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Introduction

Foundation Networking provides high-level, secure communication APIs and 
provides the basis for iOS and Mac OS X application networking. 
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What You Will Learn

New API 
• NSNetServies 

• NSStream 

• NSURLSession

Review of NSURLSession

New protocol support

Background sessions and extensions—Best practices



Foundation Networking
New API

NSNetServices

@property BOOL includesPeerToPeer NS_AVAILABLE(10_10, 7_0);



Foundation Networking
New API

NSStream

+[NSStream getStreamsToHostWithName:(NSString *)host 
 port:(NSInteger) port                        
 inputStream:(NSInputStream **) sin                        
 outputStream:(NSOutputStream *) sout];                      

 +[NSStream getBoundStreamsWithBufferSize:(NSUInteger)bufferSize 
 inputStream:(NSInputStream **) sin                             
 outputStream:(NSOutputStream **) sout];                           
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NSURLSession

NSURLSession

HTTP/1.1 200 OK

<head><title>wobble</
title></head><body>

GET /bar.html HTTP/1.1

Configuration

Delegate

HTTP/1.1 200 OK

<head><title>woo</
title></head><body>

GET /baz.html HTTP/1.1

Cache 
Cookies 
Creds 

Protocols

Options

HTTP/1.1 200 OK

<head><title>weeble</
title></head><body>

GET /foo.html HTTP/1.1
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NSURLSession
Concepts

Session and configuration

Session tasks

Session delegate

Credentials, credential storage

Cookies, cookie storage

Protocols

URL cache
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NSURLSession
Configuration

NSURLSessionConfiguration object

Properties that affect transfers 

 TLS levels 

 Cellular usage 

 Network service type 

 Cookie policies 

 Cache policies 

 Storage objects 

 Request & resource timeouts
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Configuration

+ [NSURLSessionConfiguration defaultSessionConfiguration] 

Best place to start for customization 

Modifications only affect this configuration object
+ [NSURLSessionConfiguration ephemeralSessionConfiguration] 

Does not persist cache, credentials or cookies
+ [NSURLSessionConfiguration backgroundSessionConfigurationWithIdentifier:] 

Create or reassociate with a background session
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NSURLSession
Creation

+ [NSURLSession sharedSession] 

For delegate-less, simple asynchronous requests
+ [NSURLSession sessionWithConfiguration:] 

Custom configuration, but no delegate 

Great to use with ephemeral configuration
+ [NSURLSession sessionWithConfiguration:delegate:delegateQueue:] 

Maximum flexibility through delegates 

Required interface for background sessions 

delegateQueue may be concurrent
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NSURLSession
Tasks

NSURLSessionUploadTask

NSURLSessionTask

NSURLSessionDataTask

NSURLSessionDownloadTask

-cancelByProducingResumeData:

-cancel

-suspend

-resume
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NSURLSessionTask
Creation

Data task 
-dataTaskWithURL: 
-dataTaskWithRequest: 

Upload task 
-uploadTaskWithRequest:fromFile: 
-uploadTaskWithRequest:fromData: 
-uploadTaskWithStreamedRequest: 



NSURLSessionTask
Creation

Download task 

-downloadTaskWithURL: 
-downloadTaskWithRequest: 
-downloadTaskWithResumeData:
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NSURLSession
Data task

State: 
Suspended

State: 
Running

State: 
Finished

:didReceiveData:

:willCacheResponse:

:didCompleteWithError:

:didReceiveResponse:

HTTP/1.1 200 OK

<head><title>weeble</
title></head><body>

GET /foo.html HTTP/1.1
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NSURLSession
Download task

State: 
Suspended

State: 
Running

:didFinishDownloadingToURL:

:didWriteData:

HTTP/1.1 200 OK

file:///Location/BigFile.tgz

GET /BigFile.tgz



NSURLSessionDownloadTask

NSURLSession
Download task

State: 
Suspended

State: 
Running

State: 
Finished

:didFinishDownloadingToURL:

:didCompleteWithError:

:didWriteData:

HTTP/1.1 200 OK

file:///Location/BigFile.tgz

GET /BigFile.tgz



NSURLSessionTask
Creation

NSURLSessionAsynchronousConvenience 

Tasks may be canceled 

Ignores session delegate—except for authentication challenges 

Cannot be used with background sessions 
-dataTaskWithURL:completionHandler: 
-downloadTaskWithURL:completionHandler: 
-uploadTaskWithRequest:fromFile:completionHandler: 



NSURLSessionTask
Creation

NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”]; 
NSURLSessionConfiguration* myConfiguration =  
    [NSURLSessionConfiguration ephemeralSessionConfiguration]; 
NSURLSession* mySession =  
    [NSURLSession sessionWithConfiguration:myConfiguration]; 
NSURLSessionTask* myTask = [mySession dataTaskWithURL:mySecretURL          
          completionHandler:^(NSData* data, 
          NSURLResponse* response, NSError* error) { 
 [self gotSecret:data];  
}]; 
[myTask resume]
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NSURL *myPrivateURL = [NSURL URLWithString:@“http://example.com/secret”]; 
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NSURLSession
Delegate

NSURLSessionDelegate 

• Session-related delegate messages 

• Connection authentication handling 

• Session invalidation/errors

!

NSURLSessionTaskDelegate 

• Extends NSURLSessionDelegate 

• Request authentication handling 

• Task completion/errors

TaskSession
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Data
Task
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Delegate

NSURLSessionDataDelegate 

• Extends NSURLSessionTask protocol 

• Delivers bytes as they are transferred 

• :didReceiveResponse: disposition

Download

Data
Task

NSURLSessionDownloadDelegate 

• Extends NSURLSessionTask protocol 

• Delivers progress during a transfer 

• Provides a local file URL of the transferred resource
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NSURLSession
New API

Storage objects 
• NSURLSessionTaskAdditions category 

• Provides asynchronous storage access

NSHTTPCookieStorage 
- storeCookies:forTask: 
- getCookiesForTask:completionHandler:

NSURLCredentialStorage 
- getCredential:forProtectionSpace:task:completionHandler:

NSURLCache 
- getCachedResponseForDataTask:completionHandler:



New Protocol Support

Scott Marshall 
Software Engineer
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Faster HTTP—SPDY
What is SPDY?

SPDY protocol support is now available in NSURLSession on OS X Yosemite and iOS 8 
• Available in Safari and for use in your apps 

• Leveraged by other Apple frameworks (e.g., UIWebView) 

SPDY is a protocol that attempts to make the web faster

Serves as the base for the HTTP/2.0 draft specification

Allows exchange of multiple HTTP messages simultaneously (and out-of-order) over a 
single TCP connection
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Using SPDY

Available on both OS X Yosemite and iOS 8

SPDY/2, SPDY/3, and SPDY/3.1 are supported

Supported transparently by NSURLSession

No source changes needed—it just works

!

NSURL *url = [NSURL URLWithString:@“https://www.example.com/"]; 
NSURLSessionDataTask *task = [[NSURLSession sharedSession] 
  dataTaskWithURL:url 
  completionHandler:^(NSData *data, NSURLResponse *response, NSError *error) 
  {...}]; 
[task resume];
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SPDY Benefits

Single, long-lived, TCP connection 
• Mitigates latency penalty for setting up new connections 

• May reduce resource requirements on your server

Request/response multiplexing: no head-of-line blocking 
• Head-of-Line Blocking: when a response blocks other responses from being received 

• A large response (an image) might be less important than a small response  
(a CSS or JS file)

Priorities 
• The order requests are issued no longer impacts the order responses are received
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Why Should I Adopt SPDY?

Can Give Better User Experience 
• Reduced latency from long-lived connection is conducive to interactive behavior 

(especially over cellular) 

• Our findings:  SPDY is up to 25% faster than HTTP/1.1 in some cases 

Additional Benefits 
• Reduced CPU use (one SSL handshake instead of several) 

• May support more clients with same server-side infrastructure
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Adopting SPDY

SPDY does require server-side support 
• Client negotiates with server during TLS handshake 

• Uses https:// URLs 

• Existing web server software and many CDNs already support SPDY 

Will not interfere with your NSURLProtocol subclasses 
• Apps might have their own implementation of SPDY or other protocols
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SPDY Caveats

SPDY will not always outperform HTTP/1.1 
• Parallel TCP connections (used by HTTP/1.1) can be faster than SPDY’s single connection 

• Performance benefits are influenced by your workload

 
SPDY compression of HTTP headers is disabled 
• Susceptible to CRIME vulnerability 

• Disabled by many SPDY implementations 

SPDY is not an IETF-recognized standard, but paves the way for HTTP/2.0
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SPDY Best Practices

Issue multiple requests to let multiplexing handle your workload; you no longer need 
to take steps to avoid head-of-line blocking

 
Consolidate server hostnames 
• Hostname sharding (e.g., css.apple.com, images.apple.com) causes multiple TCP 

connections to open 

• Using a single hostname (and port!) for all requests allows for optimal connection 
sharing and re-use



Background Networking

Dan Vinegrad 
Software Engineer
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Background Sessions
Overview

Why use background sessions?

Background sessions in app extensions

Discretionary networking

Using background sessions properly 
• Handling app launches 

• Data tasks 

• Pitfalls and best practices
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Why Use Background Sessions?

Uploads and downloads continue while app isn’t running 
• App can be suspended or crash 

• App will be woken up to handle auth and completion

We monitor the environment for you
• Network reachability and connectivity

• Automatic retry after network failures

• Battery monitoring

• Bandwidth monitoring
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Task



Background Sessions in  
App Extensions

Extensions are short-lived processes 
• In-process networking won’t suffice for large uploads/downloads 

• We will wake the containing app to handle events

Background Daemon

Task



Background Sessions in  
App Extensions

Extensions are short-lived processes 
• In-process networking won’t suffice for large uploads/downloads 

• We will wake the containing app to handle events

Background Daemon

Task



Background Sessions in  
App Extensions

Extensions are short-lived processes 
• In-process networking won’t suffice for large uploads/downloads 

• We will wake the containing app to handle events

Background Daemon

Task



Background Sessions in  
App Extensions
Additional constraints



Background Sessions in  
App Extensions
Additional constraints

Must use a shared data container 
• App and Extension won’t have access to same files



Background Sessions in  
App Extensions
Additional constraints

Must use a shared data container 
• App and Extension won’t have access to same files

Only one process can be “connected” to the same background session at a time 
• Can create a new session with a different identifier if another process is already 

connected



NSURLSessionConfiguration *config =  
 [NSURLSessionConfiguration backgroundSessionConfigurationWithIdentifier: 
         @“com.mycompany.myapp.bgsession”]; 
!

config.sharedContainerIdentifier = @“com.mycompany.mysharedcontainer”; 
!

NSURLSession *session = [NSURLSession sessionWithConfiguration:config 
                                                      delegate:self 
                                                 delegateQueue:nil];

Background Sessions in  
App Extensions
Specifying a shared container
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Discretionary Networking

Opt-in on NSURLSessionConfiguration: 
config.discretionary = YES

Non-user-initiated tasks 
• Pre-fetching the next episode 

• Upload syncing

Tasks created while app is running in the background are automatically discretionary 
• Work performed during background fetch/push is not user-initiated 

• Tasks become non-discretionary when user brings the app to the foreground
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Using Background Sessions
Handling app launching

UIApplicationDelegate method:                                                                                          
-application:handleEventsForBackgroundURLSession:completionHandler:

Reconnect to the background session 
• Create background session with the provided identifier 

• Receive delegate messages 

• Call the completionHandler when finished handling the events

-URLSessionDidFinishEventsForBackgroundURLSession:
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Using Background Sessions
Data tasks

Will only run while app is running 
• Will fail with NSURLErrorBackgroundSessionWasDisconnected when app is suspended 

or exits

Can convert to download task when response is received 
• Will continue after app is suspended 
- (void)URLSession:(NSURLSession *)session dataTask:(NSURLSessionDataTask 
*)dataTask didReceiveResponse:(NSURLResponse *)response completionHandler:
(void (^)(NSURLSessionResponseDisposition disposition))completionHandler; 
NSURLSessionResponseBecomeDownload
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Using Background Sessions 
Things to avoid

Creating one task at a time 
• Tasks created in background will be discretionary 

• The system will prevent your app from being launched too frequently

Downloading lots of small assets 
• Much more efficient to download one large, zipped asset

Blocking while waiting for transfers to complete
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Using Background Sessions
Best practices

Can still use in-process networking while running in the background 
• Smaller, time-sensitive assets 

• Larger uploads/downloads should use background sessions

Support resumable downloads (Range GET requests)

Handle launch events properly 
• Reconnect to your background session when we launch your app 

• Call the completion handler
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Summary

New APIs on NSStream and NSNetService

Using NSURLSession

New protocol support

Background networking



More Information

Paul Danbold 
Core OS Technologies Evangelist 
danbold@apple.com 

Documentation 
NSURLSession Class Reference 
https://developer.apple.com/library/ios/documentation/Foundation/Reference/
NSURLSession_class/Introduction/Introduction.html 

Apple Developer Forums 
http://devforums.apple.com



Related Sessions

• Creating Extensions for iOS and OS X, Part 1 Mission Tuesday 2:00PM

• Creating Extensions for iOS and OS X, Part 2 Mission Wednesday 11:30AM

• Cross Platform Nearby Networking Nob Hill Wednesday  9:00AM

• Fix Bugs Faster Using Activity Tracing Russian Hill Thursday 11:30AM

• Power, Performance, and Diagnostics:                
What’s New in GCD and XPC

Russian Hill Thursday 2:00PM



Labs

• Networking Lab Core OS Lab A Tuesday 4:30PM

• Networking Lab Core OS Lab B Wednesday 9:00AM

• Multipeer Connectivity Lab Core OS Lab A Wednesday 10:15AM

• Multipeer Connectivity Lab Core OS Lab B Friday 9:00AM

• Extensions Lab Frameworks Lab A Tuesday 3:15PM

• Extensions Lab Frameworks Lab B Thursday 2:00PM




