
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Best Practices for  
Building SpriteKit Games

Session 608
Jacques Gasselin de Richebourg
Game Technologies Manager

Graphics and Games

!

Nick Porcino
Senior Game Technologies Engineer

Scalability Best Practices

Game Structure Best Practices

Performance Best Practices

Scalability Best Practices

Problem—Hardcoding

Problem—Hardcoding

One scene does all the work

All art referenced in code

Level 1 was hardcoded

Level 2 was a lot of work

Level 3 looks the same

Stuck on Level 4

Problem—Coding Data

Problem—Coding Data

- (void)loadLevel1 {
 //clear the scene
 [scene removeAllChildren];
!

 //set the hero initial state
 hero.position = …
 hero.zRotation = …
 [scene addChild:hero];
!

 //set the enemy initial state
 enemy[0].position = …
 enemy[1].position = …
 …
!

}

Why Is This Bad?

Why Is This Bad?

Changing art assets means changing code

Visual feedback only via Build and Run

Designers must be programmers

Down the Line

Down the Line

Duplicates structural code

Code as data is not efficient

Hard to change collaboratively

The Solution

The Solution

Separate game content from game logic

Separate scene structure from assets

Separate data from code

Visualize in Xcode

Implement the Solution

Implement the Solution

Game logic in MyScene.m

Game scene structure in MyScene.sks

Scene assets in separate .sks files

Keep data in .plist files

Tools We Provide in Xcode 6

Tools We Provide in Xcode 6

SpriteKit template

SpriteKit editor
• Visual feedback is immediate

• Live physics simulation

.plist data editor
• XML during development

• Binary on deploy

!

Demo

SpriteKit Template
Recap

SpriteKit Template
Recap

Keeps scene content and game logic separated

Makes a scene file to edit structure
 MyScene.h MyScene.m MyScene.sks

Loads it as your scene class
NSData *sceneData = …
NSKeyedUnarchiver *arch = [[NSKeyedUnarchiver alloc]
 initForReadingWithData:sceneData];
[arch setClass:MyScene.class forClassName:@“SKScene”];
MyScene *scene = [arch decodeObjectForKey:NSKeyedArchiveRootObjectKey];
[arch finishDecoding];

Game Structure Best Practices

Motivation

Motivation

Get your game running on the first day

Without compromising on scalability

Set you up to iterate collaboratively

Make Your Generic Level

Add Placeholder Content

Hook up Interactions

Get the Game Logic Working

Finish the Game

1

2

3

4

5

Make Your Generic Level

Make Your Generic Level

Logical layout only

Place markers—empty nodes with logical names
• Where the hero begins

• Where enemies appear

• Logical layers in the scene

Add Placeholder Content

Add Placeholder Content

Add colored SpriteNodes, without a texture, where visual elements are

Keep colors consistent
• Heroes in blue

• Enemies in red

Make parent-child relationships
• Particle emission locations

• Attachment points

• Armatures—arms, legs

Hook Up Interactions

Hook Up Interactions

This pass ensures the physics interaction is right

Setup physics properties
• Categories

• Collision masks

• Static vs. Dynamic

Simulate physics in Xcode

Get the Game Logic Working

Get the Game Logic Working

Initialize your scene logic and game logic

Hook scene objects to game objects
• Name your nodes

• Search for nodes by name in code

Insert hooks for overriding placeholder content

Get the Game Logic Working
Details—Where to do this

Two logical points of initialization
• On first load -initWithCoder:

• On first shown -didMoveToView:

Get the Game Logic Working
Details—On first load

Get the Game Logic Working
Details—On first load

Called automatically by NSKeyedUnarchiver when the scene is loaded

Load any side-car data like sounds or AI data here

!

- (instancetype)initWithCoder:(NSCoder *)aCoder {
 self = [super init];
 if (self) {
 NSArray *enemyStats = [NSArray arrayWithContentsOfFile:
 <path to stats plist>];
 }
 return self;
}

Get the Game Logic Working
Details—On first shown

Get the Game Logic Working
Details—On first shown

Called when SKView.presentScene: is called

Cache visual elements

!

- (void)didMoveToView:(SKView *)view {
 self.enemies = [NSMutableArray new];
 [self enumerateChildNodesWithName:@“//enemy*”
 usingBlock:^(SKNode *node, BOOL *stop) {
 [self.enemies addObject:node];
 }];
}

Enumerating Logical Elements
Details—Motivation

Enumerating Logical Elements
Details—Motivation

Hooks logical scene elements to your code using search

 -childNodeNamed for a single element 
 -enumerateChildNodesWithName for multiple elements

Cache results

!

!

Enumerating Logical Elements
Details—Quick intro on search syntax

Enumerating Logical Elements
Details—Quick intro on search syntax

Search by name
• @“hero” finds a child called hero, without recursion
• @“//hero” finds all nodes in the scene graph called hero, recursively

Search by class
• @“//SKEmitterNode” would find all emitters in the scene graph

Search with wildcard
• @“//he*” would find all nodes beginning with he

Finish the Game

Finish the Game

Add artwork
• Set the textures on your “red boxes”

Add levels

Add effects
• Shaders as .fsh files

• CoreImage filters

Play test—iterate

Have fun!

Performance Best Practices

Nick Porcino
Senior Game Technologies Engineer

Performance Best Practices

Performance Best Practices

Drawing performance

Actions and constraints

Physics

Shapes

Effects

Lighting

Drawing Performance

Drawing Performance

Drawing Performance

Two factors dominate
• Draw order

• Sharing

Draw Order

view.ignoresSiblingOrder = NO;

Two simple rules
• A parent draws its content before rendering its children

• Children are rendered in the order they appear in the child array

Missiles

Body

Primary Rotor

Tail Rotor

Helicopter

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Drawing
Using sibling order

Draw Order

SpriteKit games are 2D

X, Y

Draw Order

Introducing…

X, Y

Draw Order

Introducing…

, ZX, Y

The Third Dimension!

Draw Order
Using depth order

Draw Order
Using depth order

Activate depth order drawing with

!

view.ignoresSiblingOrder = YES;

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

Body (z=0)

101
100

99
0

Y

X

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

Body (z=0)

101
100

99
0

Y

X

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

Body (z=0)

101
100

99
0

Y

X

Primary Rotor (z=1)

Tail Rotor (z=1)

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

Body (z=0)

Primary Rotor (z=1)

Tail Rotor (z=1)

101
100

99
0

Y

X

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

Body (z=0)

Primary Rotor (z=1)

Tail Rotor (z=1)

101
100

99
0

Y

X

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

Body (z=0)

Primary Rotor (z=1)

Tail Rotor (z=1)

101
100

99
0

Y

X

Missiles (z=-1)

Draw Order
Using depth order

Nodes are drawn in global Z order

Z is relative to the parent

Negative values are allowable

Helicopter (z=100)

101
100

99
0

Y

X
Body (z=0)

Primary Rotor (z=1)

Tail Rotor (z=1)

Missiles (z=-1)

Batching
Using depth order

Batching
Using depth order

Batching
Using depth order

Batching
Using depth order

Optimize Batching
Texture sharing

Use the same texture on multiple sprites

Put textures into atlases

Batching
Draw order with sharing

Batching
Draw order with sharing

Optimize Batching

Optimize Batching

Keep a reference to generated normal maps and procedural noise

Optimize Batching

Optimize Batching

Reference shaders from files, not strings

Put blend modes such as SKBlendModeAdd on the same depth layer

Tools

Tools

Tools to help evaluate graphics performance

Tools

Tools

Tools to help evaluate graphics performance

HUD flags on the view
@property (nonatomic) BOOL showsFPS;
@property (nonatomic) BOOL showsDrawCount;
@property (nonatomic) BOOL showsNodeCount;
@property (nonatomic) BOOL showsQuadCount;

!

Tools

12 nodes 3450 quads 12 draws 60 fps

Tools

Drawing Performance
Key insights

Drawing Performance
Key insights

Compose scenes as layers

 - Give objects a common Z value per layer

 - Place overlapping objects in different layers
view.ignoreSiblingOrder = YES;

Share shaders, textures, and procedural textures

Keep blend modes on the same Z layer

Use HUD features, profilers

Actions and Constraints

Actions and Constraints
Overview

Actions and Constraints
Overview

Actions are commands to the high efficiency SpriteKit engine
[node runAction: [SKAction rotateByAngle:M_PI duration:1.0]];

One line creation

Chain them, group them sequence them, reuse them

Actions and Constraints
Overview

Actions and Constraints
Overview

[SKAction rotateByAngle:M_PI duration:1.0];
[SKAction moveTo:aCGPoint duration:1.0];
[SKAction scaleBy:2.0 duration:1.0];

Actions and Constraints
Sequence

 wait move

SKAction Sequence

[myNode runAction: [SKAction sequence:@[wait, move]]];

Actions and Constraints
Sequence

 wait move

SKAction Sequence

1.0 sec 2.0 sec

[myNode runAction: [SKAction sequence:@[wait, move]]];

Actions and Constraints
Sequence

 rotate

fadeout

scale

[myNode runAction: [SKAction group:@[rotate, fadeout, scale]]];

SKAction Group

Actions and Constraints
Sequence

 rotate

fadeout

scale

1.0 sec

2.0 sec

0.5 sec

[myNode runAction: [SKAction group:@[rotate, fadeout, scale]]];

SKAction Group

Actions and Constraints
Sequence

 move
 rotate

 scale
 fadeout

Sequence with a Group

SKAction *group = [SKAction group:@[scale, rotate]];
!

[myNode runAction: [SKAction sequence:@[move, group, fadeout]]];

Actions and Constraints
Sequence

 move
 rotate

 scale
 fadeout

Sequence with a Group

SKAction *group = [SKAction group:@[scale, rotate]];
!

[myNode runAction: [SKAction sequence:@[move, group, fadeout]]];

Actions and Constraints
Overview

There’s a huge catalog available

Actions and Constraints
Overview

There’s a huge catalog available

moveByX: y: duration:

moveTo: duration:

moveToX: duration:

moveToY: duration:

rotateByAngle: duration:

rotateToAngle: duration:

scaleXTo: duration:

scaleYTo: duration:

speedBy: duration:

speedTo: duration:

scaleBy: duration:

scaleXBy: y: duration:

followPath: duration:

waitForDuration:

scaleTo: duration:

scaleXTo: y: duration:

sequence:

group:

setTexture:

runBlock:

runBlock: queue:

removeFromParent

performSelector: onTarget:

resizeByWidth: height: duration:

resizeToWidth: height: duration:

resizeToWidth: duration:

playSoundFileNamed: waitForCompletion:

colorizeWithColor: colorBlendFactor:

colorizeWithColorBlendFactor: duration:

resizeToHeight: duration:

repeatAction: count:

repeatActionForever:

fadeInWithDuration:

fadeOutWithDuration:

fadeAlphaBy: duration:

fadeAlphaTo: duration:

animateWithTextures: timePerFrame:

animateWithTextures: timePerFrame: resize:

playSoundFileNamed: waitForCompletion:

colorizeWithColor: colorBlendFactor:

colorizeWithColorBlendFactor: duration:

followPath: duration:

waitForDuration: withRange:

runAction: onChildWithName:

followPath: asOffset: orientToPath:

waitForDuration:

waitForDuration: withRange:

runAction: onChildWithName:

customActionWithDuration: actionBlock: 
resizeToHeight: duration:

repeatAction: count:

repeatActionForever:

fadeInWithDuration:

fadeOutWithDuration:

fadeAlphaBy: duration:

fadeAlphaTo: duration:

animateWithTextures: timePerFrame:

animateWithTextures: timePerFrame: resize:

customActionWithDuration: actionBlock:

Actions and Constraints
Use actions instead of logic in update

Actions and Constraints
Use actions instead of logic in update

Eliminate animation code from your update

Actions and constraints can do the job

Actions and Constraints
Use actions instead of logic in update

Eliminate animation code from your update

Actions and constraints can do the job

Actions and Constraints
Example

Actions and Constraints
Example

followPath has new functionality

Leverage SKShapeNode’s new Spline Point shape
 CGPathRef p = [SKShapeNode shapeWithSplinePoints:points]
 [node runAction:[SKAction followpath:p];

Path will be followed at constant velocity

Actions and Constraints
Use actions instead of logic in update

SKConstraints

 OrientToNode

!

Actions and Constraints
Use actions instead of logic in update

SKConstraints

 OrientToNode

!

Actions and Constraints
Re-use actions

Actions and Constraints
Re-use actions

Build once

Actions are copy on add, perfect for re-use

Actions run when a node is added to scene
• Make a spaceship with an entry action

• Copy the spaceship and add it to the scene

• The entry action will then run automatically

Actions
Named actions

Actions
Named actions

Create an action with a named key
[sprite runAction:[SKAction moveTo:CGPointMake(x, y) duration:1]
 withKey:@"move"];

!

Override an action in progress easily using the same key

!

Cancel an action
[sprite removeActionForKey:@"move"];

Physics Best Practices

Physics Overview
Rigid bodies

Physics Overview
Rigid bodies

Rigid body dynamics

 - Bouncing, falling, rolling, sliding

Collision handling, contact delegates

Fields

!

Physics Performance
Minimize computation

Physics Performance
Minimize computation

Static objects are inexpensive, even if the shape is complex
physicsBody.dynamic = NO

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

ConvenientEfficient

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

Circle
ConvenientEfficient

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

Circle Rectangle
ConvenientEfficient

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

Circle Rectangle Polygon
ConvenientEfficient

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

Circle Rectangle Polygon
ConvenientEfficient

Compound

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

Circle Rectangle Polygon Alpha mask
ConvenientEfficient

Compound

Different shapes have different costs 
 
 
 
 

!

Physics Performance
Pick the right shape

Circle Rectangle Polygon Alpha mask
ConvenientEfficient

Compound

Pick the cheapest representation that serves your game

Physics Performance

Use Collision Masks to group objects for performance

Physics Performance

Use Collision Masks to group objects for performance

Physics Performance

Use Collision Masks to group objects for performance

Physics Performance

Use Collision Masks to group objects for performance

Physics Performance

Use Collision Masks to group objects for performance

Physics Performance

Use Collision Masks to group objects for performance

Physics Overview
Force fields

Physics Overview
Force fields

Fields

Variety of types

Inexpensive to compute

Use actions to fade in and out

!

Physics Overview
Force fields

Fields

Variety of types

Inexpensive to compute

Use actions to fade in and out

!

Physics Overview
Force fields

Physics Overview
Force fields

Physics

Physics

float dx = targetX - ship->sprite.position.x;
float dy = targetY - ship->sprite.position.y;
float dist = dx*dx+dy*dy;
if (fabsf(dist) > 0.01f) {
 dist = sqrtf(dist);
 float vx = ship->sprite.physicsBody.velocity.dx;
 float vy = ship->sprite.physicsBody.velocity.dy;
 ship->sprite.zRotation = atan2f(vy, vx) - 0.5f * M_PI;
 dx = (dx - vx) * dist * 0.0001f;
 dy = (dy - vy) * dist * 0.0001f;
 [ship->sprite.physicsBody applyImpulse:CGVectorMake(dx, dy)];
}

Physics
Field debug drawing

Physics
Field debug drawing

Physics Best Practices
Take aways

Physics Best Practices
Take aways

Choose the cheapest appropriate rigid body

Separate groups with masks

Fields can replace traditional update logic

Use the debug drawing

Shapes Best Practices

Sprites vs. Shapes

Sprites for Bitmap art

Shapes for Vector art

!

!

Performance
SKShapeNode

ExpensiveCheap

Performance
SKShapeNode

ExpensiveCheap
Polygon Fill

Performance
SKShapeNode

ExpensiveCheap
Polygon Fill Filled Curves

Performance
SKShapeNode

ExpensiveCheap
Polygon Fill Filled Curves Linear Stroke

Performance
SKShapeNode

ExpensiveCheap
Polygon Fill Filled Curves Linear Stroke Stroked Curve

Performance
SKShapeNode

ExpensiveCheap
Polygon Fill Filled Curves Linear Stroke Stroked Curve Stoked & Filled Curve

Performance
SKShapeNode

ExpensiveCheap
Polygon Fill Filled Curves Stroked Curve Stoked & Filled CurveLinear Stroke

Performance
Piecewise linear stroke

Performance
Piecewise linear stroke

Piecewise linear shapes are very cheap

Even for complex paths

Performance
Piecewise linear stroke

Piecewise linear shapes are very cheap

Even for complex paths

Effects Best Practices
SKEffectNodes

Effects Best Practices
SKEffectNodes

SKEffectNodes are for offscreen rendering
• Use sparingly

Powerful CoreImage support

Effects Best Practices
SKEffectNodes

SKEffectNodes are for offscreen rendering
• Use sparingly

Powerful CoreImage support

Utilize SKShaders when no offscreen pass is needed

!

Effects Best Practices
SKEffectNodes

SKEffectNodes are for offscreen rendering
• Use sparingly

Powerful CoreImage support

Utilize SKShaders when no offscreen pass is needed

Rasterize complex effects if they don’t change too much
 effect.shouldRasterize = YES;
!

Effects Best Practices
Special effects

Bake static special effects to a texture
• From any SKNode subtree
 SKTexture *texture = [myView textureFromNode:node size:size];

• By applying a CIFilter
 SKTexture *texture = [myTexture textureByApplyingCIFilter:filter];
!

!

!

Lighting Best Practices

Lighting
SKLightNode

Lighting cost proportional  
to lit pixels

Ambient light is free

Optimize with bit masks

Lighting
SKLightNode

Maximum eight lights  
per individual sprite

Normal maps are cheap

Reuse your maps!

Lighting
SKLightNode

Shadows cost proportional 
to the number of lights

Lighting
SKLightNode

Shadows cost proportional 
to the number of lights

!

The ideal is a few lights, 
and fewer shadows

Performance Best Practices
Summary

Performance Best Practices
Summary

Drawing performance

Actions and constraints

Physics

Shapes

Effects

Lighting

SpriteKit Best Practices
Agenda summary

SpriteKit Best Practices
Agenda summary

Scalability best practices

Game structure best practices

Performance best practices

More Information

Allan Schafer
Game Technologies Evangelist
aschaffer@apple.com

Filip Iliescu
Graphics and Media Evangelist
filiescu@apple.com

Documentation
SpriteKit Programming Guide
https://developer.apple.com/spritekitprogrammingguide

http://devforums.apple.com

http://devforums.apple.com

