
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Improving Your App with Instruments

Session 418
Daniel Delwood
Software Radiologist

Tools

Agenda

What's new in Instruments

Memory management

Time profiling

Performance counters

DTrace improvements

What's in Instruments

What's in Instruments

Memory Management

 Objective-C's Ownership Model
Retain/Release

Reference counting ownership model based on retain, release

When the count drops to zero, object is freed

Retain/release/autorelease rules established and easy to learn
• Advanced Memory Management Programming Guide

Deterministic, simple, and fast

Managed Retain/Release
 Objective-C's Ownership Model

Retain/Release

Reference counting ownership model based on retain, release

When the count drops to zero, object is freed

Retain/release/autorelease rules established and easy to learn
• Advanced Memory Management Programming Guide

Deterministic, simple, and fast

Automated Reference Counting (ARC)

Managed Retain/Release
 Objective-C's Ownership Model

Retain/Release

Reference counting ownership model based on retain, release

When the count drops to zero, object is freed

Retain/release/autorelease rules established and easy to learn
• Advanced Memory Management Programming Guide

Deterministic, simple, and fast

Automated Reference Counting (ARC)

• Still have to manage autorelease pools  
@autoreleasepool { /* code */ }

Reference counting ownership model based on retain, release

When the count drops to zero, object is freed

Deterministic, simple, and fast

Automated Reference Counting (ARC)

Swift's Ownership Model
Managed Retain/Release

Reference counting ownership model based on retain, release

When the count drops to zero, object is freed

Deterministic, simple, and fast

Automated Reference Counting (ARC)
• Working with Objective-C? Still have to manage autorelease pools

 autoreleasepool { /* code */ }

Swift's Ownership Model
Managed Retain/Release

Allocations
What does it report?

Heap allocations
• Class names — e.g. NSMutableArray, MyApp.MainViewController

• Reference types only (class, not struct)

• Retain/Release histories

Virtual Memory (VM) allocations
• Paths for mapped files

Stack traces for all

Demo
Allocations + App Extension E

App Extensions
Profiling with Instruments

Specify host App
• When profiling Xcode scheme

• In Instruments

Transient, but memory matters

App Extensions
Profiling with Instruments

Specify host App
• When profiling Xcode scheme

• In Instruments

Transient, but memory matters

• Creating Extensions for iOS and OS X, Part 1 Mission Tuesday 2:00PM

• Creating Extensions for iOS and OS X, Part 2 Mission Wednesday 11:30AM

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release

Can still form cycles in Swift

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release

Can still form cycles in Swift

Manage graph, not retain/release

 weak
!

!

 unowned

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release

Can still form cycles in Swift

var x : Optional<T> / T? = object
Returns T or nil when accessed, based on existence of object

Manage graph, not retain/release

 weak
!

!

 unowned

Memory Management with Swift
Language tools

Obj-C code can still mismatch Retain/Release

Can still form cycles in Swift

var x : Optional<T> / T? = object

let / var x : T = object

Returns T or nil when accessed, based on existence of object

Returns T always, but if object doesn't exist… deterministic 💣

Manage graph, not retain/release

 weak
!

!

 unowned

!

!

[self.currentGame registerForStateChanges:^{
 if (self.currentGame == newGame) {
 [self.tableView reloadData]; 
 }
}];

!

'self' and 'newGame' captured strongly

^block Captures
Here be dragons

!

!

[self.currentGame registerForStateChanges:^{
 if (self.currentGame == newGame) {
 [self.tableView reloadData]; 
 }
}];

!

'self' and 'newGame' captured strongly

__weak typeof(newGame) weakGame = newGame;
__weak typeof(self) weakSelf = self;

^block Captures
Here be dragons

^block Captures
Here be dragons

__weak typeof(newGame) weakGame = newGame;
__weak typeof(self) weakSelf = self;
!

!

[self.currentGame registerForStateChanges:^{
 if (weakSelf.currentGame == weakGame) {
 [weakSelf.tableView reloadData]; 
 }
}];

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {
 if self.currentGame == newGame {
 self.tableView!.reloadData()
 }
}

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {
 if self.currentGame == newGame {
 self.tableView!.reloadData()
 }
}

[weak self, newGame] in

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {
 if self?.currentGame == newGame {
 self?.tableView!.reloadData()
 }
}

[weak self, newGame] in

Swift Closures
Behold, the power of capture lists

currentGame.registerForStateChanges() {
 if self?.currentGame == newGame {
 self?.tableView!.reloadData()
 }
}

[weak self, newGame] in

• Swift Interoperability In-Depth Presidio Wednesday 3:15PM

• Advanced Swift Presidio Thursday 11:30AM

• Fixing Memory Issues Session 410 WWDC13 Videos

Time Profiling

Kris Markel
Performance Tools Engineer

Why?

Why?

To provide a great user experience

Why?

To provide a great user experience
• Faster app launch times

Why?

To provide a great user experience
• Faster app launch times

• Keep the frame rate at 60fps

Why?

To provide a great user experience
• Faster app launch times

• Keep the frame rate at 60fps

• Buttery-smooth scrolling

Why?

To provide a great user experience
• Faster app launch times

• Keep the frame rate at 60fps

• Buttery-smooth scrolling

• Responsive UI

What?

An instrument that samples stack trace information at prescribed intervals

Provides an idea of how much time is spent in each method

When?

When?

Investigate specific problems

When?

Investigate specific problems
• If you see stuttering or frame rate slowdowns

When?

Investigate specific problems
• If you see stuttering or frame rate slowdowns

• Some part of your app is taking too long

When?

Investigate specific problems
• If you see stuttering or frame rate slowdowns

• Some part of your app is taking too long

Identify and fix hotspots before they become problems

When?

Investigate specific problems
• If you see stuttering or frame rate slowdowns

• Some part of your app is taking too long

Identify and fix hotspots before they become problems
• Keep an eye on the CPU gauge in Xcode

Demo
Time Profiler in action

Review
Track view

Identify and zoom into problem areas
• Drag to apply a time range filter

• Shift+drag to zoom in

• Control+drag to zoom out

Review
New Inspector panes

Use keyboard shortcuts to  
quickly move between panes

Review
New Inspector panes

Use keyboard shortcuts to  
quickly move between panes

• ⌘1—Record settings

Review
New Inspector panes

Use keyboard shortcuts to  
quickly move between panes

• ⌘1—Record settings

• ⌘2—Display settings

Review
New Inspector panes

Use keyboard shortcuts to  
quickly move between panes

• ⌘1—Record settings

• ⌘2—Display settings

• ⌘3—Extended detail

Review
Strategy views

Review
Strategy views

• Cores strategy

Review
Strategy views

• Cores strategy

• Instruments strategy

Review
Strategy views

• Cores strategy

• Instruments strategy

• Threads strategy

Review
Strategy views

• Cores strategy

• Instruments strategy

• Threads strategy

- Enable Record Waiting Threads to expose
blocked threads

Review
Call Tree settings

Review
Call Tree settings

• Expensive calls are frequently near the  
end of the call stack

Review
Call Tree settings

• Expensive calls are frequently near the  
end of the call stack

• Focus on your own code

Tips
Focus and Prune

Ignore unwanted data
• Charge moves the associated cost

• Prune removes the associated cost

• Focus is “prune everything but”

When using Time Profiler

Two More Guidelines

When using Time Profiler
• Profile Release builds

Two More Guidelines

When using Time Profiler
• Profile Release builds

• For iOS, profile on the device

Two More Guidelines

Performance Counters

Joe Grzywacz
Performance Tools Engineer

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
• Typically only four to eight per core

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
• Typically only four to eight per core

• Separate from the integer and floating point registers

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
• Typically only four to eight per core

• Separate from the integer and floating point registers

Each register can be configured to either:

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
• Typically only four to eight per core

• Separate from the integer and floating point registers

Each register can be configured to either:
• Count one of a small number of events

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
• Typically only four to eight per core

• Separate from the integer and floating point registers

Each register can be configured to either:
• Count one of a small number of events

- Instructions executed, L2 Cache Misses, Branches Taken, …

What Are Counters?

Each processor core contains a small number of 64-bit hardware registers
• Typically only four to eight per core

• Separate from the integer and floating point registers

Each register can be configured to either:
• Count one of a small number of events

- Instructions executed, L2 Cache Misses, Branches Taken, …

• Take a callstack every time a predetermined number of events occurs

Performance Monitoring Interrupts
(PMIs)

Time

Branches

Executed

Performance Monitoring Interrupts
(PMIs)

Time

Branches

Executed

Time-Based

Sampling

Performance Monitoring Interrupts
(PMIs)

Time

Branches

Executed

PMI-Based

Sampling

Time-Based

Sampling

Performance Counters
How are they useful?

Performance Counters
How are they useful?

Provide a deeper understanding of your app’s performance beyond just time

Performance Counters
How are they useful?

Provide a deeper understanding of your app’s performance beyond just time
• How well CPU resources are being used

- Caches, execution units, TLBs, …

Performance Counters
How are they useful?

Provide a deeper understanding of your app’s performance beyond just time
• How well CPU resources are being used

- Caches, execution units, TLBs, …

• Runtime process traits
- Branch frequency, instruction mix, …

What’s New with Counters

Formulas support

IPC =
Instructions

Cycles

=
BranchesMispredicted

Branch Mispredict Rate
BranchesExecuted

=
(L1CacheLoadMisses + L1CacheStoreMisses)

L1 Cache Miss %
(L1CacheLoads + L1CacheStores)

100 ×

What’s New with Counters

iOS 8 support
• 64-bit ARM devices only

What’s New with Counters

iOS 8 support
• 64-bit ARM devices only

Event Profiler instrument is deprecated
• Same PMI functionality is available within the Counters instrument

Demo
iOS Performance Counters

Counters Summary

Counters Summary

Collects data in a similar manner to Time Profiler

Counters Summary

Collects data in a similar manner to Time Profiler
• This is a statistical representation of your application

Counters Summary

Collects data in a similar manner to Time Profiler
• This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)

Counters Summary

Collects data in a similar manner to Time Profiler
• This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)
• Allows sampling based on the number of events

Counters Summary

Collects data in a similar manner to Time Profiler
• This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)
• Allows sampling based on the number of events

• Note that PMI instruction locations can be imprecise

Counters Summary

Collects data in a similar manner to Time Profiler
• This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)
• Allows sampling based on the number of events

• Note that PMI instruction locations can be imprecise

Formulas allow you to combine raw event counts in custom ways

Counters Summary

Collects data in a similar manner to Time Profiler
• This is a statistical representation of your application

Counters supports Performance Monitoring Interrupts (PMI)
• Allows sampling based on the number of events

• Note that PMI instruction locations can be imprecise

Formulas allow you to combine raw event counts in custom ways
• Be sure to save your common formulas in a template

What’s New with DTrace

What’s New with DTrace

Dynamic tracemem

Dynamic tracemem, provides a way to trace dynamically sized arrays
• tracemem(address, nbytes_max, nbytes)

- nbytes_max: maximum size of the array, must be known at compile time

- nbytes: the actual size of the array you want to copy

- Example:
void CGContextFillRects(CGContextRef c, const CGRect rects[], size_t count);
 
pid$pid_MyAppName::CGContextFillRects:entry
{
 this->array = copyin(arg1, sizeof(struct CGRect) * arg2);
 tracemem(this->array, 512, sizeof(struct CGRect) * arg2);
}

Improved Histograms

Histogram improvements: agghist, aggzoom, aggpack

http://dtrace.org/blogs/bmc/2013/11/10/agghist-aggzoom-and-aggpack/

Other New Features

Wait for process to start with –W
dtrace -Z —W MyAppName ‘pid$target::*CALayer*:entry’

Other New Features

Wait for process to start with –W
dtrace -Z —W MyAppName ‘pid$target::*CALayer*:entry’

Tunable internal DTrace variables
List the tunable variables
sysctl kern.dtrace

Other New Features

Wait for process to start with –W
dtrace -Z —W MyAppName ‘pid$target::*CALayer*:entry’

Tunable internal DTrace variables
List the tunable variables
sysctl kern.dtrace

Updated documentation
man dtrace

Summary

Profile Swift and Objective-C alike

Be proactive

Don't assume—profile, change, and iterate

More Information

Dave DeLong
Developer Tools Evangelist
delong@apple.com

Instruments Documentation
Instruments User Guide 
Instruments User Reference
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

Related Sessions

• Creating Extensions for iOS and OS X, Part 1 Mission Tuesday 2:00PM

• Integrating Swift with Objective-C Presidio Wednesday 9:00AM

• Creating Extensions for iOS and OS X, Part 2 Mission Wednesday 11:30AM

• Swift Interoperability In-Depth Presidio Wednesday 3:15PM

• Advanced Swift Debugging in LLDB Mission Friday 9:00AM

Labs

• Swift Lab Tools Lab A All Week

• Instruments Lab Tools Lab B Wednesday 9:00AM

• Power and Performance Lab Core OS Lab B Wednesday 2:00PM

• Instruments Lab Tools Lab B Thursday 9:00AM

• Power and Performance Lab Core OS Lab A Thursday 3:15PM

