
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Working with Metal—Overview

Session 603
Jeremy Sandmel
GPU Software

Graphics and Games

Metal

Dramatically reduced overhead

Unified graphics and compute

Precompiled shaders

Efficient multithreading

Designed for A7

Agenda

Background

API concepts

Shading language

Developer tools

Agenda

Background

API concepts

Shading language

Developer tools

10x more draw calls

About Draw Calls…

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

 
Changing state vectors can be expensive
• Translation to hardware commands

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

 
Changing state vectors can be expensive
• Translation to hardware commands

for the CPU

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

 
Changing state vectors can be expensive
• Translation to hardware commands

Set Shaders

Set Textures

Set Vertex Buffers

Draw #1

Set Shaders

Set Blend

Set Depth Test

Draw #2

Your Application

for the CPU

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

 
Changing state vectors can be expensive
• Translation to hardware commands

Set Shaders

Set Textures

Set Vertex Buffers

Draw #1

Set Shaders

Set Blend

Set Depth Test

Draw #2

Your Application

Hardware
commands

for the CPU

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

 
Changing state vectors can be expensive
• Translation to hardware commands

Set Shaders

Set Textures

Set Vertex Buffers

Draw #1

Set Shaders

Set Blend

Set Depth Test

Draw #2

Your Application

Hardware
commands

for the CPU

About Draw Calls…

Each draw call requires its own state vector
• Shaders, states, textures, render targets, etc.

 
Changing state vectors can be expensive
• Translation to hardware commands

 
More draw calls per frame gives you
• More unique objects

• More visual variety

• More freedom for game artists and designers

Set Shaders

Set Textures

Set Vertex Buffers

Draw #1

Set Shaders

Set Blend

Set Depth Test

Draw #2

Your Application

Hardware
commands

for the CPU

Before Metal

Before Metal

Long history of GPU programming APIs
• Standards—OpenGL, OpenCL

• Domains—High level, low level, 2D, 3D

• Architectures—Platforms, devices, GPUs

Before Metal

Long history of GPU programming APIs
• Standards—OpenGL, OpenCL

• Domains—High level, low level, 2D, 3D

• Architectures—Platforms, devices, GPUs

 
Something was missing…

Deep Integration

Deep Integration

+ +

Deep Integration

+ +

Deep Integration

What if we took the same approach for GPU programming?

+ +

Deep Integration

What if we took the same approach for GPU programming?

+ +

Deep Integration

What if we took the same approach for GPU programming?

=+ +

Metal Design

Metal Design

Thinnest possible API

Metal Design

Thinnest possible API

Modern GPU features

Metal Design

Thinnest possible API

Modern GPU features

Do expensive tasks less often

Metal Design

Thinnest possible API

Modern GPU features

Do expensive tasks less often

Predictable performance

Metal Design

Thinnest possible API

Modern GPU features

Explicit command submission

Do expensive tasks less often

Predictable performance

Metal Design

Thinnest possible API

Modern GPU features

Explicit command submission

Do expensive tasks less often

Optimized for CPU behavior

Predictable performance

 

Your App

GPU

 

Your App

GPU

SceneKit
SpriteKit

Scene Graphs

 

Your App

GPU

SceneKit
SpriteKit

Scene Graphs

Core Animation
Core Image

Core Graphics

2D Graphics
and Imaging

 

Your App

GPU

SceneKit
SpriteKit

Scene Graphs

Core Animation
Core Image

Core Graphics

2D Graphics
and Imaging

OpenGL ES

Standards-Based
3D Graphics

 

Your App

GPU

SceneKit
SpriteKit

Scene Graphs

Core Animation
Core Image

Core Graphics

2D Graphics
and Imaging

OpenGL ES

Standards-Based
3D Graphics

High Efficiency
GPU Access

Metal

So how did we do this?

Frame Times

Many games target frame rate of 30 FPS (33.3 milliseconds/frame)

Frame Times

Many games target frame rate of 30 FPS (33.3 milliseconds/frame)

0 ms 33.3 ms 66.7 ms 100 ms

Frame Times

Many games target frame rate of 30 FPS (33.3 milliseconds/frame)

CPU work 
frame N

GPU work
frame N

GPU work 
frame N-1

0 ms 33.3 ms 66.7 ms 100 ms

CPU work
frame N-1

Frame Times

Many games target frame rate of 30 FPS (33.3 milliseconds/frame)

CPU work 
frame N

GPU work
frame N

CPU work
frame N+1

GPU work
frame N+1

CPU work
frame N+2

GPU work 
frame N-1

0 ms 33.3 ms 66.7 ms 100 ms

GPU work
frame N+2

CPU work
frame N-1

One “Balanced” Frame

CPU

GPU

CPU work 
frame N

GPU work 
frame N-1

0 ms 33.3 ms

CPU Can Take More Time Than GPU

CPU

GPU

CPU work 
frame N

GPU work 
frame N-1

0 ms 33.3 ms

CPU Can Take More Time Than GPU

CPU

GPU

CPU work 
frame N

GPU work 
frame N-1

0 ms 33.3 ms

GPU idle time GPU utilization = 67%

More GPU Work Requires More CPU Work

CPU

GPU

CPU work 
frame N

GPU work 
frame N-1

0 ms 33.3 ms

GPU idle time

50 ms

33.3 ms

CPU Time Includes Application and GPU API

CPU

GPU

CPU work 
frame N

GPU work 
frame N-1

0 ms

GPU idle time

GPU API  
frame N

50 ms

Application  
frame N

33.3 ms

Targeting CPU Time Spent in GPU API

CPU

GPU GPU work 
frame N-1

0 ms

GPU idle time

GPU API  
frame N

50 ms

Application  
frame N

Metal Dramatically Reduces GPU API Time

CPU

GPU GPU work 
frame N-1

0 ms
GPU API  
frame N

33.3 ms

CPU idle
time

Application  
frame N

20 ms

Metal Dramatically Reduces GPU API Time

CPU

GPU GPU work 
frame N-1

0 ms
GPU API  
frame N

33.3 ms

CPU idle
time

Application  
frame N

20 ms

Use CPU Time to Improve Your Game

CPU

GPU GPU work 
frame N-1

0 ms

More Physics 
More AI

33.3 ms

CPU idle
time

Application  
frame N

20 ms

Use CPU Time to Draw More Objects

CPU

GPU GPU work 
frame N-1

0 ms

Up to 10x more draw calls

33.3 ms

Application  
frame N

More Physics 
More AI

Use CPU Time to Draw More Objects

CPU

GPU GPU work 
frame N-1

0 ms

Up to 10x more draw calls

33.3 ms

Application  
frame N

More Physics 
More AI

Why Is GPU Programming Expensive?

Why Is GPU Programming Expensive?

State validation
• Confirming API usage is valid

• Encoding API state to hardware state 

Why Is GPU Programming Expensive?

State validation
• Confirming API usage is valid

• Encoding API state to hardware state 

Shader compilation
• Run-time generation of shader machine code

• Interactions between state and shaders 

Why Is GPU Programming Expensive?

State validation
• Confirming API usage is valid

• Encoding API state to hardware state 

Shader compilation
• Run-time generation of shader machine code

• Interactions between state and shaders 

Sending work to GPU
• Managing resource residency

• Batching commands

Do Expensive Tasks Less Often

When Frequency

Application build

Content loading

Draw time

Do Expensive Tasks Less Often

When Frequency

Application build

Content loading

Draw time

“Never”

Do Expensive Tasks Less Often

When Frequency

Application build

Content loading

Draw time

“Never”

Rare

Do Expensive Tasks Less Often

When Frequency

Application build

Content loading

Draw time

“Never”

Rare

1000s of times per frame

Do Expensive Tasks Less Often

When Frequency Before Metal

Application build

Content loading

Draw time

“Never”

Rare

1000s of times per frame

Shader compilation

State validation

Start work on GPU

Do Expensive Tasks Less Often

When Frequency Before Metal

Application build

Content loading

Draw time

“Never”

Rare

1000s of times per frame

Shader compilation

State validation

Start work on GPU

After Metal

Shader compilation

State validation

Start work on GPU

Agenda

Background

API concepts

Shading language

Developer tools

Metal Objects

Objects Purpose

Metal Objects

Objects Purpose

Device The GPU

Metal Objects

Objects Purpose

Device The GPU

Command Queue Serial sequence of command buffers

Metal Objects

Objects Purpose

Device The GPU

Command Queue Serial sequence of command buffers

Command Buffer Contains GPU hardware commands

Metal Objects

Objects Purpose

Device The GPU

Command Queue Serial sequence of command buffers

Command Buffer Contains GPU hardware commands

Command Encoder Translates API commands to GPU hardware commands

Metal Objects

Objects Purpose

Device The GPU

Command Queue Serial sequence of command buffers

Command Buffer Contains GPU hardware commands

Command Encoder Translates API commands to GPU hardware commands

State Framebuffer configuration, blend, depth, samplers, etc.

Metal Objects

Objects Purpose

Device The GPU

Command Queue Serial sequence of command buffers

Command Buffer Contains GPU hardware commands

Command Encoder Translates API commands to GPU hardware commands

State Framebuffer configuration, blend, depth, samplers, etc.

Code Shaders

Metal Objects

Objects Purpose

Device The GPU

Command Queue Serial sequence of command buffers

Command Buffer Contains GPU hardware commands

Command Encoder Translates API commands to GPU hardware commands

State Framebuffer configuration, blend, depth, samplers, etc.

Code Shaders

Resources Textures and Data Buffers (vertices, constants, etc.)

Device

State

Descriptor

System

Code

Resource

Key

DeviceCommand Queue

State

Descriptor

System

Code

Resource

Key

Command
Buffer

Command
Buffer

DeviceCommand Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Device

Render
Command
Encoder

Command Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Device

Render
Command
Encoder

Data Buffer
Resource

Command Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource Texture

Descriptor
Texture

Descriptor
Texture

Descriptor

Device

Render
Command
Encoder

Data Buffer
Resource

Command Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource Texture

Descriptor
Texture

Descriptor
Texture

Descriptor

Device

Render
Command
Encoder

Render Pipeline
State

Render Pipeline
Descriptor

Vertex
Descriptor

Function

Function

Blend
Descriptor

Data Buffer
Resource

Vertex Format

Vertex
Function

Fragment
Function

Blend

Command Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource Texture

Descriptor
Texture

Descriptor
Texture

Descriptor

Device

Render
Command
Encoder

Render Pipeline
State

Render Pipeline
Descriptor

Vertex
Descriptor

Function

Function

Blend
Descriptor

Depth Stencil
State

Depth Stencil
Descriptor

Data Buffer
Resource

Vertex Format

Vertex
Function

Fragment
Function

Blend

Command Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Texture
Descriptor
Texture

Descriptor

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource Texture

Descriptor
Texture

Descriptor
Texture

Descriptor

Texture
DescriptorTexture

Resource

Texture
Resource

Attachment
Descriptor

Attachment
Descriptor

Device

Render
Command
Encoder

Render Pipeline
State

Render Pipeline
Descriptor

Vertex
Descriptor

Function

Function

Blend
Descriptor

Depth Stencil
State

Depth Stencil
Descriptor

Data Buffer
Resource

Render Pass
Descriptor

Attachment
Descriptor

Texture
Resource

Vertex Format

Vertex
Function

Fragment
Function

Blend

Command Queue

Command
Buffer

State

Descriptor

System

Code

Resource

Key

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource

Device

Render
Command
Encoder

Render Pipeline
State

Depth Stencil
State

Data Buffer
Resource

Command Queue

Command
Buffer

Texture
Resource

Texture
Resource

Texture
Resource

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource

Device

Render
Command
Encoder

Render Pipeline
State

Depth Stencil
State

Data Buffer
Resource

Command Queue

Command
Buffer

Texture
Resource

Texture
Resource

Texture
Resource

Changeable Source Textures

Changeable Source Buffers

Render
Command
Encoder

Render
Command
Encoder

Command
Buffer

Command
Buffer

Data Buffer
Resource

Data Buffer
Resource

Texture
Resource

Texture
Resource

Texture
Resource

Device

Render
Command
Encoder

Render Pipeline
State

Depth Stencil
State

Data Buffer
Resource

Command Queue

Command
Buffer

Texture
Resource

Texture
Resource

Texture
Resource

Changeable Source Textures

Fixed Render Target Textures

Changeable Source Buffers

Render
Command
Encoder

Render
Command
Encoder

Device

Render
Command
Encoder

Command Queue

Command Buffer

Render
Command
Encoder

Compute
Command
Encoder

Device

Render
Command
Encoder

Command Queue

Command Buffer

Render
Command
Encoder

Compute
Command
Encoder

Device

Render
Command
Encoder

Command Queue

Command Buffer

Thread #1

Render
Command
Encoder

Compute
Command
Encoder

Blit
Command
Encoder

Command Buffer

Thread #2

Command Submission Model

Command encoders convert API commands into hardware commands 

Command Submission Model

Command encoders convert API commands into hardware commands 

Hardware commands stored in command buffers

Command Submission Model

Command encoders convert API commands into hardware commands 

Hardware commands stored in command buffers

 
Three types of command encoders
• Render, Compute, Blit

• Can interleave different types into single command buffer

• Avoids implicit expensive state save and restore operations

Command Submission Model

Command Submission Model

Explicit command buffer construction and submission
• App creates many lightweight command buffers

• App controls command buffer submission

• Metal signals app when command buffers finish execution

Command Submission Model

Explicit command buffer construction and submission
• App creates many lightweight command buffers

• App controls command buffer submission

• Metal signals app when command buffers finish execution

Command encoders generate commands immediately
• No deferred state validation

• Direct call to driver

Command Submission Model

Multithreaded command encoding
• Multiple command buffers can be encoded in parallel

• App decides execution order

• Very efficient implementation to ensure scalable performance

Resource Update Model

Resource Update Model

Designed for A7’s unified memory system
• CPU and GPU share same storage

• No implicit copies

• Automatic CPU/GPU coherency model

- CPU and GPU observe writes at command buffer execution boundaries

- No explicit CPU cache management required

Resource Update Model

Designed for A7’s unified memory system
• CPU and GPU share same storage

• No implicit copies

• Automatic CPU/GPU coherency model

- CPU and GPU observe writes at command buffer execution boundaries

- No explicit CPU cache management required

 
Significantly higher performance
• More synchronization responsibilities for you

Resource Update Model

Resource Update Model

Two types of resources
• Textures (formatted images)

- Render targets, texture sources

• Data buffers (unformatted memory)

- “a bag of bytes”

- Vertex data, shader constants, output memory, etc.

Resource Update Model

Two types of resources
• Textures (formatted images)

- Render targets, texture sources

• Data buffers (unformatted memory)

- “a bag of bytes”

- Vertex data, shader constants, output memory, etc.

 
Resource structure (size, levels, format) can’t be changed
• Avoids costly resource validation

• Resource contents can be changed

Resource Update Model

Resource Update Model

Updating data buffers
• Direct access to storage by CPU

• No “lock” API needed 

Resource Update Model

Updating data buffers
• Direct access to storage by CPU

• No “lock” API needed 

Updating textures
• Implementation private storage

• Metal provides blazing fast texture update routines 

Resource Update Model

Updating data buffers
• Direct access to storage by CPU

• No “lock” API needed 

Updating textures
• Implementation private storage

• Metal provides blazing fast texture update routines 

GPU-accelerated and pipelined updates
• Via Blit command encoder

Resource Update Model

Resource Update Model

Can share texture storage with other textures
• Interpret as different pixel formats with same pixel size

- eg., sRGB vs. RGB, or single 32-bit component vs. RGBA8888 

Resource Update Model

Can share texture storage with other textures
• Interpret as different pixel formats with same pixel size

- eg., sRGB vs. RGB, or single 32-bit component vs. RGBA8888 

Can share texture storage with other buffers
• Assumes “row-linear” pixel data

Command Encoder Types

Command Encoder Types

Render command encoder
• Graphics rendering

Command Encoder Types

Render command encoder
• Graphics rendering

 
Compute command encoder
• Data parallel computations

Command Encoder Types

Render command encoder
• Graphics rendering

 
Compute command encoder
• Data parallel computations

 
Blit command encoder
• GPU-accelerated resource copy operations

Render Command Encoder

Render Command Encoder

Generates hardware commands for single rendering “pass”
• All rendering to single framebuffer object

• Specifies states for vertex and fragment stages of 3D pipeline

• Interleaves resources, state changes, and draw calls

Render Command Encoder

Generates hardware commands for single rendering “pass”
• All rendering to single framebuffer object

• Specifies states for vertex and fragment stages of 3D pipeline

• Interleaves resources, state changes, and draw calls

No “draw time” compilation
• App controls when all significant compilation and state validation occurs

Render State Objects

State Object Description

DepthStencil DepthStencil comparison functions and write masks

Sampler Filter states, addressing modes, LOD state

Render Pipeline

“Everything else”
Vertex and pixel shader functions

Vertex data layout
Multisample state

Blend state
Color write masks

Render States

States affecting compilation can’t be changed after object creation

Inexpensive states can be changed

Changeable Render States

Vertex and fragment shaders
of render targets, pixel format, color write masks

Multisample state
Blend state

DepthStencil state and write masks

Specification of buffers, textures, samplers
Cull mode and facing orientation

Depth clipping and depth bias
Polygon mode

Viewport and scissor
Occlusion queries

Framebuffer Loads and Stores

Framebuffer configuration designed for optimal behavior on A7 GPU
• Tile-based deferred-mode renderer

Framebuffer Loads and Stores

Framebuffer configuration designed for optimal behavior on A7 GPU
• Tile-based deferred-mode renderer

 
Explicit control of framebuffer tile cache “Load and Store” operations
• Load at start of render pass

• Store at end of render pass

Framebuffer Loads and Stores

Framebuffer configuration designed for optimal behavior on A7 GPU
• Tile-based deferred-mode renderer

 
Explicit control of framebuffer tile cache “Load and Store” operations
• Load at start of render pass

• Store at end of render pass

 
App choses per render target
• Load—Don’t care, load, clear

• Store—Don’t care, store, multisample resolve

Before Metal
Framebuffer loads and stores

One Frame

Read Write

Render Pass #2Render Pass #1
Color

Framebuffer
Color

Framebuffer
Color

Framebuffer

Read Write

Before Metal
Framebuffer loads and stores

One Frame

Read Write

Render Pass #2Render Pass #1

Read Write
Color

Framebuffer
Color

Framebuffer
Color

Framebuffer

Before Metal
Framebuffer loads and stores

One Frame

Read Write

Render Pass #2Render Pass #1

Read Write

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Read Write Read Write

Color
Framebuffer

Color
Framebuffer

Color
Framebuffer

Before Metal
Framebuffer loads and stores

One Frame

Read Write

Render Pass #2Render Pass #1

Read Write

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Read Write Read Write

Color: 2 reads + 2 writes
Depth: 2 reads + 2 writes

Framebuffer Memory Bandwidth

Color
Framebuffer

Color
Framebuffer

Color
Framebuffer

Read Write
Color

Framebuffer

Metal
Framebuffer loads and stores

One Frame

Read

Render Pass #2Render Pass #1

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Read Write Read Write

Color
Framebuffer

Color
Framebuffer

Write

Read Write
Color

Framebuffer

Metal
Framebuffer loads and stores

One Frame

Render Pass #2Render Pass #1

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Read Write Read Write

Don’t
Care Store

Color
Framebuffer

Color
Framebuffer

Write

Read Write
Color

Framebuffer

Metal
Framebuffer loads and stores

One Frame

Render Pass #2Render Pass #1

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Read Write Read Write

Don’t
Care Store Load Store

Color
Framebuffer

Color
Framebuffer

Write

Read Write
Color

Framebuffer

Metal
Framebuffer loads and stores

One Frame

Render Pass #2Render Pass #1

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Read Write

Don’t
Care Store Load Store

Clear Don’t
Care

Color
Framebuffer

Color
Framebuffer

Write

Read Write
Color

Framebuffer

Metal
Framebuffer loads and stores

One Frame

Render Pass #2Render Pass #1

Depth
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Don’t
Care Store Load Store

Clear Don’t
Care Clear Don’t

Care

Color
Framebuffer

Color
Framebuffer

Write

ReadWrite

Dramatic Reduction in Memory Traffic

One Frame

Render Pass #2Render Pass #1

Write
Don’t
Care Store Load Store

Clear Don’t
Care Clear Don’t

Care

Color: 1 reads + 2 writes
Depth: 0 reads + 0 writes

Framebuffer Memory Bandwidth

Color
Framebuffer

Depth
Framebuffer

Color
Framebuffer

Color
Framebuffer

Depth
Framebuffer

Depth
Framebuffer

Compute Command Encoder

Familiar compute run-time and memory model
• Textures and data buffers

• Local and global memory

• Local atomics

• Barriers

• Memory loads and stores

• User-specified workgroup dimensions

Compute Command Encoder

Compute Command Encoder

Fully integrated with graphics
• Unified API, shading language and developer tools

• Efficiently interleaves Compute commands with Render and Blit commands

Compute Command Encoder

Fully integrated with graphics
• Unified API, shading language and developer tools

• Efficiently interleaves Compute commands with Render and Blit commands

 
No “execution-time” compilation
• App controls when all significant compilation and validation occurs

Compute Command Encoder

State Object Description

Compute State Compute functions, workgroup configuration

Sampler Filter states, addressing modes, LOD state

Blit Command Encoder

Enables asynchronous copies
• In parallel with graphics and compute operations

Blit Command Encoder

Enables asynchronous copies
• In parallel with graphics and compute operations

 
Texture uploads
• Copy to/from other texture or data buffer

• Accelerated mipmap generation

Blit Command Encoder

Enables asynchronous copies
• In parallel with graphics and compute operations

 
Texture uploads
• Copy to/from other texture or data buffer

• Accelerated mipmap generation

 
Data Buffer updates
• Copy to/from another data buffer or texture

• Fill with constant values

Agenda

Background

API concepts

Shading language

Developer tools

Shading Language

Shading Language

Unified shading language for graphics and compute processing

Shading Language

Unified shading language for graphics and compute processing

 
Based on C++11
• Static subset

• Built from LLVM and clang 

Shading Language

Unified shading language for graphics and compute processing

 
Based on C++11
• Static subset

• Built from LLVM and clang 

Additions
• GPU hardware features (texture sampling, rasterization, compute operations, etc.)

• Function overloading and templates

Shading Language

Shading Language

Data types for graphics and compute features
• Scalar, vector and matrix types

• Samplers and textures

Shading Language

Data types for graphics and compute features
• Scalar, vector and matrix types

• Samplers and textures

 
“Attributes”
• Function arguments

• Sampling and interpolation qualifiers

• Per-instance inputs, outputs, and built-in graphics variables

• Programmable blending

Shading Language

Shading Language

Multiple shaders per source file

Shading Language

Multiple shaders per source file

 
Metal shaders built by Xcode compiler into Metal library files
• Library contains archive of Metal shaders

• With run-time APIs

- Load a Metal library

- Finalize compilation to GPU machine code

Shading Language

Multiple shaders per source file

 
Metal shaders built by Xcode compiler into Metal library files
• Library contains archive of Metal shaders

• With run-time APIs

- Load a Metal library

- Finalize compilation to GPU machine code

 
Metal includes standard library for graphics and compute functions

Argument Tables

Textures, buffers, and samplers passed as arguments to functions
• Vertex, fragment, compute shaders

Argument Tables

Textures, buffers, and samplers passed as arguments to functions
• Vertex, fragment, compute shaders

 
Each command encoder includes set of “argument tables”
• One table per type (texture, buffer, sampler)

Argument Tables

Textures, buffers, and samplers passed as arguments to functions
• Vertex, fragment, compute shaders

 
Each command encoder includes set of “argument tables”
• One table per type (texture, buffer, sampler)

 
Metal API and shading language use table index to reference arguments

Argument Tables

Command Encoder

Texture Index ID

0 Texture A

1 Texture B

.. Texture ..

n Texture Z

Argument Tables

Command Encoder

Texture Index ID

0 Texture A

1 Texture B

.. Texture ..

n Texture Z

Buffer Index ID

0 Buffer A

1 Buffer B

.. Buffer ..

n Buffer Z

Sampler Index ID

0 Sampler A

1 Sampler B

.. Sampler ..

n Sampler Z

Argument Tables

Command EncoderShader Code

Texture Index ID

0 Texture A

1 Texture B

.. Texture ..

n Texture Z

Buffer Index ID

0 Buffer A

1 Buffer B

.. Buffer ..

n Buffer Z

Sampler Index ID

0 Sampler A

1 Sampler B

.. Sampler ..

n Sampler Z

vertex VertexOutput
smoothTriangleVertex(constant float4 *pos_data [[buffer(0)]],
 constant float2 *uv_data [[buffer(1)]],
 uint vid [[vertex_id]])
{
 VertexOutput out;
 out.pos = pos_data[vid];
 out.uv = uv_data[vid];
 return out;
}
!

fragment float4
smoothTriangleFragment(VertexOutput in [[stage_in]],
 texture2d<float> tex [[texture(1)]])
{
 return tex.sample(s, in.uv);
}

Argument Tables

Command EncoderShader Code

Texture Index ID

0 Texture A

1 Texture B

.. Texture ..

n Texture Z

Buffer Index ID

0 Buffer A

1 Buffer B

.. Buffer ..

n Buffer Z

Sampler Index ID

0 Sampler A

1 Sampler B

.. Sampler ..

n Sampler Z

vertex VertexOutput
smoothTriangleVertex(constant float4 *pos_data [[buffer(0)]],
 constant float2 *uv_data [[buffer(1)]],
 uint vid [[vertex_id]])
{
 VertexOutput out;
 out.pos = pos_data[vid];
 out.uv = uv_data[vid];
 return out;
}
!

fragment float4
smoothTriangleFragment(VertexOutput in [[stage_in]],
 texture2d<float> tex [[texture(1)]])
{
 return tex.sample(s, in.uv);
}

Argument Tables

Command EncoderShader Code

Texture Index ID

0 Texture A

1 Texture B

.. Texture ..

n Texture Z

Buffer Index ID

0 Buffer A

1 Buffer B

.. Buffer ..

n Buffer Z

Sampler Index ID

0 Sampler A

1 Sampler B

.. Sampler ..

n Sampler Z

vertex VertexOutput
smoothTriangleVertex(constant float4 *pos_data [[buffer(0)]],
 constant float2 *uv_data [[buffer(1)]],
 uint vid [[vertex_id]])
{
 VertexOutput out;
 out.pos = pos_data[vid];
 out.uv = uv_data[vid];
 return out;
}
!

fragment float4
smoothTriangleFragment(VertexOutput in [[stage_in]],
 texture2d<float> tex [[texture(1)]])
{
 return tex.sample(s, in.uv);
}

Argument Tables

Command EncoderShader Code

Texture Index ID

0 Texture A

1 Texture B

.. Texture ..

n Texture Z

Buffer Index ID

0 Buffer A

1 Buffer B

.. Buffer ..

n Buffer Z

Sampler Index ID

0 Sampler A

1 Sampler B

.. Sampler ..

n Sampler Z

vertex VertexOutput
smoothTriangleVertex(constant float4 *pos_data [[buffer(0)]],
 constant float2 *uv_data [[buffer(1)]],
 uint vid [[vertex_id]])
{
 VertexOutput out;
 out.pos = pos_data[vid];
 out.uv = uv_data[vid];
 return out;
}
!

fragment float4
smoothTriangleFragment(VertexOutput in [[stage_in]],
 texture2d<float> tex [[texture(1)]])
{
 return tex.sample(s, in.uv);
}

Agenda

Background

API concepts

Shading language

Developer tools

Metal Shader Compiler Process

Metal Shader Compiler Process

Metal shader sources compiled to libraries at application build time
• No need to ship source code with application

• Shading language errors reported at build time

Metal Shader Compiler Process

Metal shader sources compiled to libraries at application build time
• No need to ship source code with application

• Shading language errors reported at build time

 
Metal libraries compiled to device code at state object creation time
• No draw time compilation

• Device code cached after compilation

Metal Shader Compiler Process

Metal shader sources compiled to libraries at application build time
• No need to ship source code with application

• Shading language errors reported at build time

 
Metal libraries compiled to device code at state object creation time
• No draw time compilation

• Device code cached after compilation

 
There is also a run-time shader compiler
• No draw time compilation

• For best performance, use offline compiler

Your Application

Metal Shader Compiler Process

Metal Shader Compiler

In Xcode

Your Application

Metal Shader Compiler Process

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Your Application

Metal Shader Compiler Process

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process
At application run-time

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process
At application run-time

Pipeline Object Creation

State Vertex
Shader

Fragment
Shader

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process
At application run-time

Pipeline Object Creation

State Vertex
Shader

Fragment
Shader

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process
At application run-time

Pipeline Object Creation

State Vertex
Shader

Fragment
Shader

Shader Cache

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process
At application run-time

Pipeline Object Creation

State Vertex
Shader

Fragment
Shader

Metal Device CompilerShader Cache

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Your Application

Metal Shader Compiler Process
At application run-time

Pipeline Object Creation

State Vertex
Shader

Fragment
Shader

Metal Device CompilerShader Cache

GPU

Metal ShaderMetal ShaderMetal ShaderMetal ShaderMetal Shader

Metal Shader Compiler

In Xcode

Metal Library

Metal Tools Fully Integrated into Xcode

Visual frame debugger

API trace and navigation

Shader edit-and-continue

Rich source code editing (including shaders)

Graphics and compute state inspection

Shader compiler

Debug mode for Metal framework

Frame Navigator

Framebuffer View

Resource View

State Inspector

Performance Report

Shader Profiler

Shader Profiler

Shader Profiler

Shader Profiler

Shader Profiler

Demo
“The Collectables” on Metal

Sean Tracey
Crytek

Summary

Summary

Low overhead, high performance GPU programming API

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Designed for A7 and iOS

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Designed for A7 and iOS

Streamlined for modern GPU features

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Designed for A7 and iOS

Streamlined for modern GPU features

Fine-grained control

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Designed for A7 and iOS

Streamlined for modern GPU features

Fine-grained control

Precompiled shaders

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Designed for A7 and iOS

Streamlined for modern GPU features

Fine-grained control

Precompiled shaders

Fantastic developer tools

Summary

Low overhead, high performance GPU programming API

Up to 10x more draw calls

Designed for A7 and iOS

Streamlined for modern GPU features

Fine-grained control

Precompiled shaders

Fantastic developer tools

Enables entirely new class of games

More Information

Filip Iliescu
Graphics and Games Technologies Evangelist
filiescu@apple.com

Allan Schaffer
Graphics and Games Technologies Evangelist
aschaffer@apple.com

!

Documentation
http://developer.apple.com

Apple Developer Forums
http://devforums.apple.com

http://devforums.apple.com

Related Sessions

• Working with Metal—Fundamentals Pacific Heights Wednesday 10:15AM

• Working with Metal—Advanced Pacific Heights Wednesday 11:30AM

Labs

• Metal Lab Graphics and
Games Lab A Wednesday 2:00PM

• Metal Lab Graphics and
Games Lab B Thursday 10:15AM

