecordType:@“Receipt”  
 predicate:[NSPredicate predicateWithFormat:@“owner = %@”, shoebox]];
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Delete Self References
Topological sort
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} 
!

@interface CKRecordID : NSObject 
@property (nonatomic, readonly, strong) NSString *recordName; 
@property (nonatomic, readonly, strong) CKRecordZoneID *zoneID; 
@end
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Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) { 
 return [NSString stringWithFormat:@“%@.%@“, recordID.name, recordID.zoneID]; 
} 
!

!

@interface CKRecordZoneID : NSObject 
@property (nonatomic, readonly, strong) NSString *zoneName; 
@property (nonatomic, readonly, strong) NSString *ownerName; 
@end
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NSString *myRecordIDToString(CKRecordID *recordID) { 
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NSString *myZoneIDToString(CKRecordZoneID *zoneID) { 
 return [NSString stringWithFormat:@“%@.%@“,  
    zoneID.zoneName, zoneID.ownerName]; 
}

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

[NSPredicate predicateWithFormat:@“owner = %@”,      
           myRecordIDToString(shoebox.recordID)]

NSString *myRecordIDToString(CKRecordID *recordID) { 
 return [NSString stringWithFormat:@“%@.%@“,  
    recordID.recordName, myZoneIDToString(recordID.zoneID)]; 
}



Why Should I Use a Reference?
Queries are simple

[NSPredicate predicateWithFormat:@“owner = %@”, shoebox]
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Your Data Objects and CloudKit
Some notes

CloudKit is a transport mechanism

Don’t subclass

Convert to/from CloudKit objects on save and fetch



The Notification Collection
Handling push notifications properly
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Subscriptions and Notifications
Recap

Subscriptions are persistent queries

Server sends a push notification

Pushes are sent via Apple Push Notification Service
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Push Notifications Are Lossy

No guarantees on delivery

Server stores pushes

Server only stores the latest push



Push Notifications

APS Server



Push Notifications

APS Server

Subscription

1



Push Notifications
Store and forward

APS Server



Push Notifications
Store and forward

APS Server



Push Notifications
Store and forward

APS Server

Subscription



Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update



Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update

Subscription



Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update

Subscription
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APS Server

Subscription

Zone update

Subscription

1
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Dropped Notifications
It’s not just for airplane mode!

Always check the notification collection

Rapid pushes can cause coalescing

Bad network conditions are common



iCloud Dashboard
Managing your cloud data
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iCloud Dashboard
Overview

View data

Manage schema

Control indexing

Move to production
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Viewing Data
What can you see?

Everything is visible

Private PrivatePrivate

Private Private

Private PrivatePrivate

Only your account is visible

Public Database

CloudKit Container

Private
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Records in Development
Schema and indices

Background [string]

Index

Index

Index

Record

Party Name [string]

Date [date]

Location [location]
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Errors
Everybody loves error handling

Handle your errors
• No magic

Operations can have partial errors

Atomic update errors

Retry server busy errors
• Use CKErrorRetryAfterKey
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Accounting
Where is my data stored?

Public data is counted against the app

Private data is counted against the user’s account
• Be nice to your users
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Limits
Public database

We want customers to have a great experience

Limits prevent abuse, not legitimate use

Scales with number of users

For an app with 10 million users
• 1 Petabyte asset storage

• 10 Terabyte database storage

• 5 Terabyte/day asset transfer

• 50 Gigabyte/day database transfer
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Efficiency

CloudKit doesn’t cache records

Only changed properties are transmitted

Assets are transferred efficiently
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Summary

We use CloudKit

We want you to use CloudKit

We’re excited to see what you’re going to make!



More Information

Dave DeLong 
App Frameworks Evangelist 
delong@apple.com 

Documentation 
Cloud Kit Framework Reference 
http://developer.apple.com 

Apple Developer Forums 
http://devforums.apple.com

http://devforums.apple.com


Related Sessions

• Introducing CloudKit Mission Tuesday 3:15PM

• What’s New in Core Data Pacific Heights Thursday 9:00AM

• Building a Document-based App Marina Thursday 11:30AM



Labs

• CloudKit Lab Frameworks Lab A Friday 11:30AM




