
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Optimizing In-App Purchases
Using StoreKit

Session 303 
James Wilson
Software Engineering

Services

StoreKit

StoreKit Features

StoreKit Features

In-App Purchases
• Consumables and non-consumable

• Subscriptions

StoreKit Features

In-App Purchases
• Consumables and non-consumable

• Subscriptions

Store Product Sheet

StoreKit Features

In-App Purchases
• Consumables and non-consumable

• Subscriptions

Store Product Sheet

Receipt renewal

What’s New

What’s New

StoreKit product sheet supports affiliate program

What’s New

StoreKit product sheet supports affiliate program

New transaction state—Deferred

• Ask to Buy feature of Family Sharing

Deferred Transaction State
SKPaymentTransactionStateDeferred

Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet

Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet
• Further update will be received

Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet
• Further update will be received

• Indeterminate time

Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet
• Further update will be received

• Indeterminate time

Must allow the user to continue to use the app

Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet
• Further update will be received

• Indeterminate time

Must allow the user to continue to use the app

• Repurchasing the item is allowed

Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet
• Further update will be received

• Indeterminate time

Must allow the user to continue to use the app

• Repurchasing the item is allowed

• Let StoreKit handle the interaction

Deferred Transaction State
Ask to Buy

Child Parent

Deferred Transaction State
Ask to Buy

Child Parent
Attempts In-App

Purchase

Deferred Transaction State
Ask to Buy

Child Parent
Attempts In-App

Purchase
Notified of request

Deferred Transaction State
Ask to Buy

Child Parent
Attempts In-App

Purchase
Notified of request

SKPaymentTransactionStateDeferred

Deferred Transaction State
Ask to Buy

Child Parent

Deferred Transaction State
Ask to Buy

Child Parent
Approves or declines

Deferred Transaction State
Ask to Buy

Child Parent
Transaction updated Approves or declines

Deferred Transaction State
Ask to Buy

Child Parent
Transaction updated Approves or declines

SKPaymentTransactionStatePurchased
SKPaymentTransactionStateFailed

Optimizing In-App Purchases

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Load In-App 
Identifiers

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Fetch 
Product Info

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Show 
In-App UI

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make 
Purchase

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Process 
Transaction

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make Asset
Available

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Finish 
Transaction

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Finish 
Transaction

Danger Zones

In-App Purchase Process

User Interaction

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Show 
In-App UI

Product Identifier

Product Identifier

Options for storing the list of product identifiers

Product Identifier

Options for storing the list of product identifiers
• Baked-in product identifier

Product Identifier

Options for storing the list of product identifiers
• Baked-in product identifier

• Fetch from server

Product Identifier

Options for storing the list of product identifiers
• Baked-in product identifier

• Fetch from server

- Cache strategy

Product Identifier

Options for storing the list of product identifiers
• Baked-in product identifier

• Fetch from server

- Cache strategy

- Reliability

Not the way to start an In-App Purchase

Product Information

Fetch the product information using StoreKit

!

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers:identifierSet];

Product Information

Fetch the product information using StoreKit

!

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers:identifierSet];

Anticipate the presentation

Product Information

Fetch the product information using StoreKit

!

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers:identifierSet];

Anticipate the presentation
• Fetch product info just-ahead-of-time

SKProduct Object

SKProduct properties
• Localized title and description

• Price and locale

• Content size and version (hosted)

Price and Currency

Price and Currency

1.234,56 €

Price and Currency

1.234,56 €

£1,234.56

Price and Currency

1.234,56 €

£1,234.56

€1,234.56

Price and Currency

1.234,56 €

£1,234.56

€1,234.56

1.234,56 kn

Price and Currency

1.234,56 €

£1,234.56

€1,234.56

1.234,56 kn

R$ 1.234,56

Price and Currency

1.234,56 €

£1,234.56

€1,234.56

1.234,56 kn

R$ 1.234,56

฿1,234.56

Price and Currency

1.234,56 €

£1,234.56

€1,234.56

1.234,56 kn

R$ 1.234,56

฿1,234.56

$1,234.56

Price and Currency

Showing localized price

Price and Currency

Showing localized price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];

Price and Currency

Showing localized price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];

Price and Currency

Showing localized price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];

Price and Currency

Showing localized price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];
NSString *formattedString = [numberFormatter stringFromNumber:product.price];

Price and Currency

Showing localized price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];
NSString *formattedString = [numberFormatter stringFromNumber:product.price];

Do not perform currency conversion!

Handling Errors

Handling Errors

Not all errors are equal

Handling Errors

Not all errors are equal

Check the error code

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary

• User canceling a payment will result in an error

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary

• User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible

Making the Purchase

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Show 
In-App UI

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make 
Purchase

The Payment Queue
Observe it, always

The Payment Queue
Observe it, always

The center of your In-App Purchase implementation
• The only source of truth for state

The Payment Queue
Observe it, always

The center of your In-App Purchase implementation
• The only source of truth for state

Rely on the queue, and only the queue
• For transactions in progress

• Payment status updates

• Download status

The Payment Queue
Observe it, always

The center of your In-App Purchase implementation
• The only source of truth for state

Rely on the queue, and only the queue
• For transactions in progress

• Payment status updates

• Download status

Any and all transactions in the queue are valid and real

On Launch

Start observing the payment queue

On Launch

Start observing the payment queue

[[SKPaymentQueue defaultQueue] addTransactionObserver:yourObserver];

Example
Fetch product info

Get information about your products from the store

Example
Fetch product info

Get information about your products from the store

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

Example
Fetch product info

Get information about your products from the store

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

Example
Fetch product info

Get information about your products from the store

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

Example
Fetch product info

Get information about your products from the store

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc]

 initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];

Example
Add payment to queue

Start the payment transaction

Example
Add payment to queue

Start the payment transaction

SKPayment* payment = [SKPayment paymentWithProduct:product];

Example
Add payment to queue

Start the payment transaction

SKPayment* payment = [SKPayment paymentWithProduct:product];
[[SKPaymentQueue defaultQueue] addPayment:payment];

Example
Handle events

Example
Handle events

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

Example
Handle events

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions
{

for (SKPaymentTransaction* transaction in transactions)

Example
Handle events

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions
{

for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {

Example
Handle events

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions
{

for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
 case SKPaymentTransactionStatePurchased:

Example
Handle events

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions
{

for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
 case SKPaymentTransactionStatePurchased:

 NSURL* receiptURL = [[NSBundle mainBundle] appStoreReceiptURL];

 NSData* receipt = [NSData dataWithContentsOfURL:receiptURL];

 // Process the transaction
 }
}

Don’t Do This

 case SKPaymentTransactionStatePurchased:

 // Get the local state for this transaction

Don’t Do This

 case SKPaymentTransactionStatePurchased:

 // Get the local state for this transaction

 SKPayment *payment = myCachedPayments[transaction.payment.productIdentifier];

Don’t Do This

 case SKPaymentTransactionStatePurchased:

 // Get the local state for this transaction

 SKPayment *payment = myCachedPayments[transaction.payment.productIdentifier];

 if (!payment)

 {

Don’t Do This

 case SKPaymentTransactionStatePurchased:

 // Get the local state for this transaction

 SKPayment *payment = myCachedPayments[transaction.payment.productIdentifier];

 if (!payment)

 {

 // No idea where this transaction came from!

 // Ignore it

 continue;

 }

Don’t Do This

 case SKPaymentTransactionStatePurchased:

 // Get the local state for this transaction

 SKPayment *payment = myCachedPayments[transaction.payment.productIdentifier];

 if (!payment)

 {

 // No idea where this transaction came from!

 // Ignore it

 continue;

 }

Tracking your own state or payment cache is unnecessary

Why Not?

Why Not?

Because, what if…
• You crash

• Purchase is disrupted

• Or your app didn’t even start the purchase

Why Not?

Because, what if…
• You crash

• Purchase is disrupted

• Or your app didn’t even start the purchase

The transaction is just as valid

• Process it always

Example
Handling deferred transaction

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

{
for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
!

!

!

!

 }
 }
}

Example
Handling deferred transaction

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

{
for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
!

!

!

!

 }
 }
}

 case SKPaymentTransactionStateDeferred:

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

{
for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
!

!

!

!

 }
 }
}

Example
Handling deferred transaction

 case SKPaymentTransactionStateDeferred:

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

{
for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
!

!

!

!

 }
 }
}

Example
Handling deferred transaction

 case SKPaymentTransactionStateDeferred:

 // Allow the user to continue to use the app

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

{
for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
!

!

!

!

 }
 }
}

Example
Handling deferred transaction

 case SKPaymentTransactionStateDeferred:

 // Allow the user to continue to use the app

 // It may be some time before the transaction is updated

- (void)paymentQueue:(SKPaymentQueue *)queue
 updatedTransactions:(NSArray *)transactions

{
for (SKPaymentTransaction* transaction in transactions)
{

 switch(transaction.transactionState) {
!

!

!

!

 }
 }
}

Example
Handling deferred transaction

 case SKPaymentTransactionStateDeferred:

 // Allow the user to continue to use the app

 // It may be some time before the transaction is updated

 // Do not get stuck in a modal “Purchasing…” state!

Example
Finish the transaction

Example
Finish the transaction

Always finish the transaction

Example
Finish the transaction

Always finish the transaction

- (void)finishTransaction:(SKPaymentTransaction *)transaction

Example
Finish the transaction

Always finish the transaction

- (void)finishTransaction:(SKPaymentTransaction *)transaction

Tells the store that your app has finished processing the transaction
• The transaction will be removed from the queue

SKPaymentQueue Tips

SKPaymentQueue Tips

@property(nonatomic, readonly) NSArray *transactions;

• No need for you to keep track of transactions in-flight, trust the queue

SKPaymentQueue Tips

@property(nonatomic, readonly) NSArray *transactions;

• No need for you to keep track of transactions in-flight, trust the queue

+ (BOOL)canMakePayments

• Known if In-App Purchases have been restricted

Demo
Trouble free In-App Purchase

Post-Sale Experience

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make 
Purchase

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Process 
Transaction

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make Asset
Available

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Finish 
Transaction

Post-Sale Experience

Post-Sale Experience

Validate the purchase
• Receipt verification on-device or server-to-server

Post-Sale Experience

Validate the purchase
• Receipt verification on-device or server-to-server

Download content
• Hosted In-App Purchase content

• Self-hosted

Post-Sale Experience

Validate the purchase
• Receipt verification on-device or server-to-server

Download content
• Hosted In-App Purchase content

• Self-hosted

Persisting and restoring transactions

Receipt Validation

Receipt Validation

On-device validation
• Unlock features and content within the app

Receipt Validation

On-device validation
• Unlock features and content within the app

Server-to-server validation
• Restrict access to downloadable content

Receipt Validation

Do not use online validation directly from the device!

iOS 6 APIs for receipt validation are deprecated

Downloading Content

Hosted In-App Purchase content

Downloading Content

Hosted In-App Purchase content
• Hosted on Apple’s servers

Downloading Content

Hosted In-App Purchase content
• Hosted on Apple’s servers

• Scalable and reliable

Downloading Content

Hosted In-App Purchase content
• Hosted on Apple’s servers

• Scalable and reliable

• Downloads in background

Downloading Content

Hosted In-App Purchase content
• Hosted on Apple’s servers

• Scalable and reliable

• Downloads in background

• Up to 2GB per in-app purchasable product

Hosted Content

Start download

Hosted Content

Start download

for(SKPaymentTransaction* transaction in transactions)
{
!

!

!

!

}

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

Hosted Content

Start download

for(SKPaymentTransaction* transaction in transactions)
{
!

!

!

!

}

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

if(transaction.downloads)

Hosted Content

Start download

for(SKPaymentTransaction* transaction in transactions)
{
!

!

!

!

}

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedTransactions:(NSArray *)transactions

!

 [[SKPaymentQueue defaultQueue] startDownloads:

 transaction.downloads];

if(transaction.downloads)

Hosted Content

Download progress

Hosted Content

Download progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

Hosted Content

Download progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

download.progress

download.timeRemaining

Hosted Content

Download progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

download.progress

download.timeRemaining

download.state

download.error

Hosted Content

Download progress

- (void)paymentQueue:(SKPaymentQueue *)queue

 updatedDownloads:(NSArray *)downloads;

download.progress

download.timeRemaining

download.state

download.error

download.contentURL

When download.state is SKDownloadStateFinished

Self-Hosted Content

Self-hosted downloadable content
• Use background download APIs

Self-Hosted Content

Self-hosted downloadable content
• Use background download APIs

- Content is downloaded even when your app is not active

Self-Hosted Content

Self-hosted downloadable content
• Use background download APIs

- Content is downloaded even when your app is not active

- Using class NSURLConnection APIs has limitations

Using NSURLSession for downloading content

Self-Hosted Content

Using NSURLSession for downloading content

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

 backgroundSessionConfiguration:@"MyBackgroundSession"];

Self-Hosted Content

Using NSURLSession for downloading content

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config

 delegate:self delegateQueue:queue];

Self-Hosted Content

Using NSURLSession for downloading content

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config

 delegate:self delegateQueue:queue];

NSURLRequest *request = [NSURLRequest requestWithURL:myURL];

Self-Hosted Content

Using NSURLSession for downloading content

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config

 delegate:self delegateQueue:queue];

NSURLRequest *request = [NSURLRequest requestWithURL:myURL];

NSURLSessionDownloadTask *downloadTask = [session

 downloadTaskWithRequest:request];

Self-Hosted Content

NSURLSessionDownloadDelegate

Download progress

!

- (void)URLSession:(NSURLSession *)session
 downloadTask:(NSURLSessionDownloadTask *)downloadTask
 didWriteData:(int64_t)bytesWritten
 totalBytesWritten:(int64_t)totalBytesWritten
 totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite

{
 // do something with progress
}

Self-Hosted Content

NSURLSession

Reconnect to session on launch

!

- (void)application:(UIApplication *)application
 handleEventsForBackgroundURLSession:(NSString *)identifier
 completionHandler:(void (^)())completionHandler
{

NSURLSessionConfiguration *config = [NSURLSessionConfiguration
 backgroundSessionConfiguration:identifier];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config
 delegate:self delegateQueue:queue];

self.completionHandler = completionHandler; // call when done
}

Self-Hosted Content

Downloading Content

When the content is downloaded, finish the transaction

!

[[SKPaymentQueue defaultQueue] finishTransaction:transaction];

!

Otherwise, the payment will stay in the queue

Restore Transactions

Restore Completed Transactions

Restoring transactions allows the user to restore
• Non-consumable in-app purchases

• Auto-renewing subscriptions

Restore Completed Transactions

Restoring transactions allows the user to restore
• Non-consumable in-app purchases

• Auto-renewing subscriptions

Consumables and non-renewable restrictions

Restore Completed Transactions

Restoring transactions allows the user to restore
• Non-consumable in-app purchases

• Auto-renewing subscriptions

Consumables and non-renewable restrictions
• You must persist the state!

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Observe the queue

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Observe the queue
 - paymentQueue:restoreCompletedTransactionsFailedWithError:

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Observe the queue
 - paymentQueue:restoreCompletedTransactionsFailedWithError:
 - paymentQueueRestoreCompletedTransactionsFinished

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Observe the queue
 - paymentQueue:restoreCompletedTransactionsFailedWithError:
 - paymentQueueRestoreCompletedTransactionsFinished

Inspect the receipt and unlock content and features accordingly

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Requires a network connection

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Requires a network connection

May cause sign in prompt

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Requires a network connection

May cause sign in prompt

Your app must offer to restore transactions

Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Requires a network connection

May cause sign in prompt

Your app must offer to restore transactions
• But do not call try to restore unless requested by the user

Summary
Recipe for trouble-free In-App Purchases

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Load In-App 
Identifiers

In-App Purchase Process

!

!

!

!

Server fetch of product identifiers

• Cache appropriately

• Avoid delay in presenting products

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Load In-App 
Identifiers

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Load In-App 
Identifiers

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Fetch 
Product Info

In-App Purchase Process

!

!

!

!

Fetch only the products you need

Fetch just ahead of time

• Avoid delay in presenting products

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Fetch 
Product Info

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Fetch 
Product Info

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Show 
In-App UI

In-App Purchase Process

!

!

!

!

Take care to ensure proper localization

Do not convert currencies

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Show 
In-App UI

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Show 
In-App UI

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make 
Purchase

In-App Purchase Process

!

!

!

!

Add the payment to the queue

Then obey the queue, always

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make 
Purchase

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make 
Purchase

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Process 
Transaction

In-App Purchase Process

!

!

!

!

Verify the receipt

Unlock features and content

Avoid deprecated APIs and unsafe verification

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Process 
Transaction

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Process 
Transaction

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make Asset
Available

In-App Purchase Process

!

!

!

!

Content download

• Host content with Apple

• Use background download APIs

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make Asset
Available

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Make Asset
Available

In-App Purchase Process

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Finish 
Transaction

In-App Purchase Process

!

!

!

!

Always finish the transaction!

Keep your queue clean

Process 
Transaction

Show 
In-App UI

Make Asset
Available

Fetch 
Product Info

Make 
Purchase

Load In-App 
Identifiers

Finish 
Transaction

Finish 
Transaction

In-App Purchase Process

More Information

Evangelism 
evangelism@apple.com

Documentation
In-App Purchases Programming Guide
https://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

Related Sessions

• Preventing Unauthorized Purchases with Receipts Pacific Heights Friday 10:15AM

• Designing a Great In-App Purchase Experience Nob Hill Wednesday
11:30AM

• Kids and Apps Nob Hill Thursday 3:15PM

Labs

• StoreKit and Receipts Lab Services Lab A Wednesday 3:15PM

• StoreKit and Receipts Lab Services Lab A Friday 10:15AM

• Open Hours Services Lab A Friday 2:00PM

