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What’s New

StoreKit product sheet supports affiliate program

New transaction state—Deferred 

• Ask to Buy feature of Family Sharing
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Deferred Transaction State
SKPaymentTransactionStateDeferred

The payment is neither purchased nor failed, yet 
• Further update will be received

• Indeterminate time

Must allow the user to continue to use the app

• Repurchasing the item is allowed

• Let StoreKit handle the interaction
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Deferred Transaction State
Ask to Buy

Child Parent
Transaction updated Approves or declines 

SKPaymentTransactionStatePurchased 
SKPaymentTransactionStateFailed
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Product Identifier

Options for storing the list of product identifiers
• Baked-in product identifier

• Fetch from server

- Cache strategy

- Reliability







Not the way to start an In-App Purchase
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Product Information

Fetch the product information using StoreKit 

!

SKProductsRequest* request = [[SKProductsRequest alloc]  

                                 initWithProductIdentifiers:identifierSet];

Anticipate the presentation
• Fetch product info just-ahead-of-time



SKProduct Object

SKProduct properties 
• Localized title and description 

• Price and locale 

• Content size and version (hosted) 
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€1,234.56

1.234,56 kn

R$ 1.234,56 

฿1,234.56 

$1,234.56
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Price and Currency

Showing localized price

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];
[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];
[numberFormatter setLocale:product.priceLocale];
NSString *formattedString = [numberFormatter stringFromNumber:product.price];

Do not perform currency conversion! 
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Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary

• User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible
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The Payment Queue
Observe it, always

The center of your In-App Purchase implementation 
• The only source of truth for state

Rely on the queue, and only the queue 
• For transactions in progress 

• Payment status updates 

• Download status

Any and all transactions in the queue are valid and real
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On Launch

Start observing the payment queue

[[SKPaymentQueue defaultQueue] addTransactionObserver:yourObserver];
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Example
Fetch product info

Get information about your products from the store

NSSet* identifierSet = [NSSet setWithArray:productIdentifiers];

SKProductsRequest* request = [[SKProductsRequest alloc] 

                initWithProductIdentifiers: identifierSet];

request.delegate = self;

[request start];
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Example
Add payment to queue

Start the payment transaction

SKPayment* payment = [SKPayment paymentWithProduct:product];
[[SKPaymentQueue defaultQueue] addPayment:payment];
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Example
Handle events

- (void)paymentQueue:(SKPaymentQueue *)queue  
 updatedTransactions:(NSArray *)transactions
{

for (SKPaymentTransaction* transaction in transactions)
{

  switch(transaction.transactionState) {
   case SKPaymentTransactionStatePurchased:

    NSURL* receiptURL = [[NSBundle mainBundle] appStoreReceiptURL];                 

    NSData* receipt = [NSData dataWithContentsOfURL:receiptURL];

    // Process the transaction
  }
}
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  {



Don’t Do This

 case SKPaymentTransactionStatePurchased:

  // Get the local state for this transaction

  SKPayment *payment = myCachedPayments[transaction.payment.productIdentifier];

  if (!payment)

  {

   // No idea where this transaction came from!

   // Ignore it

   continue;

  }



Don’t Do This

 case SKPaymentTransactionStatePurchased:

  // Get the local state for this transaction

  SKPayment *payment = myCachedPayments[transaction.payment.productIdentifier];

  if (!payment)

  {

   // No idea where this transaction came from!

   // Ignore it

   continue;

  }

Tracking your own state or payment cache is unnecessary
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Why Not?

Because, what if… 
• You crash 

• Purchase is disrupted 

• Or your app didn’t even start the purchase 

The transaction is just as valid 

• Process it always
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{ 
for (SKPaymentTransaction* transaction in transactions) 
{ 

  switch(transaction.transactionState) { 
!

!
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 } 
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- (void)paymentQueue:(SKPaymentQueue *)queue  
 updatedTransactions:(NSArray *)transactions 

{ 
for (SKPaymentTransaction* transaction in transactions) 
{ 

  switch(transaction.transactionState) { 
!

!

!

!

   
  } 
 } 
}

Example
Handling deferred transaction

   case SKPaymentTransactionStateDeferred:

    // Allow the user to continue to use the app

    // It may be some time before the transaction is updated



- (void)paymentQueue:(SKPaymentQueue *)queue  
 updatedTransactions:(NSArray *)transactions 

{ 
for (SKPaymentTransaction* transaction in transactions) 
{ 

  switch(transaction.transactionState) { 
!

!

!

!

   
  } 
 } 
}

Example
Handling deferred transaction

   case SKPaymentTransactionStateDeferred:

    // Allow the user to continue to use the app

    // It may be some time before the transaction is updated

    // Do not get stuck in a modal “Purchasing…” state!
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Example
Finish the transaction

Always finish the transaction

- (void)finishTransaction:(SKPaymentTransaction *)transaction

Tells the store that your app has finished processing the transaction 
• The transaction will be removed from the queue 
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SKPaymentQueue Tips

@property(nonatomic, readonly) NSArray *transactions; 

• No need for you to keep track of transactions in-flight, trust the queue

+ (BOOL)canMakePayments 

• Known if In-App Purchases have been restricted



Demo
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Post-Sale Experience

Validate the purchase 
• Receipt verification on-device or server-to-server

Download content 
• Hosted In-App Purchase content 

• Self-hosted

Persisting and restoring transactions
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Receipt Validation

On-device validation 
• Unlock features and content within the app

Server-to-server validation  
• Restrict access to downloadable content



Receipt Validation

Do not use online validation directly from the device! 

iOS 6 APIs for receipt validation are deprecated
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Downloading Content

Hosted In-App Purchase content
• Hosted on Apple’s servers

• Scalable and reliable

• Downloads in background

• Up to 2GB per in-app purchasable product
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Start download

for(SKPaymentTransaction* transaction in transactions) 
{ 
!

!

!

!

}

- (void)paymentQueue:(SKPaymentQueue *)queue  

        updatedTransactions:(NSArray *)transactions

if(transaction.downloads) 



Hosted Content

Start download

for(SKPaymentTransaction* transaction in transactions) 
{ 
!

!

!

!

}

- (void)paymentQueue:(SKPaymentQueue *)queue  

        updatedTransactions:(NSArray *)transactions

!

    [[SKPaymentQueue defaultQueue] startDownloads:  

                           transaction.downloads]; 

if(transaction.downloads) 
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Hosted Content

Download progress

- (void)paymentQueue:(SKPaymentQueue *)queue  

      updatedDownloads:(NSArray *)downloads; 

download.progress 

download.timeRemaining

download.state  

download.error

download.contentURL

When download.state is SKDownloadStateFinished
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Self-Hosted Content

Self-hosted downloadable content
• Use background download APIs 

- Content is downloaded even when your app is not active

- Using class NSURLConnection APIs has limitations
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Using NSURLSession for downloading content

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config

                   delegate:self delegateQueue:queue];

NSURLRequest *request = [NSURLRequest requestWithURL:myURL];
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Using NSURLSession for downloading content

NSURLSessionConfiguration *config = [NSURLSessionConfiguration

 backgroundSessionConfiguration:@"MyBackgroundSession"];

NSURLSession *session = [NSURLSession sessionWithConfiguration:config

                   delegate:self delegateQueue:queue];

NSURLRequest *request = [NSURLRequest requestWithURL:myURL];

NSURLSessionDownloadTask *downloadTask = [session

                   downloadTaskWithRequest:request];

Self-Hosted Content



NSURLSessionDownloadDelegate

Download progress 

!

- (void)URLSession:(NSURLSession *)session  
     downloadTask:(NSURLSessionDownloadTask *)downloadTask  
     didWriteData:(int64_t)bytesWritten  
     totalBytesWritten:(int64_t)totalBytesWritten 
     totalBytesExpectedToWrite:(int64_t)totalBytesExpectedToWrite 

{ 
 // do something with progress 
}

Self-Hosted Content



NSURLSession

Reconnect to session on launch 

!

- (void)application:(UIApplication *)application 
        handleEventsForBackgroundURLSession:(NSString *)identifier 
        completionHandler:(void (^)())completionHandler 
{ 

NSURLSessionConfiguration *config = [NSURLSessionConfiguration 
 backgroundSessionConfiguration:identifier]; 

NSURLSession *session = [NSURLSession sessionWithConfiguration:config 
                   delegate:self delegateQueue:queue]; 

self.completionHandler = completionHandler; // call when done 
}

Self-Hosted Content



Downloading Content

When the content is downloaded, finish the transaction 

!

[[SKPaymentQueue defaultQueue] finishTransaction:transaction]; 

!

Otherwise, the payment will stay in the queue
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Restore Completed Transactions

Restoring transactions allows the user to restore
• Non-consumable in-app purchases

• Auto-renewing subscriptions

Consumables and non-renewable restrictions
• You must persist the state!
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[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]
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Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Observe the queue
  - paymentQueue:restoreCompletedTransactionsFailedWithError:
  - paymentQueueRestoreCompletedTransactionsFinished

Inspect the receipt and unlock content and features accordingly
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Restore Completed Transactions

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions]

Requires a network connection 

May cause sign in prompt

Your app must offer to restore transactions
• But do not call try to restore unless requested by the user



Summary
Recipe for trouble-free In-App Purchases
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In-App Purchase Process

!

!

!

!

Server fetch of product identifiers 

• Cache appropriately 

• Avoid delay in presenting products
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Fetch only the products you need 

Fetch just ahead of time 

• Avoid delay in presenting products
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!

Take care to ensure proper localization 

Do not convert currencies
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!

Add the payment to the queue 

Then obey the queue, always
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Verify the receipt 

Unlock features and content 

Avoid deprecated APIs and unsafe verification
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Content download 

• Host content with Apple 

• Use background download APIs
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Always finish the transaction! 

Keep your queue clean
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More Information

Evangelism 
evangelism@apple.com 

Documentation 
In-App Purchases Programming Guide 
https://developer.apple.com 

Apple Developer Forums 
http://devforums.apple.com



Related Sessions

• Preventing Unauthorized Purchases with Receipts Pacific Heights Friday 10:15AM

• Designing a Great In-App Purchase Experience Nob Hill Wednesday 
11:30AM

• Kids and Apps Nob Hill Thursday 3:15PM



Labs

• StoreKit and Receipts Lab Services Lab A Wednesday 3:15PM

• StoreKit and Receipts Lab Services Lab A Friday 10:15AM

• Open Hours Services Lab A Friday 2:00PM




