
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

What's New in
Foundation Networking

Session 707
Steve Algernon
Senior Wrangler

Core OS

Introduction

Foundation Networking provides high-level, secure communication APIs and
provides the basis for iOS and Mac OS X application networking.

Foundation Networking

WebKit

Safari

MapKit, etc.

Your App

BSD Networking

Foundation

CoreFoundation / CFNetwork

Extension

Foundation Networking

WebKit

Safari

MapKit, etc.

Your App

BSD Networking

Foundation

CoreFoundation / CFNetwork

Extension

Foundation Networking

NSNetServices

NSURLConnection

NSStream

CFStream

CFNetServices

CFHTTPReadStream

BSD Networking BSD Sockets

Foundation

CoreFoundation / CFNetwork

Foundation Networking

NSNetServices

NSStream

CFStream

CFNetServices

CFHTTPReadStream

BSD Networking BSD Sockets

Foundation

CoreFoundation / CFNetwork

NSURLSession

What You Will Learn

What You Will Learn

New API
• NSNetServies

• NSStream

• NSURLSession

What You Will Learn

New API
• NSNetServies

• NSStream

• NSURLSession

Review of NSURLSession

What You Will Learn

New API
• NSNetServies

• NSStream

• NSURLSession

Review of NSURLSession

New protocol support

What You Will Learn

New API
• NSNetServies

• NSStream

• NSURLSession

Review of NSURLSession

New protocol support

Background sessions and extensions—Best practices

Foundation Networking
New API

NSNetServices

@property BOOL includesPeerToPeer NS_AVAILABLE(10_10, 7_0);

Foundation Networking
New API

NSStream

+[NSStream getStreamsToHostWithName:(NSString *)host
 port:(NSInteger) port
 inputStream:(NSInputStream **) sin
 outputStream:(NSOutputStream *) sout];

 +[NSStream getBoundStreamsWithBufferSize:(NSUInteger)bufferSize
 inputStream:(NSInputStream **) sin
 outputStream:(NSOutputStream **) sout];

NSURLSession

Cache
Cookies
Creds

Protocols

Options

NSURLSession

NSURLSession

Configuration Cache
Cookies
Creds

Protocols

Options

NSURLSession

NSURLSession

Configuration

Delegate

Cache
Cookies
Creds

Protocols

Options

NSURLSession

NSURLSession

HTTP/1.1 200 OK

<head><title>wobble</
title></head><body>

GET /bar.html HTTP/1.1

Configuration

Delegate

HTTP/1.1 200 OK

<head><title>woo</
title></head><body>

GET /baz.html HTTP/1.1

Cache
Cookies
Creds

Protocols

Options

HTTP/1.1 200 OK

<head><title>weeble</
title></head><body>

GET /foo.html HTTP/1.1

NSURLSession
Concepts

NSURLSession
Concepts

Session and configuration

NSURLSession
Concepts

Session and configuration

Session tasks

NSURLSession
Concepts

Session and configuration

Session tasks

Session delegate

NSURLSession
Concepts

Session and configuration

Session tasks

Session delegate

Credentials, credential storage

NSURLSession
Concepts

Session and configuration

Session tasks

Session delegate

Credentials, credential storage

Cookies, cookie storage

NSURLSession
Concepts

Session and configuration

Session tasks

Session delegate

Credentials, credential storage

Cookies, cookie storage

Protocols

NSURLSession
Concepts

Session and configuration

Session tasks

Session delegate

Credentials, credential storage

Cookies, cookie storage

Protocols

URL cache

NSURLSession
Configuration

NSURLSession
Configuration

NSURLSessionConfiguration object

NSURLSession
Configuration

NSURLSessionConfiguration object

Properties that affect transfers

 TLS levels

 Cellular usage

 Network service type

 Cookie policies

 Cache policies

 Storage objects

 Request & resource timeouts

NSURLSession
Configuration

NSURLSession
Configuration

+ [NSURLSessionConfiguration defaultSessionConfiguration]

Best place to start for customization

Modifications only affect this configuration object

NSURLSession
Configuration

+ [NSURLSessionConfiguration defaultSessionConfiguration]

Best place to start for customization

Modifications only affect this configuration object
+ [NSURLSessionConfiguration ephemeralSessionConfiguration]

Does not persist cache, credentials or cookies

NSURLSession
Configuration

+ [NSURLSessionConfiguration defaultSessionConfiguration]

Best place to start for customization

Modifications only affect this configuration object
+ [NSURLSessionConfiguration ephemeralSessionConfiguration]

Does not persist cache, credentials or cookies
+ [NSURLSessionConfiguration backgroundSessionConfigurationWithIdentifier:]

Create or reassociate with a background session

NSURLSession
Creation

NSURLSession
Creation

+ [NSURLSession sharedSession]

For delegate-less, simple asynchronous requests

NSURLSession
Creation

+ [NSURLSession sharedSession]

For delegate-less, simple asynchronous requests
+ [NSURLSession sessionWithConfiguration:]

Custom configuration, but no delegate

Great to use with ephemeral configuration

NSURLSession
Creation

+ [NSURLSession sharedSession]

For delegate-less, simple asynchronous requests
+ [NSURLSession sessionWithConfiguration:]

Custom configuration, but no delegate

Great to use with ephemeral configuration
+ [NSURLSession sessionWithConfiguration:delegate:delegateQueue:]

Maximum flexibility through delegates

Required interface for background sessions

delegateQueue may be concurrent

NSURLSession
Tasks

NSURLSession
Tasks

NSURLSessionTask

-cancel

-suspend

-resume

NSURLSession
Tasks

NSURLSessionUploadTask

NSURLSessionTask

NSURLSessionDataTask

-cancel

-suspend

-resume

NSURLSession
Tasks

NSURLSessionUploadTask

NSURLSessionTask

NSURLSessionDataTask

NSURLSessionDownloadTask

-cancelByProducingResumeData:

-cancel

-suspend

-resume

NSURLSessionTask
Creation

NSURLSessionTask
Creation

Data task
-dataTaskWithURL:
-dataTaskWithRequest:

NSURLSessionTask
Creation

Data task
-dataTaskWithURL:
-dataTaskWithRequest:

Upload task
-uploadTaskWithRequest:fromFile:
-uploadTaskWithRequest:fromData:
-uploadTaskWithStreamedRequest:

NSURLSessionTask
Creation

Download task

-downloadTaskWithURL:
-downloadTaskWithRequest:
-downloadTaskWithResumeData:

NSURLSessionDataTask

NSURLSession
Data task

NSURLSessionDataTask

NSURLSession
Data task

State:
Suspended

GET /foo.html HTTP/1.1

NSURLSessionDataTask

NSURLSession
Data task

State:
Suspended

State:
Running

GET /foo.html HTTP/1.1

NSURLSessionDataTask

NSURLSession
Data task

State:
Suspended

State:
Running

:didReceiveResponse:

HTTP/1.1 200 OK

GET /foo.html HTTP/1.1

NSURLSessionDataTask

NSURLSession
Data task

State:
Suspended

State:
Running

:didReceiveData:

:didReceiveResponse:

HTTP/1.1 200 OK

<head><title>weeble</
title></head><body>

GET /foo.html HTTP/1.1

NSURLSessionDataTask

NSURLSession
Data task

State:
Suspended

State:
Running

:didReceiveData:

:willCacheResponse:

:didReceiveResponse:

HTTP/1.1 200 OK

<head><title>weeble</
title></head><body>

GET /foo.html HTTP/1.1

NSURLSessionDataTask

NSURLSession
Data task

State:
Suspended

State:
Running

State:
Finished

:didReceiveData:

:willCacheResponse:

:didCompleteWithError:

:didReceiveResponse:

HTTP/1.1 200 OK

<head><title>weeble</
title></head><body>

GET /foo.html HTTP/1.1

NSURLSessionDownloadTask

NSURLSession
Download task

NSURLSessionDownloadTask

NSURLSession
Download task

State:
Suspended

GET /BigFile.tgz

NSURLSessionDownloadTask

NSURLSession
Download task

State:
Suspended

State:
Running

GET /BigFile.tgz

NSURLSessionDownloadTask

NSURLSession
Download task

State:
Suspended

State:
Running

:didWriteData:

HTTP/1.1 200 OK

GET /BigFile.tgz

NSURLSessionDownloadTask

NSURLSession
Download task

State:
Suspended

State:
Running

:didFinishDownloadingToURL:

:didWriteData:

HTTP/1.1 200 OK

file:///Location/BigFile.tgz

GET /BigFile.tgz

NSURLSessionDownloadTask

NSURLSession
Download task

State:
Suspended

State:
Running

State:
Finished

:didFinishDownloadingToURL:

:didCompleteWithError:

:didWriteData:

HTTP/1.1 200 OK

file:///Location/BigFile.tgz

GET /BigFile.tgz

NSURLSessionTask
Creation

NSURLSessionAsynchronousConvenience

Tasks may be canceled

Ignores session delegate—except for authentication challenges

Cannot be used with background sessions
-dataTaskWithURL:completionHandler:
-downloadTaskWithURL:completionHandler:
-uploadTaskWithRequest:fromFile:completionHandler:

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”];
NSURLSessionConfiguration* myConfiguration =
 [NSURLSessionConfiguration ephemeralSessionConfiguration];
NSURLSession* mySession =
 [NSURLSession sessionWithConfiguration:myConfiguration];
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL
 completionHandler:^(NSData* data,
 NSURLResponse* response, NSError* error) {
 [self gotSecret:data];  
}];
[myTask resume]

NSURLSession
Delegate

NSURLSession
Delegate

NSURLSessionDelegate

• Session-related delegate messages

• Connection authentication handling

• Session invalidation/errors

!

NSURLSessionTaskDelegate

• Extends NSURLSessionDelegate

• Request authentication handling

• Task completion/errors

TaskSession

NSURLSession
Delegate

NSURLSessionDataDelegate

• Extends NSURLSessionTask protocol

• Delivers bytes as they are transferred

• :didReceiveResponse: disposition

Data
Task

NSURLSession
Delegate

NSURLSessionDataDelegate

• Extends NSURLSessionTask protocol

• Delivers bytes as they are transferred

• :didReceiveResponse: disposition

Download

Data
Task

NSURLSessionDownloadDelegate

• Extends NSURLSessionTask protocol

• Delivers progress during a transfer

• Provides a local file URL of the transferred resource

NSURLSession
Delegate queue–Serialized

Task 1

Task 2

Task 3

Task 4

NSURLSession
Delegate queue–Serialized

-[delegate URLSession:task:]

Task 1

Task 2

Task 3

Task 4

NSURLSession
Delegate queue–Serialized

Task 1

Task 2

Task 3

Task 4

NSURLSession
Delegate queue–Concurrency

Task 1

Task 2

Task 3

Task 4

NSURLSession
Delegate queue–Concurrency

Task 1

Task 2

Task 3

Task 4

NSURLSession
New API

NSURLSession
New API

Storage objects
• NSURLSessionTaskAdditions category

• Provides asynchronous storage access

NSURLSession
New API

Storage objects
• NSURLSessionTaskAdditions category

• Provides asynchronous storage access

NSHTTPCookieStorage
- storeCookies:forTask:
- getCookiesForTask:completionHandler:

NSURLSession
New API

Storage objects
• NSURLSessionTaskAdditions category

• Provides asynchronous storage access

NSHTTPCookieStorage
- storeCookies:forTask:
- getCookiesForTask:completionHandler:

NSURLCredentialStorage
- getCredential:forProtectionSpace:task:completionHandler:

NSURLSession
New API

Storage objects
• NSURLSessionTaskAdditions category

• Provides asynchronous storage access

NSHTTPCookieStorage
- storeCookies:forTask:
- getCookiesForTask:completionHandler:

NSURLCredentialStorage
- getCredential:forProtectionSpace:task:completionHandler:

NSURLCache
- getCachedResponseForDataTask:completionHandler:

New Protocol Support

Scott Marshall
Software Engineer

Faster HTTP—SPDY
What is SPDY?

SPDY protocol support is now available in NSURLSession on OS X Yosemite and iOS 8
• Available in Safari and for use in your apps

• Leveraged by other Apple frameworks (e.g., UIWebView) 

Faster HTTP—SPDY
What is SPDY?

SPDY protocol support is now available in NSURLSession on OS X Yosemite and iOS 8
• Available in Safari and for use in your apps

• Leveraged by other Apple frameworks (e.g., UIWebView) 

SPDY is a protocol that attempts to make the web faster

Faster HTTP—SPDY
What is SPDY?

SPDY protocol support is now available in NSURLSession on OS X Yosemite and iOS 8
• Available in Safari and for use in your apps

• Leveraged by other Apple frameworks (e.g., UIWebView) 

SPDY is a protocol that attempts to make the web faster

Serves as the base for the HTTP/2.0 draft specification

Faster HTTP—SPDY
What is SPDY?

SPDY protocol support is now available in NSURLSession on OS X Yosemite and iOS 8
• Available in Safari and for use in your apps

• Leveraged by other Apple frameworks (e.g., UIWebView) 

SPDY is a protocol that attempts to make the web faster

Serves as the base for the HTTP/2.0 draft specification

Allows exchange of multiple HTTP messages simultaneously (and out-of-order) over a
single TCP connection

Using SPDY

Using SPDY

Available on both OS X Yosemite and iOS 8

Using SPDY

Available on both OS X Yosemite and iOS 8

SPDY/2, SPDY/3, and SPDY/3.1 are supported

Using SPDY

Available on both OS X Yosemite and iOS 8

SPDY/2, SPDY/3, and SPDY/3.1 are supported

Supported transparently by NSURLSession

Using SPDY

Available on both OS X Yosemite and iOS 8

SPDY/2, SPDY/3, and SPDY/3.1 are supported

Supported transparently by NSURLSession

No source changes needed—it just works

Using SPDY

Available on both OS X Yosemite and iOS 8

SPDY/2, SPDY/3, and SPDY/3.1 are supported

Supported transparently by NSURLSession

No source changes needed—it just works

!

NSURL *url = [NSURL URLWithString:@“https://www.example.com/"];
NSURLSessionDataTask *task = [[NSURLSession sharedSession]
 dataTaskWithURL:url
 completionHandler:^(NSData *data, NSURLResponse *response, NSError *error)
 {...}];
[task resume];

SPDY Benefits

Single, long-lived, TCP connection
• Mitigates latency penalty for setting up new connections

• May reduce resource requirements on your server

SPDY Benefits

Single, long-lived, TCP connection
• Mitigates latency penalty for setting up new connections

• May reduce resource requirements on your server

Request/response multiplexing: no head-of-line blocking
• Head-of-Line Blocking: when a response blocks other responses from being received

• A large response (an image) might be less important than a small response  
(a CSS or JS file)

SPDY Benefits

Single, long-lived, TCP connection
• Mitigates latency penalty for setting up new connections

• May reduce resource requirements on your server

Request/response multiplexing: no head-of-line blocking
• Head-of-Line Blocking: when a response blocks other responses from being received

• A large response (an image) might be less important than a small response  
(a CSS or JS file)

Priorities
• The order requests are issued no longer impacts the order responses are received

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

(without Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

(without Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

GET

(without Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

✔GET 200 OK

(without Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

✔

✔

✔

(without Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

✔

✔

✔

(without Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

HTTP/1.1: Head-of-Line Blocking

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

✔

✔

✔

(with Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

✔

✔

✔

HTTP/1.1: Head-of-Line Blocking (with Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

image.jpg

styles.css

data.xml

✔

✔

✔

HTTP/1.1: Head-of-Line Blocking (with Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

image.jpg

styles.css

data.xml

✔

✔

✔

HTTP/1.1: Head-of-Line Blocking (with Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

image.jpg

styles.css

data.xml

✔

✔

✔

HTTP/1.1: Head-of-Line Blocking (with Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

image.jpg

styles.css

data.xml

✔

✔

✔

HTTP/1.1: Head-of-Line Blocking (with Pipelining)

SPDY Benefits
Multiplexing avoids Head-of-Line Blocking

Time

SPDY: Multiplexing

Priority Legend

Low

Medium

High

image.jpg

styles.css

data.xml

image.jpg

styles.css

data.xml

✔

✔

✔

✔

✔

HTTP/1.1: Head-of-Line Blocking

✔

(with Pipelining)

Why Should I Adopt SPDY?

Can Give Better User Experience
• Reduced latency from long-lived connection is conducive to interactive behavior 

(especially over cellular)

• Our findings: SPDY is up to 25% faster than HTTP/1.1 in some cases 

Why Should I Adopt SPDY?

Can Give Better User Experience
• Reduced latency from long-lived connection is conducive to interactive behavior 

(especially over cellular)

• Our findings: SPDY is up to 25% faster than HTTP/1.1 in some cases 

Additional Benefits
• Reduced CPU use (one SSL handshake instead of several)

• May support more clients with same server-side infrastructure

Adopting SPDY

Adopting SPDY

SPDY does require server-side support
• Client negotiates with server during TLS handshake

• Uses https:// URLs

• Existing web server software and many CDNs already support SPDY 

Adopting SPDY

SPDY does require server-side support
• Client negotiates with server during TLS handshake

• Uses https:// URLs

• Existing web server software and many CDNs already support SPDY 

Will not interfere with your NSURLProtocol subclasses
• Apps might have their own implementation of SPDY or other protocols

SPDY Caveats

SPDY will not always outperform HTTP/1.1
• Parallel TCP connections (used by HTTP/1.1) can be faster than SPDY’s single connection

• Performance benefits are influenced by your workload

SPDY Caveats

SPDY will not always outperform HTTP/1.1
• Parallel TCP connections (used by HTTP/1.1) can be faster than SPDY’s single connection

• Performance benefits are influenced by your workload

 
SPDY compression of HTTP headers is disabled
• Susceptible to CRIME vulnerability

• Disabled by many SPDY implementations 

SPDY Caveats

SPDY will not always outperform HTTP/1.1
• Parallel TCP connections (used by HTTP/1.1) can be faster than SPDY’s single connection

• Performance benefits are influenced by your workload

 
SPDY compression of HTTP headers is disabled
• Susceptible to CRIME vulnerability

• Disabled by many SPDY implementations 

SPDY is not an IETF-recognized standard, but paves the way for HTTP/2.0

SPDY Best Practices

SPDY Best Practices

Issue multiple requests to let multiplexing handle your workload; you no longer need
to take steps to avoid head-of-line blocking

SPDY Best Practices

Issue multiple requests to let multiplexing handle your workload; you no longer need
to take steps to avoid head-of-line blocking

 
Consolidate server hostnames
• Hostname sharding (e.g., css.apple.com, images.apple.com) causes multiple TCP

connections to open

• Using a single hostname (and port!) for all requests allows for optimal connection
sharing and re-use

Background Networking

Dan Vinegrad
Software Engineer

Background Sessions
Overview

Background Sessions
Overview

Why use background sessions?

Background Sessions
Overview

Why use background sessions?

Background sessions in app extensions

Background Sessions
Overview

Why use background sessions?

Background sessions in app extensions

Discretionary networking

Background Sessions
Overview

Why use background sessions?

Background sessions in app extensions

Discretionary networking

Using background sessions properly
• Handling app launches

• Data tasks

• Pitfalls and best practices

Why Use Background Sessions?

Why Use Background Sessions?

Uploads and downloads continue while app isn’t running
• App can be suspended or crash

• App will be woken up to handle auth and completion

Why Use Background Sessions?

Uploads and downloads continue while app isn’t running
• App can be suspended or crash

• App will be woken up to handle auth and completion

We monitor the environment for you

Why Use Background Sessions?

Uploads and downloads continue while app isn’t running
• App can be suspended or crash

• App will be woken up to handle auth and completion

We monitor the environment for you
• Network reachability and connectivity

Why Use Background Sessions?

Uploads and downloads continue while app isn’t running
• App can be suspended or crash

• App will be woken up to handle auth and completion

We monitor the environment for you
• Network reachability and connectivity

• Automatic retry after network failures

Why Use Background Sessions?

Uploads and downloads continue while app isn’t running
• App can be suspended or crash

• App will be woken up to handle auth and completion

We monitor the environment for you
• Network reachability and connectivity

• Automatic retry after network failures

• Battery monitoring

Why Use Background Sessions?

Uploads and downloads continue while app isn’t running
• App can be suspended or crash

• App will be woken up to handle auth and completion

We monitor the environment for you
• Network reachability and connectivity

• Automatic retry after network failures

• Battery monitoring

• Bandwidth monitoring

Background Sessions in
App Extensions

Extensions are short-lived processes
• In-process networking won’t suffice for large uploads/downloads

• We will wake the containing app to handle events

Background Daemon

Task

Background Sessions in
App Extensions

Extensions are short-lived processes
• In-process networking won’t suffice for large uploads/downloads

• We will wake the containing app to handle events

Background Daemon

Task

Background Sessions in
App Extensions

Extensions are short-lived processes
• In-process networking won’t suffice for large uploads/downloads

• We will wake the containing app to handle events

Background Daemon

Task

Background Sessions in
App Extensions

Extensions are short-lived processes
• In-process networking won’t suffice for large uploads/downloads

• We will wake the containing app to handle events

Background Daemon

Task

Background Sessions in
App Extensions
Additional constraints

Background Sessions in
App Extensions
Additional constraints

Must use a shared data container
• App and Extension won’t have access to same files

Background Sessions in
App Extensions
Additional constraints

Must use a shared data container
• App and Extension won’t have access to same files

Only one process can be “connected” to the same background session at a time
• Can create a new session with a different identifier if another process is already

connected

NSURLSessionConfiguration *config =
 [NSURLSessionConfiguration backgroundSessionConfigurationWithIdentifier:
 @“com.mycompany.myapp.bgsession”];
!

config.sharedContainerIdentifier = @“com.mycompany.mysharedcontainer”;
!

NSURLSession *session = [NSURLSession sessionWithConfiguration:config
 delegate:self
 delegateQueue:nil];

Background Sessions in
App Extensions
Specifying a shared container

Discretionary Networking

Discretionary Networking

Allows tasks to be scheduled by the system at a “good time”
• WiFi vs. cellular

• Battery considerations

Discretionary Networking

Allows tasks to be scheduled by the system at a “good time”
• WiFi vs. cellular

• Battery considerations

Takes into account how often app is launched

Discretionary Networking

Tasks treated with more urgency as time goes on
• May restrict to WiFi and plugged in to power source at first

• Constraints will relax as timeoutIntervalForResource approaches

Discretionary Networking

Tasks treated with more urgency as time goes on
• May restrict to WiFi and plugged in to power source at first

• Constraints will relax as timeoutIntervalForResource approaches

timeoutIntervalForResourceTime

Discretionary Networking

Tasks treated with more urgency as time goes on
• May restrict to WiFi and plugged in to power source at first

• Constraints will relax as timeoutIntervalForResource approaches

timeoutIntervalForResourceTime

Discretionary Networking

Discretionary Networking

Opt-in on NSURLSessionConfiguration:
config.discretionary = YES

Discretionary Networking

Opt-in on NSURLSessionConfiguration:
config.discretionary = YES

Non-user-initiated tasks
• Pre-fetching the next episode

• Upload syncing

Discretionary Networking

Opt-in on NSURLSessionConfiguration:
config.discretionary = YES

Non-user-initiated tasks
• Pre-fetching the next episode

• Upload syncing

Tasks created while app is running in the background are automatically discretionary
• Work performed during background fetch/push is not user-initiated

• Tasks become non-discretionary when user brings the app to the foreground

Using Background Sessions
Handling app launching

Using Background Sessions
Handling app launching

UIApplicationDelegate method:
-application:handleEventsForBackgroundURLSession:completionHandler:

Using Background Sessions
Handling app launching

UIApplicationDelegate method:
-application:handleEventsForBackgroundURLSession:completionHandler:

Reconnect to the background session
• Create background session with the provided identifier

• Receive delegate messages

• Call the completionHandler when finished handling the events

Using Background Sessions
Handling app launching

UIApplicationDelegate method:
-application:handleEventsForBackgroundURLSession:completionHandler:

Reconnect to the background session
• Create background session with the provided identifier

• Receive delegate messages

• Call the completionHandler when finished handling the events

-URLSessionDidFinishEventsForBackgroundURLSession:

Using Background Sessions
Data tasks

Using Background Sessions
Data tasks

Will only run while app is running
• Will fail with NSURLErrorBackgroundSessionWasDisconnected when app is suspended

or exits

Using Background Sessions
Data tasks

Will only run while app is running
• Will fail with NSURLErrorBackgroundSessionWasDisconnected when app is suspended

or exits

Can convert to download task when response is received
• Will continue after app is suspended
- (void)URLSession:(NSURLSession *)session dataTask:(NSURLSessionDataTask
*)dataTask didReceiveResponse:(NSURLResponse *)response completionHandler:
(void (^)(NSURLSessionResponseDisposition disposition))completionHandler;
NSURLSessionResponseBecomeDownload

Using Background Sessions
Things to avoid

Using Background Sessions
Things to avoid

Creating one task at a time
• Tasks created in background will be discretionary

• The system will prevent your app from being launched too frequently

Using Background Sessions
Things to avoid

Creating one task at a time
• Tasks created in background will be discretionary

• The system will prevent your app from being launched too frequently

Downloading lots of small assets
• Much more efficient to download one large, zipped asset

Using Background Sessions
Things to avoid

Creating one task at a time
• Tasks created in background will be discretionary

• The system will prevent your app from being launched too frequently

Downloading lots of small assets
• Much more efficient to download one large, zipped asset

Blocking while waiting for transfers to complete

Using Background Sessions
Best practices

Using Background Sessions
Best practices

Can still use in-process networking while running in the background
• Smaller, time-sensitive assets

• Larger uploads/downloads should use background sessions

Using Background Sessions
Best practices

Can still use in-process networking while running in the background
• Smaller, time-sensitive assets

• Larger uploads/downloads should use background sessions

Support resumable downloads (Range GET requests)

Using Background Sessions
Best practices

Can still use in-process networking while running in the background
• Smaller, time-sensitive assets

• Larger uploads/downloads should use background sessions

Support resumable downloads (Range GET requests)

Handle launch events properly
• Reconnect to your background session when we launch your app

• Call the completion handler

Summary

Summary

New APIs on NSStream and NSNetService

Summary

New APIs on NSStream and NSNetService

Using NSURLSession

Summary

New APIs on NSStream and NSNetService

Using NSURLSession

New protocol support

Summary

New APIs on NSStream and NSNetService

Using NSURLSession

New protocol support

Background networking

More Information

Paul Danbold
Core OS Technologies Evangelist
danbold@apple.com

Documentation
NSURLSession Class Reference
https://developer.apple.com/library/ios/documentation/Foundation/Reference/
NSURLSession_class/Introduction/Introduction.html

Apple Developer Forums
http://devforums.apple.com

Related Sessions

• Creating Extensions for iOS and OS X, Part 1 Mission Tuesday 2:00PM

• Creating Extensions for iOS and OS X, Part 2 Mission Wednesday 11:30AM

• Cross Platform Nearby Networking Nob Hill Wednesday 9:00AM

• Fix Bugs Faster Using Activity Tracing Russian Hill Thursday 11:30AM

• Power, Performance, and Diagnostics:
What’s New in GCD and XPC

Russian Hill Thursday 2:00PM

Labs

• Networking Lab Core OS Lab A Tuesday 4:30PM

• Networking Lab Core OS Lab B Wednesday 9:00AM

• Multipeer Connectivity Lab Core OS Lab A Wednesday 10:15AM

• Multipeer Connectivity Lab Core OS Lab B Friday 9:00AM

• Extensions Lab Frameworks Lab A Tuesday 3:15PM

• Extensions Lab Frameworks Lab B Thursday 2:00PM

