
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Advanced CloudKit
Storing your application data in the cloud

Session 231
Jacob Farkas
Software Engineer

Frameworks

What is CloudKit?
Why am I here?

• Introducing CloudKit Mission Tuesday 3:15PM

What is CloudKit?
Why am I here?

Access to iCloud database servers

• Introducing CloudKit Mission Tuesday 3:15PM

What is CloudKit?
Why am I here?

Access to iCloud database servers

Apple uses CloudKit!

• Introducing CloudKit Mission Tuesday 3:15PM

What You Will Learn

What You Will Learn

CloudKit private database

What You Will Learn

CloudKit private database

Modeling your data

What You Will Learn

CloudKit private database

Modeling your data

Advanced record manipulation

What You Will Learn

CloudKit private database

Modeling your data

Advanced record manipulation

Handling notifications

What You Will Learn

CloudKit private database

Modeling your data

Advanced record manipulation

Handling notifications

iCloud Dashboard

CloudKit API
Meet NSOperation

CloudKit API

CloudKit API

Highly asynchronous

CloudKit API

Highly asynchronous

NSOperation almost everywhere

Convenience API

@interface CKDatabase : NSObject
!
- (void)fetchRecordWithID:(CKRecordID *)recordID
 completionHandler:(void (^)(CKRecord *record,
 NSError *error))completionHandler;
!
@end

NSOperation CloudKit API

@interface CKFetchRecordsOperation : NSOperation
- (instancetype)initWithRecordIDs:(NSArray /* CKRecordID */ *)recordIDs;
!
@property (nonatomic, copy) NSArray /* CKRecordID */ *recordIDs;
!
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys;
!
@property (nonatomic, copy) void (^perRecordProgressBlock)
 (CKRecordID *recordID, double progress);
@property (nonatomic, copy) void (^perRecordCompletionBlock)
 (CKRecord *record, CKRecordID *recordID, NSError *error);
!
@property (nonatomic, copy) void (^fetchRecordsCompletionBlock)(
 NSDictionary /* CKRecordID * -> CKRecord */ *recordsByRecordID,
 NSError *operationError);
!
@end

NSOperation CloudKit API

@interface CKFetchRecordsOperation : NSOperation
- (instancetype)initWithRecordIDs:(NSArray /* CKRecordID */ *)recordIDs;
!
@property (nonatomic, copy) NSArray /* CKRecordID */ *recordIDs;
!
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys;
!
@property (nonatomic, copy) void (^perRecordProgressBlock)
 (CKRecordID *recordID, double progress);
@property (nonatomic, copy) void (^perRecordCompletionBlock)
 (CKRecord *record, CKRecordID *recordID, NSError *error);
!
@property (nonatomic, copy) void (^fetchRecordsCompletionBlock)(
 NSDictionary /* CKRecordID * -> CKRecord */ *recordsByRecordID,
 NSError *operationError);
!
@end

NSOperation CloudKit API

@interface CKFetchRecordsOperation : NSOperation
- (instancetype)initWithRecordIDs:(NSArray /* CKRecordID */ *)recordIDs;
!
@property (nonatomic, copy) NSArray /* CKRecordID */ *recordIDs;
!
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys;
!
@property (nonatomic, copy) void (^perRecordProgressBlock)
 (CKRecordID *recordID, double progress);
@property (nonatomic, copy) void (^perRecordCompletionBlock)
 (CKRecord *record, CKRecordID *recordID, NSError *error);
!
@property (nonatomic, copy) void (^fetchRecordsCompletionBlock)(
 NSDictionary /* CKRecordID * -> CKRecord */ *recordsByRecordID,
 NSError *operationError);
!
@end

NSOperation CloudKit API

@interface CKFetchRecordsOperation : NSOperation
- (instancetype)initWithRecordIDs:(NSArray /* CKRecordID */ *)recordIDs;
!
@property (nonatomic, copy) NSArray /* CKRecordID */ *recordIDs;
!
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys;
!
@property (nonatomic, copy) void (^perRecordProgressBlock)
 (CKRecordID *recordID, double progress);
@property (nonatomic, copy) void (^perRecordCompletionBlock)
 (CKRecord *record, CKRecordID *recordID, NSError *error);
!
@property (nonatomic, copy) void (^fetchRecordsCompletionBlock)(
 NSDictionary /* CKRecordID * -> CKRecord */ *recordsByRecordID,
 NSError *operationError);
!
@end

CloudKit Operations
Basic NSOperations

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

CloudKit Operations
Basic NSOperations

Lifecycle

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

CloudKit Operations
Basic NSOperations

Lifecycle

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

CloudKit Operations
Basic NSOperations

State

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

CloudKit Operations
Basic NSOperations

State

CloudKit Operations
Basic NSOperations

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

Dependencies

CloudKit Operations
Basic NSOperations

@interface NSOperation : NSObject
!

 - (void (^)(void))completionBlock
 - (void)cancel;
!

 - (BOOL)isCancelled;
 - (BOOL)isExecuting;
 - (BOOL)isFinished;
!

 - (void)addDependency:(NSOperation *)op;
 - (void)removeDependency:(NSOperation *)op;
!

@end

Dependencies

@interface NSOperationQueue : NSObject
!

 - (void)addOperation:(NSOperation *)op;
!
 - (NSArray *)operations;
!
 - (void)setSuspended:(BOOL)b;
 - (BOOL)isSuspended;
!
 - (void)cancelAllOperations;
!

@end

Starting Operations

CloudKit Operations
Basic NSOperationQueue

@interface NSOperationQueue : NSObject
!

 - (void)addOperation:(NSOperation *)op;
!
 - (NSArray *)operations;
!
 - (void)setSuspended:(BOOL)b;
 - (BOOL)isSuspended;
!
 - (void)cancelAllOperations;
!

@end

Starting Operations

CloudKit Operations
Basic NSOperationQueue

CloudKit Operations
Basic NSOperationQueue

@interface NSOperationQueue : NSObject
!

 - (void)addOperation:(NSOperation *)op;
!
 - (NSArray *)operations;
!
 - (void)setSuspended:(BOOL)b;
 - (BOOL)isSuspended;
!
 - (void)cancelAllOperations;
!

@end

Stopping Operations

CloudKit Operations
Basic NSOperationQueue

@interface NSOperationQueue : NSObject
!

 - (void)addOperation:(NSOperation *)op;
!
 - (NSArray *)operations;
!
 - (void)setSuspended:(BOOL)b;
 - (BOOL)isSuspended;
!
 - (void)cancelAllOperations;
!

@end

Stopping Operations

CloudKit Operations
Finding your way around

CKDiscoverAllContactsOperation
CKDiscoverUserInfosOperation

CKFetchNotificationChangesOperation
CKFetchRecordChangesOperation
CKFetchRecordZonesOperation
CKFetchRecordsOperation

CKFetchSubscriptionsOperation
CKMarkNotificationsReadOperation

CKModifyBadgeOperation
CKModifyRecordZonesOperation
CKModifyRecordsOperation

CKModifySubscriptionsOperation
CKQueryOperation

CKMarkNotificationsReadOperation

CKDiscoverUserInfosOperation

CKModifyRecordsOperation

CloudKit Operations
Finding your way around

CKDiscoverAllContactsOperation

CKFetchNotificationChangesOperation
CKFetchRecordChangesOperation

CKFetchRecordZonesOperation
CKFetchRecordsOperation

CKFetchSubscriptionsOperation

CKModifyBadgeOperation
CKModifyRecordZonesOperation

CKModifySubscriptionsOperation
CKQueryOperation

CKFetchRecordChangesOperation

CKFetchRecordsOperation
CKModifyRecordsOperation

CKQueryOperation

CloudKit Operations
Finding your way around

CKDiscoverAllContactsOperation
CKDiscoverUserInfosOperation

CKFetchNotificationChangesOperation

CKFetchRecordZonesOperation

CKFetchSubscriptionsOperation

CKMarkNotificationsReadOperationCKModifyBadgeOperation

CKModifyRecordZonesOperation

CKModifySubscriptionsOperation

Zones

Users

Notifications

Subscriptions

Records

CKFetchRecordChangesOperation

CKFetchRecordsOperation
CKModifyRecordsOperation

CKQueryOperation

CloudKit Operations
Finding your way around

CKDiscoverAllContactsOperation
CKDiscoverUserInfosOperation

CKFetchNotificationChangesOperation

CKFetchRecordZonesOperation

CKFetchSubscriptionsOperation

CKMarkNotificationsReadOperationCKModifyBadgeOperation

CKModifyRecordZonesOperation

CKModifySubscriptionsOperation

NSOperation Tips
Dependencies

NSOperation Tips
Dependencies

Use dependencies between operations

NSOperation Tips
Dependencies

Use dependencies between operations

Dependencies work between queues

NSOperation Tips
Completion blocks

NSOperation Tips
Completion blocks

NSOperation.completionBlock fires asynchronously with dependencies

NSOperation Tips
Completion blocks

NSOperation.completionBlock fires asynchronously with dependencies

Use the CloudKit specific completion blocks to process results

NSOperation Tips
Completion blocks

NSOperation.completionBlock fires asynchronously with dependencies

Use the CloudKit specific completion blocks to process results

@property (nonatomic, copy) void (^fetchRecordsCompletionBlock)
 (NSDictionary *recordsByRecordID, NSError *operationError);

NSOperation Tips
Priorities

NSOperations can have priorities
NSOperationQueuePriority {
 NSOperationQueuePriorityVeryLow,
 NSOperationQueuePriorityLow,
 NSOperationQueuePriorityNormal,
 NSOperationQueuePriorityHigh,
 NSOperationQueuePriorityVeryHigh
};

The CloudKit Private Database
Storing private user data in CloudKit

Big Data, Little Phone

More data than could fit on a single client

Data downloaded on demand

No offline use

Big Data, Little Phone

More data than could fit on a single client

Data downloaded on demand

No offline use

Data fits on a client

Every client wants the same data

Lots of clients

Little Data, Lots of Clients

Data fits on a client

Every client wants the same data

Lots of clients

Little Data, Lots of Clients

Public vs. Private Database

Public Database Private Database

CloudKit Container

Databases

CloudKit Container

Private PrivatePrivate

Private PrivatePrivate

Private PrivatePrivate

Public Database

Public Database Private Database

CloudKit Container

Zones
Partitioning your data

Public Database Private Database

CloudKit Container

Zones
Partitioning your data

Default Zone

Public Database Private Database

CloudKit Container

Zones
Partitioning your data

Default Zone Default Zone

Private DatabasePublic Database

CloudKit Container

Zones
Partitioning your data

Default
Zone

Default
Zone

Private DatabasePublic Database

CloudKit Container

Zones
Partitioning your data

Default
Zone

Default
Zone

Custom
ZoneCustom
ZoneCustom
Zone

Atomic Commits
CloudKit relationship advice

Atomic Commits
CloudKit relationship advice

CloudKit has relationships

Atomic Commits
CloudKit relationship advice

CloudKit has relationships

You want consistency

Atomic Commits
CloudKit relationship advice

CloudKit has relationships

You want consistency

Public database tradeoffs

Atomic Commits
CloudKit relationship advice

CloudKit has relationships

You want consistency

Public database tradeoffs

Custom zones give you atomic commits

Atomic Commits
Custom zone features

Atomic Commits
Custom zone features

Batch operations succeed or fail as a whole

Atomic Commits
Custom zone features

Batch operations succeed or fail as a whole

Failures return CKErrorPartialFailure

Atomic Commits
Custom zone features

Batch operations succeed or fail as a whole

Failures return CKErrorPartialFailure
• UserInfo dictionary contains individual errors under CKPartialErrorsByItemID

Atomic Commits
Custom zone features

Batch operations succeed or fail as a whole

Failures return CKErrorPartialFailure
• UserInfo dictionary contains individual errors under CKPartialErrorsByItemID

• Some records have real failures

Atomic Commits
Custom zone features

Batch operations succeed or fail as a whole

Failures return CKErrorPartialFailure
• UserInfo dictionary contains individual errors under CKPartialErrorsByItemID

• Some records have real failures

• All others have CKErrorBatchRequestFailed

Some apps need to work while offline

Data set is small enough to store locally

Sync is hard

Delta Downloads
Keeping an offline cache

Delta Downloads
Example

Custom Zone
Custom

Zone

Local CacheLocal Cache

Delta Downloads
Example

Custom Zone
Custom

Zone

Local CacheLocal Cache

Record

Record

Record

Record

Delta Downloads
Example

Custom Zone
Custom

Zone

Local CacheLocal Cache

Record

Record

?

Record

Record

Custom Zone
Custom

Zone

Delta Downloads
Example

Local CacheLocal Cache

Record

Record

?

Custom Zone
Custom

Zone

Delta Downloads
Example

Local CacheLocal Cache

Record

Record

AA

?

Custom Zone
Custom

Zone

Delta Downloads
Example

Local CacheLocal Cache

Record

Record

A

A

?

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

A Local Cache

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

A Local Cache

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

A Local Cache
Record

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

A
Record

Local Cache

Record

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

A
Record

Local Cache

Record

B

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

Local Cache

B

A
Record

Record

Record

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

Local Cache

B

A

Record

Record

Record

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

Local Cache

A

B

Record

B

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

Local Cache

A

B

Record

B

Custom Zone
Custom

Zone

Delta Downloads
Example

Local Cache

Record

Record

A

Local Cache

A

B

Record
B

Sync Different
Implementing an offline cache

Sync Different
Implementing an offline cache

Your app should

Sync Different
Implementing an offline cache

Your app should
• Track local changes

Sync Different
Implementing an offline cache

Your app should
• Track local changes

• Send changes to the server

Sync Different
Implementing an offline cache

Your app should
• Track local changes

• Send changes to the server

• Resolve conflicts

Sync Different
Implementing an offline cache

Your app should
• Track local changes

• Send changes to the server

• Resolve conflicts

• Fetch server changes with CKFetchRecordChangesOperation

Sync Different
Implementing an offline cache

Your app should
• Track local changes

• Send changes to the server

• Resolve conflicts

• Fetch server changes with CKFetchRecordChangesOperation

• Apply server changes

Sync Different
Implementing an offline cache

Your app should
• Track local changes

• Send changes to the server

• Resolve conflicts

• Fetch server changes with CKFetchRecordChangesOperation

• Apply server changes

• Save server change token

Zone Subscription
Custom zone features

Zone Subscription
Custom zone features

Different from query subscriptions

Zone Subscription
Custom zone features

Different from query subscriptions

Push notifications when zone contents update

Custom Zones
Notes on design

Custom Zones
Notes on design

Compartmentalize data

Custom Zones
Notes on design

Compartmentalize data
• Records can’t be moved between zones

Custom Zones
Notes on design

Compartmentalize data
• Records can’t be moved between zones

• No cross-zone relationships

Custom Zones
Notes on design

Compartmentalize data
• Records can’t be moved between zones

• No cross-zone relationships

Determines level of updates

Advanced Record Operations
Modifying records efficiently

Advanced Record Operations
Record changes

Advanced Record Operations
Record changes

Changes to CKRecords are tracked locally

Advanced Record Operations
Record changes

Changes to CKRecords are tracked locally

Only changes are transmitted

Advanced Record Operations
Save policies

Advanced Record Operations
Save policies

Save If Unchanged: CKRecordSaveIfServerUnchanged

Advanced Record Operations
Save policies

Save If Unchanged: CKRecordSaveIfServerUnchanged

Force Save Changed Keys: CKRecordSaveChangedKeys

Advanced Record Operations
Save policies

Save If Unchanged: CKRecordSaveIfServerUnchanged

Force Save Changed Keys: CKRecordSaveChangedKeys

Force Save All Keys: CKRecordSaveAllKeys

Advanced Record Operations
Save policies

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No No

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No No

Data Sent

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No No

Data Sent Changed Keys

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No No

Data Sent Changed Keys Changed Keys

Advanced Record Operations
Save policies

SaveIfServerUnchanged SaveChangedKeys SaveAllKeys

Locked Yes No No

Data Sent Changed Keys Changed Keys All Keys

Johnny
Appleseed

Johnny
Appleseed

Johnny
Appleseed

Unlocked Updates

Paul
Smith

Johnny
Appleseed

Johnny
Appleseed

Unlocked Updates

Paul
Smith

Johnny
Appleseed

Johnny
Appleseed

Unlocked Updates

Paul
Smith

Paul
Smith

Johnny
Appleseed

Unlocked Updates

Paul
Smith

Paul
Smith

John
Appleseed

Unlocked Updates

John

Paul
Smith

John

Paul
Smith

John
Appleseed

Unlocked Updates

John

Smith
John

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

Hobby: Hobby:

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

A

Hobby: Hobby:

A

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

A

HorticultureHobby: Hobby:

A

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

A

HorticultureHobby: Hobby:

A

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

A

HorticultureHobby: Hobby:

A

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

A

HorticultureHobby: Hobby: Horticulture

A

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby: Horticulture

Johnny
Appleseed

Locked Updates
Yeah everything is going to be ok!

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby: Horticulture

BB

Johnny
Appleseed

Locked Updates

Local iCloud

HorticultureHobby:

B

Yeah everything is going to be ok!

Johnny
Appleseed

Locked Updates

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby:

B

Yeah everything is going to be ok!

Johnny
Appleseed

Locked Updates

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby:

BA

Yeah everything is going to be ok!

Johnny
Appleseed

Locked Updates

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby: Geocaching

BA

Yeah everything is going to be ok!

Johnny
Appleseed

Locked Updates

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby: Geocaching

B A

Yeah everything is going to be ok!

Johnny
Appleseed

Locked Updates

Johnny
Appleseed

Local iCloud

HorticultureHobby: Hobby: Geocaching

B A

Yeah everything is going to be ok!

Save Record If Unchanged
Dealing with conflicts

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge
• Attempted record: CKRecordChangedErrorClientRecordKey

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge
• Attempted record: CKRecordChangedErrorClientRecordKey
• Original local record: CKRecordChangedErrorAncestorRecordKey

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge
• Attempted record: CKRecordChangedErrorClientRecordKey
• Original local record: CKRecordChangedErrorAncestorRecordKey
• Server record: CKRecordChangedErrorServerRecordKey

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge
• Attempted record: CKRecordChangedErrorClientRecordKey
• Original local record: CKRecordChangedErrorAncestorRecordKey
• Server record: CKRecordChangedErrorServerRecordKey

Apply diffs to server version

Save Record If Unchanged
Dealing with conflicts

If record has changed, save fails with CKErrorServerRecordChanged

Error’s userInfo dictionary helps with three-way merge
• Attempted record: CKRecordChangedErrorClientRecordKey
• Original local record: CKRecordChangedErrorAncestorRecordKey
• Server record: CKRecordChangedErrorServerRecordKey

Apply diffs to server version

Retry the save with the server record

Advanced Record Operations
What update type should I use?

Advanced Record Operations

You should almost always use CKRecordSaveIfServerUnchanged

What update type should I use?

Advanced Record Operations

You should almost always use CKRecordSaveIfServerUnchanged
• It’s the default for a reason

What update type should I use?

Advanced Record Operations

You should almost always use CKRecordSaveIfServerUnchanged
• It’s the default for a reason

Use unlocked saves for

What update type should I use?

Advanced Record Operations

You should almost always use CKRecordSaveIfServerUnchanged
• It’s the default for a reason

Use unlocked saves for
• Highly contentious updates

What update type should I use?

Advanced Record Operations

You should almost always use CKRecordSaveIfServerUnchanged
• It’s the default for a reason

Use unlocked saves for
• Highly contentious updates

• Forcing local data to the server (user’s choice)

What update type should I use?

Saving All Keys
CKRecordSaveAllKeys

Saving All Keys
CKRecordSaveAllKeys

Server properties that don’t exist locally aren’t deleted

Saving All Keys
CKRecordSaveAllKeys

Server properties that don’t exist locally aren’t deleted

Unless that property was explicitly removed from the local record

Save All Keys
Example

Johnny
Appleseed

Local

Hobby: Horticulture

Save All Keys
Example

Appleseed

Last tree planted: August 13, 1845

Local

John

Hobby: HorticultureHobby: Horticulture

Save All Keys
Example

John
Appleseed

Last tree planted: August 13, 1845

Local

Hobby: Horticulture

iCloud

Save All Keys
Example

Johnny
Appleseed

John
Appleseed

Local

Last tree planted: August 13, 1845
HorticultureHobby:

Hometown: Appleton, WI
Hobby: Horticulture

iCloud

Save All Keys
Example

Johnny
Appleseed

John
Appleseed

Local

Last tree planted: August 13, 1845
HorticultureHobby:

Hometown: Appleton, WI
Hobby: Horticulture

iCloud

Save All Keys
Example

John
Appleseed

John
Appleseed

Last tree planted: August 13, 1845
HorticultureHobby:

Last tree planted: August 13, 1845

Hometown: Appleton, WI

Local

Hobby: Horticulture

iCloud

Save All Keys
Example

John
Appleseed

John
Appleseed

Last tree planted: August 13, 1845 Last tree planted: August 13, 1845

Hometown: Appleton, WI

Local

Hobby: Horticulture

iCloud

Save All Keys
Example

John
Appleseed

John
Appleseed

Last tree planted: August 13, 1845

Hometown: Appleton, WI

Local

Hobby: Horticulture
Last tree planted: August 13, 1845

iCloud

Save All Keys
Example

John
Appleseed

John
Appleseed

Last tree planted: August 13, 1845

Hometown: Appleton, WI

Local

Hobby: Horticulture
Last tree planted: August 13, 1845

iCloud

Save All Keys
Example

Johnny
Appleseed

John
Appleseed

Local

Last tree planted: August 13, 1845
HorticultureHobby:

Hometown: Appleton, WI
Hobby: Horticulture

iCloud

Save All Keys
Example

Johnny
Appleseed

John
Appleseed

Local

Last tree planted: August 13, 1845
HorticultureHobby:

Hometown: Appleton, WI
Hobby: Horticulture
Hometown

iCloud

Save All Keys
Example

Appleseed
John
Appleseed

Local

Last tree planted: August 13, 1845
Hobby: Horticulture
Hometown

John

Last tree planted: August 13, 1845

Partial Records

Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

 
desiredKeys property on

Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

 
desiredKeys property on
• CKFetchRecordsOperation

Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

 
desiredKeys property on
• CKFetchRecordsOperation

• CKQueryOperation

Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

 
desiredKeys property on
• CKFetchRecordsOperation

• CKQueryOperation

• CKFetchRecordChangesOperation

Partial Records

CKRecords don’t need to contain everything from the server
@interface CKFetchRecordsOperation : CKDatabaseOperation 
@property (nonatomic, copy) NSArray /* NSString */ *desiredKeys; 
@end

 
desiredKeys property on
• CKFetchRecordsOperation

• CKQueryOperation

• CKFetchRecordChangesOperation

Partial records can be saved

CloudKit Data Modeling

References
An example

Receipts[]

Shoebox

References
An example

Receipts[]

Shoebox

Receipt

Receipt

Receipt

References
An example

Receipts[]

Shoebox

Receipt

Receipt

Receipt

References
A better way

Shoebox

References
A better way

Shoebox
Owner

Receipt

Owner

Receipt

Owner

Receipt

Shoebox
Owner

Receipt

Owner

Receipt

Owner

Receipt

References
Fetch items with queries

Shoebox
Owner

Receipt

Owner

Receipt

Owner

Receipt

References
Fetch items with queries

[[CKQuery alloc] initWithRecordType:@“Receipt”
 predicate:[NSPredicate predicateWithFormat:@“owner = %@”, shoebox]];

Delete Self References
Cascading deletes

Delete Self References
Cascading deletes

Delete Self References
Cascading deletes

Delete Self References
Cascading deletes

Delete Self References
First delete wins

Delete Self References
First delete wins

Delete Self References
Topological sort

Delete Self References
Topological sort

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@“, recordID];
}

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@“, recordID];
}
!

@interface CKRecordID : NSObject
@property (nonatomic, readonly, strong) NSString *recordName;
@property (nonatomic, readonly, strong) CKRecordZoneID *zoneID;
@end

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@.%@“, recordID.name, recordID.zoneID];
}

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@.%@“, recordID.name, recordID.zoneID];
}
!

!

@interface CKRecordZoneID : NSObject
@property (nonatomic, readonly, strong) NSString *zoneName;
@property (nonatomic, readonly, strong) NSString *ownerName;
@end

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@.%@“,
 recordID.recordName, myZoneIDToString(recordID.zoneID)];
}

NSString *myZoneIDToString(CKRecordZoneID *zoneID) {
 return [NSString stringWithFormat:@“%@.%@“,
 zoneID.zoneName, zoneID.ownerName];
}

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@.%@“,
 recordID.recordName, myZoneIDToString(recordID.zoneID)];
}

NSString *myZoneIDToString(CKRecordZoneID *zoneID) {
 return [NSString stringWithFormat:@“%@.%@“,
 zoneID.zoneName, zoneID.ownerName];
}

Why Should I Use a Reference?
CKReferenceActionNone seems useless!

[NSPredicate predicateWithFormat:@“owner = %@”,
 myRecordIDToString(shoebox.recordID)]

NSString *myRecordIDToString(CKRecordID *recordID) {
 return [NSString stringWithFormat:@“%@.%@“,
 recordID.recordName, myZoneIDToString(recordID.zoneID)];
}

Why Should I Use a Reference?
Queries are simple

[NSPredicate predicateWithFormat:@“owner = %@”, shoebox]

Your Data Objects and CloudKit
Some notes

Your Data Objects and CloudKit
Some notes

CloudKit is a transport mechanism

Your Data Objects and CloudKit
Some notes

CloudKit is a transport mechanism

Don’t subclass

Your Data Objects and CloudKit
Some notes

CloudKit is a transport mechanism

Don’t subclass

Convert to/from CloudKit objects on save and fetch

The Notification Collection
Handling push notifications properly

Subscriptions and Notifications
Recap

Subscriptions and Notifications
Recap

Subscriptions are persistent queries

Subscriptions and Notifications
Recap

Subscriptions are persistent queries

Server sends a push notification

Subscriptions and Notifications
Recap

Subscriptions are persistent queries

Server sends a push notification

Pushes are sent via Apple Push Notification Service

Push Notifications Are Lossy

Push Notifications Are Lossy

No guarantees on delivery

Push Notifications Are Lossy

No guarantees on delivery

Server stores pushes

Push Notifications Are Lossy

No guarantees on delivery

Server stores pushes

Server only stores the latest push

Push Notifications

APS Server

Push Notifications

APS Server

Subscription

1

Push Notifications
Store and forward

APS Server

Push Notifications
Store and forward

APS Server

Push Notifications
Store and forward

APS Server

Subscription

Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update

Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update

Subscription

Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update

Subscription

Push Notifications
Only the last push is delivered

APS Server

Subscription

Zone update

Subscription

1

Notification Collection

Notification Collection

APS Server

Notification Collection

Notification Collection

APS Server

Subscription

Notification Collection

Notification Collection

APS Server

Subscription

Notification Collection

Notification Collection

APS Server

Subscription

Zone update

Notification Collection

Notification Collection

APS Server

Subscription

Zone update

Notification Collection

Notification Collection

APS Server

Subscription

Zone update

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription

?

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription

?

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription

?

Notification Collection

Zone update

Subscription

A

A

Notification Collection

Zone update

Subscription
A

Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

AA
Receipt

Notification Collection

Zone update

Subscription
A

Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

AA

SubscriptionSubscription

Receipt

Notification Collection

Zone update

Subscription

A
Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

AA

SubscriptionSubscription

Receipt

Notification Collection

Zone update

Subscription

A
Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

AA

SubscriptionB

Subscription

B
Receipt

Receipt

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

A

B

B

Subscription

Receipt
Receipt

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

A

B

B

Subscription

Receipt

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription
Receipt

ReceiptReceipt

A

B

B
Subscription

Subscription

Mark read
Subscription

Receipt

C

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription

A

B

B
Subscription

Subscription

Subscription

B

Subscription

Receipt
ReceiptReceipt

Receipt

CC

B

Notification Collection

Zone update

Subscription

Notification Collection

Zone update

Subscription

A

B

B
Subscription

Subscription

Subscription

B

Subscription

Receipt
Receipt

Receipt

C

C

B

Dropped Notifications
It’s not just for airplane mode!

Dropped Notifications
It’s not just for airplane mode!

Always check the notification collection

Dropped Notifications
It’s not just for airplane mode!

Always check the notification collection

Rapid pushes can cause coalescing

Dropped Notifications
It’s not just for airplane mode!

Always check the notification collection

Rapid pushes can cause coalescing

Bad network conditions are common

iCloud Dashboard
Managing your cloud data

iCloud Dashboard
Overview

iCloud Dashboard
Overview

View data

iCloud Dashboard
Overview

View data

Manage schema

iCloud Dashboard
Overview

View data

Manage schema

Control indexing

iCloud Dashboard
Overview

View data

Manage schema

Control indexing

Move to production

Viewing Data
What can you see?

Public Database Private Database

CloudKit Container

Viewing Data
What can you see?

Public Database Private Database

CloudKit Container

Everything is visible

Viewing Data
What can you see?

Public Database Private Database

CloudKit Container

Everything is visible

Viewing Data
What can you see?

Public Database

CloudKit Container

Everything is visible

Private PrivatePrivate

Private PrivatePrivate

Private PrivatePrivate

Viewing Data
What can you see?

Everything is visible

Private PrivatePrivate

Private Private

Private PrivatePrivate

Only your account is visible

Public Database

CloudKit Container

Private

date

Records in Development
Schema and indices

Party

Records in Development
Schema and indices

Party

Party Name=“WWDC Bash”
Date=June 5th, 2014

Location=Yerba Buena Gardens

Record

Records in Development
Schema and indices

Party

Party

Party Name=“WWDC Bash”
Date=June 5th, 2014

Location=Yerba Buena Gardens

Record

Records in Development
Schema and indices

Party

Party Name [string]

Date [date]

Location [location]

Party

Index

Index

Index

Records in Development
Schema and indices

Record

Party Name [string]

Date [date]

Location [location]

Party

Index

Index

Index

Party Name=“WWDC Bash”
Date=June 5th, 2014

Location=Yerba Buena Gardens
Background=“Blue”

Party

Records in Development
Schema and indices

Record

Party Name [string]

Date [date]

Location [location]

Party

Index

Index

Index

Background=“Blue”

Party

Records in Development
Schema and indices

Background [string]

Party

Index

Index

Index

Record

Party Name [string]

Date [date]

Location [location]

Background=“Blue”

Records in Development
Schema and indices

Background [string]

Party

Index

Index

Index

Record

Party Name [string]

Date [date]

Location [location]
Index

Records in Development
Schema and indices

Background [string]

Index

Index

Index

Record

Party Name [string]

Date [date]

Location [location]
Index

Records in Development
Schema and indices

Background [string]

Index

Index

Index

Record

Party Name [string]

Date [date]

Location [location]

CloudKit Tips and Tricks
More other

Errors
Everybody loves error handling

Errors
Everybody loves error handling

Handle your errors

Errors
Everybody loves error handling

Handle your errors
• No magic

Errors
Everybody loves error handling

Handle your errors
• No magic

Operations can have partial errors

Errors
Everybody loves error handling

Handle your errors
• No magic

Operations can have partial errors

Atomic update errors

Errors
Everybody loves error handling

Handle your errors
• No magic

Operations can have partial errors

Atomic update errors

Retry server busy errors

Errors
Everybody loves error handling

Handle your errors
• No magic

Operations can have partial errors

Atomic update errors

Retry server busy errors
• Use CKErrorRetryAfterKey

Accounting
Where is my data stored?

Accounting
Where is my data stored?

Public data is counted against the app

Accounting
Where is my data stored?

Public data is counted against the app

Private data is counted against the user’s account

Accounting
Where is my data stored?

Public data is counted against the app

Private data is counted against the user’s account
• Be nice to your users

Limits
Public database

Limits
Public database

We want customers to have a great experience

Limits
Public database

We want customers to have a great experience

Limits prevent abuse, not legitimate use

Limits
Public database

We want customers to have a great experience

Limits prevent abuse, not legitimate use

Scales with number of users

Limits
Public database

We want customers to have a great experience

Limits prevent abuse, not legitimate use

Scales with number of users

For an app with 10 million users
• 1 Petabyte asset storage

• 10 Terabyte database storage

• 5 Terabyte/day asset transfer

• 50 Gigabyte/day database transfer

Efficiency

CloudKit doesn’t cache records

Efficiency

CloudKit doesn’t cache records

Only changed properties are transmitted

Efficiency

CloudKit doesn’t cache records

Only changed properties are transmitted

Assets are transferred efficiently

Summary

Summary

We use CloudKit

Summary

We use CloudKit

We want you to use CloudKit

Summary

We use CloudKit

We want you to use CloudKit

We’re excited to see what you’re going to make!

More Information

Dave DeLong
App Frameworks Evangelist
delong@apple.com

Documentation
Cloud Kit Framework Reference
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

Related Sessions

• Introducing CloudKit Mission Tuesday 3:15PM

• What’s New in Core Data Pacific Heights Thursday 9:00AM

• Building a Document-based App Marina Thursday 11:30AM

Labs

• CloudKit Lab Frameworks Lab A Friday 11:30AM

