Tools WWDC14

lmproving Your App with Instruments

Session 418

Daniel Delwood
Software Radiologist

© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Agenda

What's new in Instruments
Memory management
Time profiling
Performance counters

DTrace improvements

What's IN Instruments

What's B&# in Instruments

Memory Management

Heap Memory

Everything Else

Objective-C's Ownership Model

Retain/Release

Reference counting ownership model based on retain, release
When the count drops to zero, object is freed

Retain/release/autorelease rules established and easy to learn
» Advanced Memory Management Programming Guide

Deterministic, simple, and fast

Objective-C's Ownership Model

Managed Retain/Release

Reference counting ownership model based on retain, release
When the count drops to zero, object is freed
Retain/release/autorelease rules established and easy to learn
» Advanced Memory Management Programming Guide
Deterministic, simple, and fast

Automated Reference Counting (ARC)

Objective-C's Ownership Model

Managed Retain/Release

Reference counting ownership model based on retain, release
When the count drops to zero, object is freed
Retain/release/autorelease rules established and easy to learn
» Advanced Memory Management Programming Guide
Deterministic, simple, and fast

Automated Reference Counting (ARC)

- Still have to manage autorelease pools
@autoreleasepool { /* code x/ }

Swift's Ownership Model

Managed Retain/Release

Reference counting ownership model based on retain, release
When the count drops to zero, object is freed
Deterministic, simple, and fast

Automated Reference Counting (ARC)

Swift's Ownership Model

Managed Retain/Release

Reference counting ownership model based on retain, release
When the count drops to zero, object is freed
Deterministic, simple, and fast

Automated Reference Counting (ARC)
» Working with Objective-C? Still have to manage autorelease pools

autoreleasepool { /* code x/ }

Allocations
What does it report?

Heap allocations

» Class names — e.g. NSMutableArray, MyApp.MainViewController
» Reference types only (class, not struct)

» Retain/Release histories

Virtual Memory (VM) allocations

» Paths for mapped files

Stack traces for all

Demo
Allocations + App Extension

App Extensions

Profiling with Instruments

Specity host App

» When profiling Xcode scheme

* |In Instruments

Transient, but memory matters

All Processes
E) DotSharing.appex

Hosted in: No process selected

Installed Apps

&ﬂ Dots.app

App Extensions
E) DotsToday.appex
E) DotSharing.appex

Installed Apps
) AdSheet.app

™ camera.app
Contacts.app

o Game Center.app

App Extensions

Profiling with Instruments

All Processes

. E) DotSharing.appex
SpeCIfy hOSt App Hosted in: No process selected > Installed Apps
) AdSheet.app
ole Installed Apps Camera.a
- When profiling Xcode scheme B Dot e Bk
_ e o Game Center.app
* |In Instruments Dy Extonions
E) DotsToday.appex
. DotSharing.appex
Transient, but memory matters —

e (Creating Extensions for iOS and OS X, Part 1 Mission Tuesday 2:00PM

e (Creating Extensions for iOS and OS X, Part 2 Mission Wednesday 11:30AM

Memory Management with Swift
| anguage tools

Obj-C code can still mismatch Retain/Release

Can still form cycles in Swift

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release

Can still form cycles in Swift

Manage graph, not retain/release

weak

unowned

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release O

Can still form cycles in Swift

Manage graph, not retain/release

weak varx: Optional<T>/T? = object Q
Returns T or nil when accessed, based on existence of object

unowned

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release O

Can still form cycles in Swift

Manage graph, not retain/release

weak varx: Optional<T>/T? = object Q
Returns T or nil when accessed, based on existence of object

unowned let/varx: T = object

Returns T always, but if object doesn't exist... deterministic ®

Ablock Captures
Here be dragons

[self.currentGame registerForStateChanges:”{
if (self.currentGame == newGame) {

[self.tableView reloadDatal:
¥

H;

'self' and 'newGame' captured strongly

Ablock Captures
Here be dragons

_weak typeof(newGame) weakGame = newGame;
__weak typeof(self) weakSelf = self;
[self.currentGame registerForStateChanges:”™{
if (self.currentGame == newGame) {
[self.tableView reloadDatal;

+
H;

'self' and 'newGame' captured strongly

Ablock Captures
Here be dragons

_weak typeof(newGame) weakGame = newGame;
__weak typeof(self) weakSelf = self;
[self.currentGame registerForStateChanges:”™{
if (weakSelf.currentGame == weakGame) {
[weakSelf.tableView reloadDatal;

+
rH;

Swift Closures
Behold, the power of capture lists

currentGame. registerForStateChanges() {
if self.currentGame == newGame {
self.tableView!. reloadData()

}

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {[weak self, newGame] in
if self.currentGame == newGame {
self.tableView!.reloadData()

}

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {[weak self, newGame] in
if self?.currentGame == newGame {
self?.tableView!.reloadData()

}

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {[weak self, newGame] in
if self?.currentGame == newGame {
self?.tableView!.reloadData()

}
}
e Swift Interoperability In-Depth Presidio Wednesday 3:15PM
e Advanced Swift Presidio Thursday 11:30AM

O Fixing l\/\emory Issues Session 410 WWDC13 Videos

Time Profiling

Kris Markel
Performance Tools Engineer

Why?

Why?

To provide a great user experience

Why?

To provide a great user experience

» Faster app launch times

Why?

To provide a great user experience
» Faster app launch times

+ Keep the frame rate at 60fps

Why?

To provide a great user experience
» Faster app launch times
+ Keep the frame rate at 60fps

» Buttery-smooth scrolling

Why?

To provide a great user experience
» Faster app launch times

+ Keep the frame rate at 60fps

» Buttery-smooth scrolling

+ Responsive Ul

What?

An instrument that samples stack trace information at prescribed intervals

Provides an idea of how much time is spent in each method

When?

When?

Investigate specific problems

When?

Investigate specific problems

+ If you see stuttering or frame rate slowdowns

When?

Investigate specific problems
+ If you see stuttering or frame rate slowdowns

» Some part of your app is taking too long

When?

Investigate specific problems
+ If you see stuttering or frame rate slowdowns
» Some part of your app is taking too long

Identify and fix hotspots before they become problems

When?

Investigate specific problems

» If you see stuttering or frame rate slowdowns

» Some part of your app is taking too long

Identify and fix hotspots before they become problems

+ Keep an eye on the CPU gauge in Xcode

Demo

Time Profiler in action

Review
Track view

ldentify and zoom into problem areas
» Drag to apply a time range filter
» Shift+drag to zoom in

» Control+drag to zoom out

I ————————————————
(| I dold7 IIIIII Idolds IIIIII I dold9 IIIIII Idol1l0 IIIIII Idol1l1 IIIIII IdOI1I2 IIIIII IOIOI 1l3 IIIIII I dol:1l4l I

Review
New Inspector panes

Use keyboard shortcuts to
quickly move between panes

Review
New Inspector panes

Use keyboard shortcuts to
quickly move between panes

- 38 1—Record settings

Review
New Inspector panes

Use keyboard shortcuts to
quickly move between panes

- 38 1—Record settings
+ #d2—Display settings

Review
New Inspector panes

Use keyboard shortcuts to
quickly move between panes

- 3 1—Record settings
+ #d2—Display settings
- 33 —Extended detail

Review
Strategy views

Review
Strategy views

» Cores strategy

Review
Strategy views

» Cores strategy

* Instruments strateqgy

Review
Strategy views

» Cores strategy
* Instruments strateqgy

» Threads strategy

Review
Strategy views

» Cores strategy

* Instruments strateqgy @ [g

- Threads strategy Strategy
- Enable Record Waiting Threads to expose _ -
blocked threads b

4 Record Waiting Threads

Review
Call Tree settings

Call Tree

'4 Separate by Thread

24 Invert Call Tree
Hide Missing Symbols
24 Hide System Libraries

Flatten Recursion

Top Functions

Review
Call Tree settings

» Expensive calls are frequently near the Call Tree
end of the call stack) Separate by Thread

24 Invert Call Tree

Hide Missing Symbols

24 Hide System Libraries

Flatten Recursion

Top Functions

Review
Call Tree settings

» Expensive calls are frequently near the Call Tree
end of the call stack) Separate by Thread

24 Invert Call Tree
» Focus on your own code

Hide Missing Symbols

24 Hide System Libraries

Flatten Recursion

Top Functions

T1ps

Focus and Prune

lgnore unwanted data
» Charge moves the associated cost
» Prune removes the associated cost

» Focus is “prune everything but”

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

b= b b= b= b= = b= b= b= b= b b=

Eyemazin
main vy

7@!objc Ol

7 Objectiy
VEyem:
Y@ob

> -[E

»Eyemazin
»Eyemazin
YEyemazin

7y @obijc E
»-[Eyen

Charge 'Eyemazing_Mac.Photo._scalelmage (
Prune 'Eyemazing_Mac.Photo._scalelmage (E
Charge 'Eyemazing-Mac' to callers

Flatten 'Eyemazing-Mac' to boundary frames

Focus on subtree

Focus on calls made by 'Eyemazing_Mac.Pho
Focus on callers of 'Eyemazing_Mac.Photo._s
Focus on calls made by 'Eyemazing-Mac'
Focus on callers of 'Eyemazing-Mac’

Reveal in Xcode

»@!objc ObjectiveC.Climage.init (ObjectiveC.Climage.Type)(d
»patch_lazy_pointers(mach_header const*, patch_t*, unsigne

Two More Guidelines

When using Time Profiler

Two More Guidelines

When using Time Profiler

- Profile Release builds

Two More Guidelines

When using Time Profiler
» Profile Release builds

» For i0S, profile on the device

Performance Counters

Joe Grzywacz
Performance Tools Engineer

What Are Counters?

Each processor core contains a small number of 64-bit hardware reqisters

What Are Counters?

Each processor core contains a small number of 64-bit hardware reqisters

» Typically only four to eight per core

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
» Typically only four to eight per core

» Separate from the integer and floating point registers

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
» Typically only four to eight per core

» Separate from the integer and floating point registers

Each register can be configured to either:

What Are Counters?

Each processor core contains a small number of 64-bit hardware reqisters
» Typically only four to eight per core

» Separate from the integer and floating point registers

Each register can be configured to either:

» Count one of a small number of events

What Are Counters?

Each processor core contains a small number of 64-bit hardware reqisters
» Typically only four to eight per core

» Separate from the integer and floating point registers

Each register can be configured to either:

» Count one of a small number of events

- Instructions executed, L2 Cache Misses, Branches Taken, ...

What Are Counters?

Each processor core contains a small number of 64-bit hardware reqisters
» Typically only four to eight per core

» Separate from the integer and floating point registers

Each register can be configured to either:

- Count one of a small number of events
- Instructions executed, L2 Cache Misses, Branches Taken, ...

» Take a callstack every time a predetermined number of events occurs

Performance Monitoring Interrupts
(PMls)

Branches

Executed

Time

Performance Monitoring Interrupts
(PMls)

Time-Based

Sampling

Branches

Executed

Time

Performance Monitoring Interrupts
(PMls)

PMI-Based
Sampling

Time-Based

Sampling

Branches

Executed

Time

Performance Counters
How are they useful?

Performance Counters
How are they useful?

Provide a deeper understanding of your app’s performance beyond just time

Performance Counters
How are they useful?

Provide a deeper understanding of your app’s performance beyond just time

+ How well CPU resources are being used
- Caches, execution units, TLBs, ...

Performance Counters
How are they useful?

Provide a deeper understanding of your app’s performance beyond just time

+ How well CPU resources are being used
- Caches, execution units, TLBs, ...

* Runtime process traits
- Branch frequency, instruction mix, ...

What's New with Counters

Formulas support

Instructions
IPC =

Cycles

BranchesMispredicted

Branch Mispredict Rate =
BranchesExecuted

(L1CachelLoadMisses + L1CacheStoreMisses)

L1 Cache Miss % = 100 X
(L1CachelLoads + L1CacheStores)

What's New with Counters

10S 8 support
+ 64-bit ARM devices only

What's New with Counters

10S 8 support
+ 64-bit ARM devices only

Event Profiler instrument is deprecated

»+ Same PMI functionality is available within the Counters instrument

Demo

iOS Performance Counters

Counters Summary

Counters Summary

Collects data in a similar manner to Time Profiler

Counters Summary

Collects data in a similar manner to Time Profiler

» This is a statistical representation of your application

Counters Summary

Collects data in a similar manner to Time Profiler
» This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)

Counters Summary

Collects data in a similar manner to Time Profiler
» This is a statistical representation of your application
Counters supports Performance Monitoring Interrupts (PMI)

» Allows sampling based on the number of events

Counters Summary

Collects data in a similar manner to Time Profiler

» This is a statistical representation of your application
Counters supports Performance Monitoring Interrupts (PMI)
» Allows sampling based on the number of events

- Note that PMI instruction locations can be imprecise

Counters Summary

Collects data in a similar manner to Time Profiler

» This is a statistical representation of your application
Counters supports Performance Monitoring Interrupts (PMI)
» Allows sampling based on the number of events

- Note that PMI instruction locations can be imprecise

Formulas allow you to combine raw event counts in custom ways

Counters Summary

Collects data in a similar manner to Time Profiler

» This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)

» Allows sampling based on the number of events

- Note that PMI instruction locations can be imprecise

Formulas allow you to combine raw event counts in custom ways

» Be sure to save your common formulas in a template

&
What's New with DTrace *m

&
What's New with DTrace *m

Dynamic tracemem

Dynamic tracemem, provides a way to trace dynamically sized arrays
+ tracemem(address, nbytes_max, nbytes)

- nbytes_max: maximum size of the array, must be known at compile time
- nbytes: the actual size of the array you want to copy

- Example:
void CGContextFillRects(CGContextRef c, const CGRect rects[], size t count);

pid$pid_MyAppName: :CGContextFillRects:entry
{

this—>array = copyin(argl, sizeof(struct CGRect) x arg2);
tracemem(this—>array, 512, sizeof(struct CGRect) * arg2);

}

lmproved Histograms

Histogram improvements: agghist, aggzoom, aggpack

http://dtrace.org/blogs/bmc/2013/11/10/agghist-aggzoom-and-aggpack/

key

ntpd

sudo
coreservicesd
sys logd

Finder

configd
pacemaker

sshd

sysmond
mds_stores
UserEventAgent
distnoted

mds

dtrace
fseventsd
XpCproxy
notifyd
cfprefsd
opendirectoryd
softwareupdated
launchd.develop
cupsd

key
thread_selfid
sigaction
sigreturn
sigprocmask
fstat64
process_policy
gettimeofday
psynch_mutexdrop
recvfrom

read

stat64

madvise
write_nocancel
adjtime
open_nocancel
select

telemetry
psynch_mutexwait
select_nocancel
sysctl
psynch_cvwait
write
workqg_kernreturn
ioctl

kevent64

min .
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :
64 :

. Mmax

: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288
: 524288

count

N WORRKRWANUWREREENNRRRERRQOONRA M

Other New Features

Wait for process to start with -W
dtrace -Z —W MyAppName ‘pid$target::xCALayerx:entry’

Other New Features

Wait for process to start with -W
dtrace -Z —W MyAppName ‘pid$target::xCALayerx:entry’
Tunable internal DTrace variables

List the tunable variables
sysctl kern.dtrace

Other New Features

Wait for process to start with -W
dtrace -Z —W MyAppName ‘pid$target::xCALayerx:entry’
Tunable internal DTrace variables

List the tunable variables
sysctl kern.dtrace

Updated documentation

man dtrace

Summary

Profile Swift and Objective-C alike
Be proactive

Don't assume—oprofile, change, and iterate

More Information

Dave Delong
Developer Tools Evangelist

delong@apple.com

Instruments Documentation
Instruments User Guide
Instruments User Reference

http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

Related Sessions

e (Creating Extensions for iOS and OS X, Part 1
® |ntegrating Swift with Objective-C

e Creating Extensions for iOS and OS X, Part 2
e Swift Interoperability In-Depth

e Advanced Swift Debugging in LLDB

Mission

Presidio

Mission

Presidio

Mission

Tuesday 2:00PM
Wednesday 9:00AM
Wednesday 11:30AM
Wednesday 3:15PM

Friday 9:00AM

Labs

e Swift Lab

® |nstruments Lab

e Power and Performance Lab
® |nstruments Lab

e Power and Performance Lab

Tools Lab A

Tools Lab B

Core OS Lab B

Tools Lab B

Core OS Lab A

All Week
Wednesday 9:00AM
Wednesday 2:00PM
Thursday 9:00AM

Thursday 3:15PM

