
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Advances in Core Image

Session 514
David Hayward
Core Image and Raw Camera Teams

Media

What We Will Discuss Today

What We Will Discuss Today

Key Concepts

Key Concepts
Filters perform per pixel operations on an image

Original Result

Sepia 
Filter

Key Concepts
Filters can be chained together for complex effects

ResultOriginal

Sepia 
Filter

Hue
Adjust 
Filter

Contrast 
Filter

Hue
Adjust 
Filter

Key Concepts
Intermediate images are lightweight objects

ResultOriginal

Contrast 
Filter

Sepia 
Filter

ResultOriginal

Key Concepts
Each filter has one or more kernel functions

Contrast 
Filter

Sepia 
Filter

kernel vec4 sepia (… kernel vec4 hue (… kernel vec4 contrast (…

Hue
Adjust 
Filter

Key Concepts
Kernels concatenated into programs to minimize buffers

ResultOriginal

kernel vec4 sepia (…

kernel vec4 hue (…

kernel vec4 contrast (…

Contrast 
Filter
Sepia 
Filter

Concat’d 
Filter

Key Concepts
Kernels concatenated into programs to minimize buffers

ResultOriginal

kernel vec4 sepia (…

kernel vec4 hue (…

kernel vec4 contrast (…

kernel vec4 sepia (…

kernel vec4 hue (…

kernel vec4 contrast (…

Contrast 
Filter
Sepia 
Filter

Concat’d 
Filter

Core Image Classes

CIKernel
• Represents a program written in Core Image’s language

CIFilter
• Has mutable input parameters

• Uses one or more CIKernels to create a new image based on inputs

CIImage
• An immutable object that represents the recipe for an image

CIContext
• A object through which Core Image draw results

What’s New in Core Image this Year

What’s New

Custom CIKernels on iOS

Photo Editing Extensions on iOS

Large images on iOS

Improved GPU rendering on iOS

API modernization

New built-in CIFilters

New CIDetectors

Improved RAW support on OS X

Using a second GPU on OS X

Custom CIKernels on iOS

Custom CIKernels on iOS

Core Image has over 115 great built-in filters

Now you can easily add your own
• Use the same CIKernel language as on OS X

• With new extensions to make writing typical kernels easier

Custom CIKernels
Where can they go

In your App
• The kernel code can be in a text resource or just a NSString

• The kernel is wrapped in a CIFilter subclass that applies your kernels

In your App Extension
• Photos Editing Extensions can use CIKernels

• Usable to modify photos and videos

Custom CIKernels

See our next presentation for all the details but heres a teaser
"

{
 NSString* ci_source =
 @"kernel vec4 myInvert (__sample src) \n"
 "{ \n"
 " return vec4(s.a - src.rgb, s.a); \n"
 "}";
"

 return [[CIColorKernel kernelWithString:ci_source]
 applyWithExtent:[img extent]
 arguments:@[img]];
}

Demo
Custom CIKernel example on iOS

Photo Editing Extensions on iOS

Creating a Photo Editing Extension

Photo Editing Extension Workflow
Using Core Image efficiently

Photo Editing Extension Workflow
Using Core Image efficiently

Store display-sized
CIImage in a @property1 On init, create 

display-sized 
CIImage

PHContentEditingInput 
.displaySizeImage
CIImage initWithCGImage:

Create GLKView
Store CIContext
in a @property

CIContext
drawImage

Get output
CIImage

Apply filters
based on
slider values

Display-sized
CIImage

On events,  
apply filters 
and draw

2

Photo Editing Extension Workflow
Using Core Image efficiently

Store display-sized
CIImage in a @property1 On init, create 

display-sized 
CIImage

PHContentEditingInput 
.displaySizeImage
CIImage initWithCGImage:

Create GLKView
Store CIContext
in a @property

CIContext
drawImage

Get output
CIImage

Apply filters
based on
slider values

Display-sized
CIImage

On events,  
apply filters 
and draw

2

Photo Editing Extension Workflow
Using Core Image efficiently

Get output
CIImage

CIContext
createCGImage

3 On finish, return 
adjustments and 
full-sized  
filtered JPEG

PHContentEditingInput 
.fullSizeImageURL
CIImage initWithURL:

Apply filters
based on
slider values

Store display-sized
CIImage in a @property1 On init, create 

display-sized 
CIImage

PHContentEditingInput 
.displaySizeImage
CIImage initWithCGImage:

Create GLKView
Store CIContext
in a @property

Large Images on iOS

Large Images Support

Full support for images greater than the GPU limits
• Input images can be > 4K

• Output renders can be > 4K

Automatic tiling
• Leverages improvements to ImageIO’s jpeg decoder/encoder

• Facilitated by features of the CIKernel language

Large Images Support
Facilitated by features of the CIKernel language

CIKernel language allows kernels to “just work” regardless of tiling
destCoord()

• Allows Core Image to support tiled output automatically
samplerTransform()

• Allows Core Image to support tiled inputs automatically

Large Images Support
Core Image, CGImageRef, and the benefits of laziness

For small input CGImages
• Image is fully decoded when [CIImage initWith] is called

For large input CGImages
• Image is decoded as needed when [CIContext render] is called

Large Images Support
Core Image, CGImageRef, and the benefits of laziness

When calling [CIContext createCGImage]

For small output CGImages
• Image is fully rendered when createCGImage is called

For large output CGImages
• Image is rendered as needed when CGImage is rendered

• Or when CGImageDestinationFinalize is called

Large Images Support
Core Image, CGImageRef, and the benefits of laziness

Very large JPEGs can be
• Decoded

• CIFiltered

• Re-encoded

With minimal memory and great performance

Large Images Support
Apply CISepiaTone on 4200x6300 JPEG (~100 MB image)

Large Images Support
Apply CISepiaTone on 4200x6300 JPEG (~100 MB image)

17 seconds

Decoding + Filtering + Encoding Time
iOS 7

Large Images Support
Apply CISepiaTone on 4200x6300 JPEG (~100 MB image)

17 seconds

1 seciOS 8

Decoding + Filtering + Encoding Time
iOS 7

Large Images Support
Apply CISepiaTone on 4200x6300 JPEG (~100 MB image)

17 seconds

205 MB

1 seciOS 8

Decoding + Filtering + Encoding Time

Memory High-Water Mark
iOS 7

iOS 7

Large Images Support
Apply CISepiaTone on 4200x6300 JPEG (~100 MB image)

17 seconds

205 MB

25 MBiOS 8

1 seciOS 8

Decoding + Filtering + Encoding Time

Memory High-Water Mark
iOS 7

iOS 7

Large Images Support
Apply CISepiaTone on 4200x6300 JPEG (~100 MB image)

17 seconds

205 MB

25 MBiOS 8

1 seciOS 8

Decoding + Filtering + Encoding Time

Memory High-Water Mark
iOS 7

iOS 7

Automatically tiled image rendered on the GPU!iOS 8

iOS 7 Full size image rendered on CPU

Improved GPU Rendering on iOS

Renders When Your App Is Background

In iOS 7
• All background renders use Core Image CPU Render

In iOS 8
• Renders within a short time of switching to background

- Use faster GPU renderer

- Serviced with a lower priority

- Will not disturb foreground GPU usage

Background GPU Restrictions

Not allowed if you call
 [CIContext drawImage:inRect:fromRect:]

Use other renders methods like
 [CIContext createCGImage:fromRect:]
 [CIContext render:toCVPixelBuffer:]
 [CIContext render:toBitmap:rowBytes:bounds:format:colorSpace:]

Low Priority Foreground Rendering
When rendering from a secondary thread

In iOS 7
• Required care to avoid interrupting UI thread renders

• Or using slower CPU rendering

In iOS 8
• Secondary thread renders can use kCIContextPriorityRequestLow

• Will not disturb UI thread GPU usage

Thoughts on Core Image CPU Renderer

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when
• GPU texture limits were exceeded

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when
• GPU texture limits were exceeded

- No longer a limit in iOS 8 Core Image

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when
• GPU texture limits were exceeded

- No longer a limit in iOS 8 Core Image

• The application needed to render briefly in the background

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when
• GPU texture limits were exceeded

- No longer a limit in iOS 8 Core Image

• The application needed to render briefly in the background

- No longer prohibited in iOS 8 Core Image

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when
• GPU texture limits were exceeded

- No longer a limit in iOS 8 Core Image

• The application needed to render briefly in the background

- No longer prohibited in iOS 8 Core Image

• The application wanted to render in a low priority thread

Thoughts on Core Image CPU Renderer

In iOS 7, the CPU renderer was used when
• GPU texture limits were exceeded

- No longer a limit in iOS 8 Core Image

• The application needed to render briefly in the background

- No longer prohibited in iOS 8 Core Image

• The application wanted to render in a low priority thread

- Can now request kCIContextPriorityRequestLow in iOS 8 Core Image

API Modernization

Core Image API Modernization
Properties are fully supported on OS X

CIFilter subclasses can use @property instead of ivars

 Reminder—filter subclasses don’t need to release input ivars/properties

Code that looked like this
 outImage = [filter valueForKey: kCIOutputImageKey];

Can look like this now on OS X
 outImage = filter.outputImage;

Core Image API Modernization
Set several parameters on a filter

f = [CIFilter filterWithName: @"CIColorControls"  
 withInputParameters: @{
 @"inputImage" : inImage,  
 @"inputSaturation" : @0.5,  
 @"inputBrightness" : @1.2,  
 @"inputContrast" : @1.3 }];
outImage = f.outputImage;

Core Image API Modernization
Apply a filter with several parameters on an image

outImage = [inImage  
 imageByApplyingFilter: @"CIColorControls"  
 withInputParameters: @{
 @"inputSaturation" : @0.5,  
 @"inputBrightness" : @1.2,  
 @"inputContrast" : @1.3 }];

Core Image API Modernization
Convenient methods for orienting images

Orientation values from one to eight as defined in the TIFF specification
 - (CIImage*) imageByApplyingOrientation:(int)orientation
 - (CGAffineTransform)imageTransformForOrientation:(int)orientation

Core Image API Modernization
Color spaces

Default RGB color space is now sRGB
• Matches default RGB color space on iOS

• Matches what most apps expect for untagged content

Core Image API Modernization
Color spaces

Default RGB color space is now sRGB
• Matches default RGB color space on iOS

• Matches what most apps expect for untagged content

Working color space is linear Rec. 709
• Matches the default working color space on iOS

• No matrix math is needed when converting  
 input RGB → working space → output RGB

New Built-in CIFilters

New CIFilters on iOS
CIAreaHistogram + CIHistogramDisplayFilter

=histogram data image 
256 x 1 pixels

New CIFilters
CIMaskedVariableBlur

+ =

New CIFilters
CIAccordionFoldTransition

f.inputNumberOfFolds = @3;
f.inputBottomHeight = @50;

New CIFilters
CIAccordionFoldTransition

New CIFilters
CICode128BarcodeGenerator

f.inputMessage = [NSData dataWithBytes:"Robot Barf" length:10];
f.inputQuietSpace = @7;

New CIFilters
CIAztecCodeGenerator

f.inputMessage = [NSData dataWithBytes:"Robot Barf" length:10];
f.inputCorrectionLevel= @23;

New CIFilters
CIPerspectiveCorrection

New CIFilters
More blend modes

CILinearDodgeBlendMode

CILinearBurnBlendMode

CIPinLightBlendMode

CISubtractBlendMode

CIDivideBlendMode

CISoftLightBlendMode changed to better match its spec

New CIFilters on iOS

CIGlassDistortion

CIStretchCrop

CIDroste

And some more if time permits…

115 Built-in CIFilters on iOS
CIAccordionFoldTransition
CIAdditionCompositing
CIAffineClamp
CIAffineTile
CIAffineTransform
CIAreaHistogram
CIBarsSwipeTransition
CIBlendWithMask
CIBloom
CIBumpDistortion
CIBumpDistortionLinear
CICheckerboardGenerator
CICircleSplashDistortion
CICircularScreen
CICode128BarcodeGenerator
CIColorBlendMode
CIColorBurnBlendMode
CIColorControls
CIColorCube
CIColorDodgeBlendMode
CIColorInvert
CIColorMap
CIColorMatrix

CIColorMonochrome
CIColorClamp
CIColorCrossPolynomial
CIColorPolynomial
CIColorPosterize
CIConstantColorGenerator
CIConvolution3X3
CIConvolution5X5
CIConvolution9Horizontal
CIConvolution9Vertical
CICopyMachineTransition
CICrop
CIDarkenBlendMode
CIDifferenceBlendMode
CIDisintegrateWithMask
CIDissolveTransition
CIDivideBlendMode
CIDotScreen
CIEightfoldReflectedTile
CIExclusionBlendMode
CIExposureAdjust
CIFalseColor
CIFlashTransition

CIFourfoldReflectedTile
CIFourfoldTranslatedTile
CIGammaAdjust
CIGaussianBlur
CIGaussianGradient
CIGlassDistortion
CIGlideReflectedTile
CIGloom
CIHardLightBlendMode
CIHatchedScreen
CIHighlightShadowAdjust
CIHistogramDisplayFilter
CIHoleDistortion
CIHueAdjust
CIHueBlendMode
CILanczosScaleTransform
CILightenBlendMode
CILightTunnel
CILinearBurnBlendMode
CILinearDodgeBlendMode
CILinearGradient
CILineScreen
CILuminosityBlendMode

CIMaskToAlpha
CIMaximumComponent
CIMaximumCompositing
CIMinimumComponent
CIMinimumCompositing
CIModTransition
CIMultiplyBlendMode
CIMultiplyCompositing
CIOverlayBlendMode
CIPerspectiveCorrection
CIPerspectiveTile
CIPerspectiveTransform
CIPinchDistortion
CIPinLightBlendMode
CIPixellate
CIRadialGradient
CIRandomGenerator
CISaturationBlendMode
CIScreenBlendMode
CISepiaTone
CISharpenLuminance
CISixfoldReflectedTile
CISixfoldRotatedTile

CISoftLightBlendMode
CISourceAtopCompositing
CILinearToSRGBToneCurve
CISRGBToneCurveToLinear
CISourceInCompositing
CISourceOutCompositing
CISourceOverCompositing
CIStarShineGenerator
CIStraightenFilter
CIStripesGenerator
CISubtractBlendMode
CISwipeTransition
CITemperatureAndTint
CIToneCurve
CITriangleKaleidoscope
CITwelvefoldReflectedTile
CITwirlDistortion
CIUnsharpMask
CIVibrance
CIVignette
CIVortexDistortion
CIWhitePointAdjust
CIQRCodeGenerator

New CIDetectors

New CIDetectors

CIDetector is a an abstract class to find things within an image

Three types of detectors
 CIDetectorTypeFace

 CIDetectorTypeRectangle
 CIDetectorTypeQRCode

New CIDetectors
Creating a CIDetector object

Creating a detector
 CIDetector* detector = [CIDetector detectorOfType:
 context:nil  
 options:opts];

Options
• Tell the detector to be fast or thorough
 opts = @{CIDetectorAccuracy : CIDetectorAccuracyLow };
 opts = @{CIDetectorAccuracy : CIDetectorAccuracyHigh };

• Tell the detector the smallest size to search for
 opts = @{CIDetectorMinFeatureSize : @100 };

CIDetectorTypeFace

New CIDetectors
Creating a CIDetector object

Creating a detector
 CIDetector* detector = [CIDetector detectorOfType:
 context:nil  
 options:opts];

Options
• Tell the detector to be fast or thorough
 opts = @{CIDetectorAccuracy : CIDetectorAccuracyLow };
 opts = @{CIDetectorAccuracy : CIDetectorAccuracyHigh };

• Tell the detector the smallest size to search for
 opts = @{CIDetectorMinFeatureSize : @100 };

CIDetectorTypeRectangle

New CIDetectors
Creating a CIDetector object

Creating a detector
 CIDetector* detector = [CIDetector detectorOfType:
 context:nil  
 options:opts];

Options
• Tell the detector to be fast or thorough
 opts = @{CIDetectorAccuracy : CIDetectorAccuracyLow };
 opts = @{CIDetectorAccuracy : CIDetectorAccuracyHigh };

• Tell the detector the smallest size to search for
 opts = @{CIDetectorMinFeatureSize : @100 };

CIDetectorTypeQRCode

New CIDetectors
Asking a detector for CIFaceFeatures

Important—Tell the detector what what direction is up
 opts = @{ CIDetectorImageOrientation : 
 [[image properties] valueForKey:kCGImagePropertyOrientation],
 CIDetectorEyeBlink : @YES,
 CIDetectorSmile : @YES};

 NSArray* features = [detector featuresInImage:image  
 options:opts];

New CIDetectors
Augmenting an image with CIFaceFeatures

result = image;
for (CIFaceFeature *f in features)  
{
 bool eyeClosed = f.leftEyeClosed || f.rightEyeClosed;
 
 CIImage * overlay = [CIImage imageWithColor: eyeClosed ? color1 : color2];
 overlay = [overlay imageByCroppingToRect:f.bounds];
"

 result = [overlay imageByCompositingOverImage:result];
}

New CIDetectors
Asking a detector for CIRectangleFeatures

Important—tell the detector what aspect ratio and minimum size to look for
 opts = @{ CIDetectorAspectRatio : @2.0 };
"

NSArray* features = [detector featuresInImage:image  
 options:opts];

New CIDetectors
Augmenting an image with CIRectangleFeatures

result = image;
for (CIRectangleFeature *f in features)  
{ 
 CIImage * overlay = [CIImage imageWithColor:color];
 overlay = [overlay imageByApplyingFilter:
 @"CIPerspectiveTransformWithExtent"
 withInputParameters: @{
 @"inputExtent", [CIVector vectorWithX:0 Y:0 Z:1 W:1],
 @"inputTopLeft", [CIVector vectorWithCGPoint:f.topLeft],
 @"inputTopRight", [CIVector vectorWithCGPoint:f.topRight],
 @"inputBottomLeft", [CIVector vectorWithCGPoint:f.bottomLeft],
 @"inputBottomRight", [CIVector vectorWithCGPoint:f.bottomRight]}];
 result = [overlay imageByCompositingOverImage:result];
}

New CIDetectors
Augmenting an image with CIQRCodeFeatures

result = image;
for (CIQRCodeFeature *f in features)  
{ 
 CIImage * overlay = [CIImage imageWithColor:color];
 overlay = [overlay imageByApplyingFilter:
 @"CIPerspectiveTransformWithExtent"
 withInputParameters: @{
 @"inputExtent", [CIVector vectorWithX:0 Y:0 Z:1 W:1],
 @"inputTopLeft", [CIVector vectorWithCGPoint:f.topLeft],
 @"inputTopRight", [CIVector vectorWithCGPoint:f.topRight],
 @"inputBottomLeft", [CIVector vectorWithCGPoint:f.bottomLeft],
 @"inputBottomRight", [CIVector vectorWithCGPoint:f.bottomRight]}];
 result = [overlay imageByCompositingOverImage:result];
}

Improved RAW Support on OS X

Improved RAW Support on OS X

History

Fundamentals of RAW image processing

Architecture overview

Using the CIRAWFilter

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

RAW Support is provided for the entire OS X

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

RAW Support is provided for the entire OS X
• NSImage, CGImage

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

RAW Support is provided for the entire OS X
• NSImage, CGImage

• Spotlight, Quick Look

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

RAW Support is provided for the entire OS X
• NSImage, CGImage

• Spotlight, Quick Look

• Preview, Finder, Mail

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

RAW Support is provided for the entire OS X
• NSImage, CGImage

• Spotlight, Quick Look

• Preview, Finder, Mail

• Aperture, iPhoto, Photos

Adjusting RAW Images
History

Apple has been supporting RAW files since April 2005

We have continuously added support for cameras and improved quality

RAW Support is provided for the entire OS X
• NSImage, CGImage

• Spotlight, Quick Look

• Preview, Finder, Mail

• Aperture, iPhoto, Photos

• Third-party Apps

Adjusting RAW Images
Fundamentals of RAW image processing

RAW files contains minimally processed
data from the camera image sensor

Adjusting RAW Images
Fundamentals of RAW image processing

RAW files contains minimally processed
data from the camera image sensor

Requires advanced image processing to
produce a great image

Adjusting RAW Images
Stages of RAW image processing

Extract critical metadata

Decode raw sensor image

De-mosaic reconstruction

Lens correction

Noise reduction

Map scene-referred sensor values  
to output-referred color space

Adjust exposure and temperature/tint

Add contrast and saturation for a pleasing look

Adjusting RAW Images
Stages of RAW image processing

Extract critical metadata

Decode raw sensor image

De-mosaic reconstruction

Lens correction

Noise reduction

Map scene-referred sensor values  
to output-referred color space

Adjust exposure and temperature/tint

Add contrast and saturation for a pleasing look

Adjusting RAW Images
Beyond the basics

ImageIO just returns a CGImageRef
• Processed according to the default parameters and latest algorithms

Adjusting RAW Images
Beyond the basics

ImageIO just returns a CGImageRef
• Processed according to the default parameters and latest algorithms

CIRAWFilter gives your application
• CIImage with extend range, floating point precision

• Easy control over RAW processing parameters

• Fast, interactive performance using GPU

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIRAWFilter

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIImageCIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIImageCIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIImageCIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIImage

Custom CIFilter

CIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

RAW Image File
(File’s URL or Data)

CIImage

Custom CIFilter

CIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

CGImage

RAW Image File
(File’s URL or Data)

CIImage

Custom CIFilter

CIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Architecture overview

CGImage

Output Image
(Jpg, Tiff,…)

RAW Image File
(File’s URL or Data)

CIImage

Custom CIFilter

CIRAWFilter

User Adjustments
(Exposure,  
Temperature,  
Noise Reduction, …)

Adjusting RAW Images
Using the CIRAWFilter

CIImage* GetAdjustedRaw (CFURLRef url)
{
 // Load the image
 CIFilter* f = [CIFilter filterWithImageURL:url options:nil];

 // Get the NR amount
 NSNumber* nr = [f valueForKey: kCIInputLuminanceNoiseReductionAmountKey];
"

 // Adjust the NR amount
 [f setValue: @(nr.doubleValue + 0.1)
 forKey: kCIInputLuminanceNoiseReductionAmountKey];
"

 // Get the adjusted image
 return f.outputImage
}

Demo
Adjusting RAW Images with CIRawFilterSample

Serhan Uslubas
RawCamera Engineer

Using the Second GPU on Mac Pro

Using the Second GPU

When does using the second GPU make sense?
• Speculative renders

• Background renders

Will not cause UI rendering on the display’s GPU to stutter

Using the Second GPU
Creating the CIContext for the second GPU

In Mavericks
• It takes around 80 lines of OpenGL code

Now you just need this
• [ClContext offlineGPUAtlndex:0]

Demo
Batch Processing RAW files on a second GPU

Serhan Uslubas

Summary

Summary

Key concepts

Summary

Key concepts

What’s new in Core Image in iOS 8

Summary

Key concepts

What’s new in Core Image in iOS 8

What’s new in Core Image in OS X Yosemite

Summary

Key concepts

What’s new in Core Image in iOS 8

What’s new in Core Image in OS X Yosemite

How to use CIDetectors

Summary

Key concepts

What’s new in Core Image in iOS 8

What’s new in Core Image in OS X Yosemite

How to use CIDetectors

How to adjust RAW image with Core Image

More Information

Allan Schaffer
Graphics and Game Technologies Evangelist
aschaffer@apple.com

Developer Technical Support
http://developer.apple.com/contact

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

Related Sessions

• Camera Capture: Manual Controls Marina Wednesday 11:30AM

• Introducing the Photos Frameworks Nob Hill Thursday 10:15AM

• Developing Core Image Filters for iOS Pacific Heights Thursday 3:15PM

Labs

• Core Image Lab Media Lab B Thursday 4:30PM

