
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Advanced Graphics and Animations 
for iOS Apps

Session 419 
Axel Wefers 
iOS Software Engineer

Tools

!

Michael Ingrassia 
iOS Software Engineer



What You Will Learn

Core Animation pipeline 

Rendering concepts 

UIBlurEffect 
UIVibrancyEffect 

Profiling tools 

Case studies



Technology Framework

UIKit

Core Animation

Graphics Hardware

Core GraphicsOpenGL ES



Core Animation Pipeline

Axel Wefers 
iOS Software Engineer



Core Animation Pipeline
Application



Core Animation Pipeline
Application

Core Animation



Core Animation Pipeline
Application

Render Server

Core Animation



Core Animation Pipeline
Application

Render Server

Core Animation

Core Animation



Core Animation Pipeline
Application

Render Server

GPU

Core Animation

Core Animation



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Handle Events



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Commit Transaction 



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Commit Transaction 

Decode



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Commit Transaction 

Decode

Draw Calls 



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Commit Transaction 

Decode

Render

Draw Calls 



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Commit Transaction 

Decode

Render

Draw Calls 

Display



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms



Core Animation Pipeline

Display

Application

Render Server

GPU

Core Animation

Core Animation

16.67 ms

Commit Transaction



Commit Transaction



Commit Transaction

Set up the views

Layout



Commit Transaction

Set up the views

Draw the views

Layout Display



Commit Transaction

Set up the views

Draw the views

Additional Core Animation work

Layout Display Prepare



Commit Transaction

Set up the views 

Draw the views 

Additional Core Animation work 

Package up layers and send them to render server

Layout Display Prepare Commit



Commit Transaction
Layout Display Prepare Commit



Layout

layoutSubviews overrides are invoked 

View creation, addSubview: 

Populate content, database lookups 

Usually CPU bound or I/O bound

Layout Display Prepare Commit



Display

Draw contents via drawRect: if it is overridden 

String drawing 

Usually CPU or memory bound

Layout Display Prepare Commit



Prepare Commit

Image decoding 

Image conversion

Layout CommitPrepareDisplay



Commit

Package up layers and send to render server 

Recursive 

Expensive if layer tree is complex

Layout Display Prepare Commit



Animation
Three-stage process

Application Render Server



Animation
Three-stage process

Application Render Server

1. Create animation and update view hierarchy (animateWithDuration:animations:)



Animation
Three-stage process

Application Render Server

1. Create animation and update view hierarchy (animateWithDuration:animations:)

2. Prepare and commit animation (layoutSubviews, drawRect:)



Animation
Three-stage process

Application Render Server

1. Create animation and update view hierarchy (animateWithDuration:animations:)

2. Prepare and commit animation (layoutSubviews, drawRect:)Layout Display Prepare Commit



Animation
Three-stage process

Application Render Server

1. Create animation and update view hierarchy (animateWithDuration:animations:)

2. Prepare and commit animation (layoutSubviews, drawRect:)

3. Render each frame

Layout Display Prepare Commit



Rendering Concepts

Axel Wefers 
iOS Software Engineer



Rendering Concepts

Tile based rendering 

Render passes 

Example masking



Tile Based Rendering

Screen is split into tiles of NxN pixels 

Each tile fits into the SoC cache 

Geometry is split in tile buckets 

Rasterization can begin after all geometry 
is submitted



Tile Based Rendering

Screen is split into tiles of NxN pixels 

Each tile fits into the SoC cache 

Geometry is split in tile buckets 

Rasterization can begin after all geometry 
is submitted



Tile Based Rendering

Screen is split into tiles of NxN pixels 

Each tile fits into the SoC cache 

Geometry is split in tile buckets 

Rasterization can begin after all geometry 
is submitted



Tile Based Rendering

Screen is split into tiles of NxN pixels 

Each tile fits into the SoC cache 

Geometry is split in tile buckets 

Rasterization can begin after all geometry 
is submitted



Tile Based Rendering

Screen is split into tiles of NxN pixels 

Each tile fits into the SoC cache 

Geometry is split in tile buckets 

Rasterization can begin after all geometry 
is submitted



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPU

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPU
Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPU
Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPU

Tiling

Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPUTiler

Tiling

Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPUTiler

Parameter BufferTiling

Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPUTiler

Pixel Processing 
“Pixel Shader”

Parameter BufferTiling

Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPUTiler

Renderer
Pixel Processing 
“Pixel Shader”

Parameter BufferTiling

Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Tile Based Rendering
Rendering pass

ApplicationRender Server

Core Animation

GPUTiler

Renderer

Render Buffer
Pixel Processing 
“Pixel Shader”

Parameter BufferTiling

Vertex Processing 
“Vertex Shader”Command Buffer

OpenGL

Core Animation



Masking
Rendering passes

GPU

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL



Masking
Rendering passes

GPUTiler

Renderer

Mask TexturePixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL

Pass 1 
Render layer mask to texture



Masking
Rendering passes

GPUTiler

Renderer

Mask TexturePixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Layer Texture

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL

Pass 1 
Render layer mask to texture

Pass 2 
Render layer content to texture



Masking
Rendering passes

GPUTiler

Renderer

Mask TexturePixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Layer Texture

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL

Pass 1 
Render layer mask to texture

Pass 2 
Render layer content to texture

Compositing pass 
Apply mask to content texture 

Frame Buffer



UIBlurEffect

Axel Wefers 
iOS Software Engineer



UIVisualEffectView with UIBlurEffect
UIBlurEffect styles

No effect Extra light Light Dark



UIVisualEffectView with UIBlurEffect
Rendering passes (best case)

GPU
Command Buffer



UIVisualEffectView with UIBlurEffect
Rendering passes (best case)

GPUTiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Content

Command Buffer
Pass 1 
Render content



UIVisualEffectView with UIBlurEffect
Rendering passes (best case)

GPU

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Downscaled 
Content

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Content

Command Buffer

Pass 2 
Capture content

Pass 1 
Render content



UIVisualEffectView with UIBlurEffect
Rendering passes (best case)

GPU

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Downscaled 
Content

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Blur X

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Content

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Blur Y

Command Buffer

Pass 3 
Horizontal blur

Pass 2 
Capture content

Pass 1 
Render content

Pass 4 
Vertical blur



UIVisualEffectView with UIBlurEffect
Rendering passes (best case)

GPU

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Downscaled 
Content

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Blur X

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Content

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Blur Y

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Frame Buffer

Command Buffer

Pass 3 
Horizontal blur

Pass 2 
Capture content

Pass 1 
Render content

Pass 4 
Vertical blur

Compositing pass 
Upscale and tint



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2

!
!
!
!

Pass 3



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2

!
!
!
!

Pass 3

!
!
!
!

Pass 4



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2

!
!
!
!

Pass 3

!
!
!
!

Pass 4

!
!
!
!

Pass 5



UIVisualEffectView with UIBlurEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms



UIBlurEffectStyleExtraLight

UIBlurEffectStyleLight

UIBlurEffectStyleDark

GPU time in milliseconds (smaller is better)

0.00 4.17 8.34 12.50 16.67

7.02

6.88

10.03

4.59

4.59

4.59

iPad (3rd generation) iPad Air

16.67

7.02

6.88

10.03

14.41

14.69

18.15

UIVisualEffectView with UIBlurEffect
Fullscreen performance



UIBlurEffectStyleExtraLight

UIBlurEffectStyleLight

UIBlurEffectStyleDark

GPU time in milliseconds (smaller is better)

0.00 4.17 8.34 12.50 16.67

7.02

6.88

10.03

4.59

4.59

4.59

iPad (3rd generation) iPad Air

UIVisualEffectView with UIBlurEffect
Fullscreen performance



UIVisualEffectView with UIBlurEffect
UIBlurEffect support

Device Blur Tint

iPad 2

iPad (3rd generation)

iPad (4th generation)

iPad Air

iPad mini

iPad mini Retina display

All iPhones

iPod touch



UIVisualEffectView with UIBlurEffect
Performance considerations

UIBlurEffect adds multiple offscreen passes depending on style 

Only dirty regions are redrawn 

Effect is very costly 

UI can easily be GPU bound 

Keep bounds of view as small as possible 

Make sure to budget for effect



UIVibrancyEffect

Axel Wefers 
iOS Software Engineer



UIVisualEffectView with UIVibrancyEffect
UIVibrancyEffect styles

Extra light Light Dark



UIVisualEffectView with UIVibrancyEffect
UIVibrancyEffect styles

Extra light Light Dark



UIVisualEffectView with UIVibrancyEffect
UIVibrancyEffect styles

Extra light Light Dark



UIVisualEffectView with UIVibrancyEffect
Rendering passes

GPU

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL



UIVisualEffectView with UIVibrancyEffect
Rendering passes

GPU
Blur Effect

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL

Pass 1 to 5 
Render blur effect



UIVisualEffectView with UIVibrancyEffect
Rendering passes

GPU
Blur Effect

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Layer Texture

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL

Pass 1 to 5 
Render blur effect

Pass 6 
Render layer content to texture



UIVisualEffectView with UIVibrancyEffect
Rendering passes

GPU
Blur Effect

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Tiler

Renderer
Pixel Processing 
“Pixel Shader”Parameter BufferTiling

Vertex Processing 
“Vertex Shader”

Layer Texture

ApplicationRender Server

Core Animation Core Animation

Command Buffer

OpenGL

Pass 1 to 5 
Render blur effect

Pass 6 
Render layer content to texture

Compositing pass 
Apply filter to content texture 

Frame Buffer



UIVisualEffectView with UIVibrancyEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2

!
!
!
!

Pass 3

!
!
!
!

Pass 4

!
!
!
!

Pass 5

!
!
!
!

Pass 6

!
!
!
!

Pass 7



UIVisualEffectView with UIVibrancyEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2

!
!
!
!

Pass 3

!
!
!
!

Pass 4

!
!
!
!

Pass 5

!
!
!
!

Pass 6

!
!
!
!

Pass 7



UIVisualEffectView with UIVibrancyEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms

!
!
!
!

Pass 1

!
!
!
!

Pass 2

!
!
!
!

Pass 3

!
!
!
!

Pass 4

!
!
!
!

Pass 5

!
!
!
!

Pass 6

!
!
!
!

Pass 7



UIVisualEffectView with UIVibrancyEffect
GPU utilization, fullscreen, iPad Air

Renderer 
Pixel processing

VBlank interrupt 
Every 16.67 ms

Tiler 
Vertex processing

16.67 ms



UIBlurEffectStyleExtraLight

UIBlurEffectStyleLight

UIBlurEffectStyleDark

GPU time in milliseconds (smaller is better)

0.00 8.34 16.67 25.01 33.34

iPad (3rd generation) iPad Air

7.02

6.88

10.03

4.59

4.59

4.59

UIVisualEffectView with UIVibrancyEffect
Fullscreen performance



UIBlurEffectStyleExtraLight

UIBlurEffectStyleLight

UIBlurEffectStyleDark

GPU time in milliseconds (smaller is better)

0.00 8.34 16.67 25.01 33.34

iPad (3rd generation) iPad Air

7.02

6.88

10.03

4.59

4.59

4.59

14.06

14.35

17.48

26.32

27.03

27.03

UIVisualEffectView with UIVibrancyEffect
Fullscreen performance



UIVisualEffectView with UIVibrancyEffect
Performance considerations

UIVibrancyEffect adds two offscreen passes 

UIVibrancyEffect uses expensive compositing filter for content 

Use UIVibrancyEffect on small regions 

Only dirty regions are redrawn 

UIVibrancyEffect is very costly on all devices 

UI can easily be GPU bound 

Keep bounds of view as small as possible 

Make sure to budget for effects



Rasterization
Performance considerations

Use to composite to image once with GPU 

Enable with shouldRasterize property on CALayer 

Extra offscreen passes when updating content 

Do not overuse, cache size is limited to 2.5x of screen size 

Rasterized images evicted from cache if unused for more than 100ms



Rasterization
Typical use cases

Avoid redrawing expensive effects for static content 

Avoid redrawing of complex view hierarchies



Group Opacity
Performance considerations

Disable with allowsGroupOpacity property on CALayer 

Will introduce offscreen passes: 
• If layer is not opaque (opacity != 1.0) 

• And if layer has nontrivial content (child layers or background image) 

Sub view hierarchy needs to be composited before being blended 

Always turn it off if not needed



Tools

Michael Ingrassia 
iOS Software Engineer



Performance Investigation Mindset



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense

Too many offscreen passes? Fewer is better



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense

Too many offscreen passes? Fewer is better

Too much blending? Less is better



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense

Too many offscreen passes? Fewer is better

Too much blending? Less is better

Any strange image formats or sizes? Avoid on-the-fly conversions or resizing



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense

Too many offscreen passes? Fewer is better

Too much blending? Less is better

Any strange image formats or sizes? Avoid on-the-fly conversions or resizing

Any expensive views or effects? Understand the cost of what is in use



Performance Investigation Mindset

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense

Too many offscreen passes? Fewer is better

Too much blending? Less is better

Any strange image formats or sizes? Avoid on-the-fly conversions or resizing

Any expensive views or effects? Understand the cost of what is in use

Anything unexpected in hierarchy? Know the actual view hierarchy



Tools

Instruments 
• Core Animation instrument 

• OpenGL ES Driver instrument 

Simulator 
• Color debug options 

Xcode 
• View debugging



Instruments
Core Animation template



Instruments
Core Animation template



Core Animation Instrument
Measuring frame rate



Core Animation Instrument
Measuring frame rate



Core Animation Instrument
Measuring frame rate



Core Animation Instrument
Measuring frame rate



Time Profiler Instrument
CPU utilization



Time Profiler Instrument
CPU utilization



Time Profiler Instrument
CPU utilization



Core Animation Instrument
Color debug options



Core Animation Instrument
Color debug options



Core Animation Instrument
Color debug options



Core Animation Instrument
Color blended layers



Core Animation Instrument
Color hits green and misses red



Core Animation Instrument
Color copied images



Core Animation Instrument
Color misaligned images



Core Animation Instrument
Color offscreen-rendered yellow



Core Animation Instrument
Color OpenGL fast path blue



Core Animation Instrument
Flash updated regions



Performance Investigation Mindset
Core Animation instrument summary

What is the frame rate? Goal is always 60 frames per second

Any unnecessary CPU rendering? GPU is desirable but know when CPU makes sense

Too many offscreen passes? Fewer is better

Too much blending? Less is better

Any strange image formats or sizes? Avoid on-the-fly conversions or resizing



iOS Simulator Coloring Options



Instruments
OpenGL ES Driver template



Instruments
OpenGL ES Driver template



OpenGL ES Driver Instrument
Selecting statistics to list



OpenGL ES Driver Instrument
Selecting statistics to list



OpenGL ES Driver Instrument
Selecting statistics to list



OpenGL ES Driver Instrument
GPU utilization



OpenGL ES Driver Instrument
GPU utilization



OpenGL ES Driver Instrument
GPU utilization



Time Profiler Instrument
CPU utilization



Time Profiler Instrument
CPU utilization



Time Profiler Instrument
CPU utilization



Performance Investigation Mindset
OpenGL ES Driver instrument summary

What is the frame rate? Goal is always 60 frames per second

CPU or GPU bound? Lower utilization is desired and saves battery

Any unnecessary CPU rendering? GPU is desirable but know when CPU make sense



Xcode
View debugging



Xcode
View debugging



Xcode
View debugging



Xcode
View debugging



Performance Investigation Mindset

Any expensive views or effects? Understand the cost of what is in use

Anything unexpected in hierarchy? Know the actual view hierarchy

Xcode view debugging summary



Case Studies

Michael Ingrassia 
iOS Software Engineer



Case Studies

Explore several scenarios 

Measure performance on different devices 

Keep the same appearance with better performance



Fictitious Photo Application
Case study

Simple table view 

Each cell shows a photo thumbnail and some text 

Each photo has a small shadow



Measure Frame Rate on iPhone 5s
OpenGL ES Driver instrument



Measure Frame Rate on iPhone 5s
OpenGL ES Driver instrument



Ship it?
Awesome



Fictitious Photo Application
iPod touch scrolling performance

What about the performance on other devices?



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Analyzing View Hierarchy on iPod touch
Xcode view debugging



Analyzing View Hierarchy on iPod touch
Xcode view debugging



Color Offscreen-Rendered Yellow
Core Animation instrument



How Are We Setting up the Shadow?



How Are We Setting up the Shadow?

We are asking Core Animation to generate the shadow 
CALayer *imageViewLayer = cell.imageView.layer; 
imageViewLayer.shadowColor = [UIColor blackColor].CGColor; 
imageViewLayer.shadowOpacity = 1.0; 
imageViewLayer.shadowRadius = 2.0; 
imageViewLayer.shadowOffset = CGSizeMake(1.0, 1.0);



How Are We Setting up the Shadow?

We are asking Core Animation to generate the shadow 
CALayer *imageViewLayer = cell.imageView.layer; 
imageViewLayer.shadowColor = [UIColor blackColor].CGColor; 
imageViewLayer.shadowOpacity = 1.0; 
imageViewLayer.shadowRadius = 2.0; 
imageViewLayer.shadowOffset = CGSizeMake(1.0, 1.0);

Perhaps there is a more efficient way 
imageViewLayer.shadowPath = CGPathCreateWithRect(imageRect, NULL);



Color Offscreen-Rendered Yellow
Core Animation instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Can we ship it now?
Awesome



Measure Frame Rate on iPhone 4s
OpenGL ES Driver instrument



Measure Frame Rate on iPhone 4s
OpenGL ES Driver instrument



Measure Frame Rate on iPhone 4s
OpenGL ES Driver instrument



Fictitious Photo Application
Performance across devices

CA Shadow

shadowPath

Frame Rate (target is 60 fps)

15 30 45 60

60 

33 

60 

45 

60 

55 

60 

60 
iPhone 5s
iPhone 5
iPhone 4s
iPod touch



Ship it!
Awesome



Fictitious Photo Application
Summary

Offscreen passes are expensive 
• Use Core Animation instrument to find them 

• Know what you can do to avoid them 

Measure performance across different devices 
• Use OpenGL ES Driver instrument for GPU time 

• Use Time Profiler instrument for CPU time 

Know your view hierarchy and any hidden costs 
• This is especially true for table cells and scrolling



Fictitious Contacts Application
Case study

Simple table view 

Each cell shows a round thumbnail and some text



Frame Rate (target is 60 fps)

15 30 45 60

46 

55 

60 

60 

iPhone 5s
iPhone 5
iPhone 4s
iPod touch

Fictitious Contacts Application
Performance across devices



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Color Offscreen-Rendered Yellow
Core Animation instrument



How Are We Achieving Round Thumbnails?



How Are We Achieving Round Thumbnails?

We are asking Core Animation to mask the image 
CALayer *imageViewLayer = cell.imageView.layer; 
imageViewLayer.cornerRadius = imageHeight / 2.0; 
imageViewLayer.masksToBounds = YES;



How Are We Achieving Round Thumbnails?

We are asking Core Animation to mask the image 
CALayer *imageViewLayer = cell.imageView.layer; 
imageViewLayer.cornerRadius = imageHeight / 2.0; 
imageViewLayer.masksToBounds = YES;

Perhaps there is a more efficient way 
• Don’t mask on the fly, pre-generate thumbnails as round, or



How Are We Achieving Round Thumbnails?

We are asking Core Animation to mask the image 
CALayer *imageViewLayer = cell.imageView.layer; 
imageViewLayer.cornerRadius = imageHeight / 2.0; 
imageViewLayer.masksToBounds = YES;

Perhaps there is a more efficient way 
• Don’t mask on the fly, pre-generate thumbnails as round, or

• If that is not possible, fake it 
- Table background is solid white 

- Render a white inverted circle on top of square thumbnail asset 

- Reducing offscreen passes but increasing blending, still a net performance win



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



Measure Frame Rate on iPod touch
OpenGL ES Driver instrument



before

after

Frame Rate (target is 60 fps)

15 30 45 60

60 

46 

60 

55 

60 

60 

60 

60 
iPhone 5s
iPhone 5
iPhone 4s
iPod touch

Fictitious Contacts Application
Performance across devices



Fictitious Contacts Application
Summary

Offscreen passes are expensive 
• Use Core Animation instrument to find them 

• Know what you can do to avoid them 

Measure performance across different devices 
• Use OpenGL ES Driver instrument for GPU time 

• Use Time Profiler instrument for CPU time 

Know your view hierarchy and any hidden costs 
• This is especially true for table cells and scrolling



Performance Investigation Mindset

What is the frame rate? Core Animation or OpenGL ES Driver instrument

CPU or GPU bound? OpenGL ES Driver and Time Profiler instrument

Any unnecessary CPU rendering? Time Profiler instrument

Too many offscreen passes? Core Animation instrument

Too much blending? Core Animation instrument

Any strange image formats or sizes? Core Animation instrument

Any expensive views or effects? Xcode View Debugger

Anything unexpected in hierarchy? Xcode View Debugger

Summary



Summary

Core Animation pipeline 

Rendering concepts 

UIBlurEffect 
UIVibrancyEffect 

Profiling tools 

Case studies



More Information

Jake Behrens 
App Frameworks Evangelist 
behrens@apple.com 

Dave DeLong 
Developer Tools Evangelist 
delong@apple.com 

Documentation 
Core Animation 
http://developer.apple.com/library/IOs/documentation/Cocoa/Conceptual/
CoreAnimation_guide/Introduction/Introduction.html 

Apple Developer Forums 
http://devforums.apple.com

http://devforums.apple.com


Related Sessions

• Improving Your App with Instruments Marina Tuesday 4:30PM

• Debugging in Xcode 6 Marina Wednesday 10:15AM

• Writing Energy Efficient Code, Part 1 Russian Hill Wednesday 10:15AM

• Writing Energy Efficient Code, Part 2 Russian Hill Wednesday 11:30AM

• Creating Custom iOS User Interfaces Marina Wednesday 3:15PM

• Building Interruptible and Responsive Interactions Presidio Friday 11:30AM



Labs

• Core Animation and Quartz 2D Lab Graphics and Games Lab A Tuesday 2:00PM

• Interface Builder and Live Views Lab Tools Lab C Wednesday 9:00AM

• Power and Performance Lab Core OS Lab B Wednesday 2:00PM

• Dynamics, View Animations, and  
Core Animation Lab

Frameworks Lab A Thursday 9:00AM

• Power and Performance Lab Core OS Lab A Thursday 3:15PM

• Visual Effects and Appearance  
Customization Lab

Frameworks Lab A Friday 9:00AM




