
© 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC14

Writing Energy Efficient Code
Part 1

Session 710
Anthony Chivetta
OS X Performance & Power

Core OS

9:41

What You’ll Learn

What You’ll Learn

Power and energy concepts

What You’ll Learn

Power and energy concepts

Improving your energy use

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

• Do it more efficiently

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

• Do it more efficiently

• Do it less

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

• Do it more efficiently

• Do it less

Part 2

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

• Do it more efficiently

• Do it less

Part 2
• Networking

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

• Do it more efficiently

• Do it less

Part 2
• Networking

• Location

What You’ll Learn

Power and energy concepts

Improving your energy use
• Do it never

• Do it at a better time

• Do it more efficiently

• Do it less

Part 2
• Networking

• Location

• Sleep/Wake

CPU

What Uses Energy?

(not an exhaustive list)

CPU Storage

What Uses Energy?

(not an exhaustive list)

CPU NetworkingStorage

What Uses Energy?

(not an exhaustive list)

CPU GraphicsNetworkingStorage

What Uses Energy?

(not an exhaustive list)

Fixed Costs

Time

Po
w

er

Fixed Costs

Time

Po
w

er

Fixed Costs

Time

Po
w

er

Idle Power

Fixed Costs

Time

Po
w

er

Idle Power

System Active

Fixed Costs

Time

Po
w

er

Idle Power

System Active
Intermediate States

Fixed Costs

Time

Po
w

er

Idle Power

Dynamic Cost

Fixed Cost

System Active
Intermediate States

Fixed Costs

Time

Po
w

er

Fixed Costs

Small Sporadic Work

Time

Po
w

er

Fixed Costs

Small Sporadic Work

Time

Po
w

er

Fixed Costs

Small Sporadic Work

Time

Po
w

er

Fixed Costs

Time

Po
w

er

Energy and Power

Time

Po
w

er

Energy and Power

Power

Time

Po
w

er

Energy and Power

EnergyPower

Time

Po
w

er

Trading Power for Energy

Single-Threaded

Time

Po
w

er

Trading Power for Energy

Single-Threaded

Time

Po
w

er

Trading Power for Energy

Single-Threaded Multi-Threaded

Time

Po
w

er

Power Fundamentals

Work has a fixed cost
• For small workloads, this can dominate

• For intensive workloads, dynamic cost will dominate

Better performance = less energy

Do It Never

Avoid Unneeded Work

Your App

Your Ad

Avoid Unneeded Work

Your App

Your Ad

Avoid Unneeded Work

Your App

Your Ad

Avoid Unneeded Work

Your App

Your Ad

Another App

Active App Transitions
iOS

- (void)applicationDidResignActive: (UIApplication *)application {
 // Pause animations and UI updates
}
!

- (void)applicationDidBecomeActive: (UIApplication *)application {
 // Resume animations and UI updates
}
!

Or, listen for the UIApplicationWillResignActiveNotification notification.

Active App Transitions
OS X

- (void)applicationDidResignActive:(NSNotification *)aNotification {
 // Pause animations and UI updates
}
!

- (void)applicationDidBecomeActive:(NSApplication *)aNotification {
 // Resume animations and UI updates
}

!

Or, listen for the NSApplicationDidResignActiveNotification notification.

Occlusion Notifications

Occlusion Notifications

Occlusion notifications indicate visibility of windows or applications

Occlusion Notifications

Occlusion notifications indicate visibility of windows or applications

For applications, implement delegate method
- (void)applicationDidChangeOcclusionState:(NSNotification *)notification

• Or check
if ([NSApp occlusionState] & NSApplicationOcclusionStateVisible)

Occlusion Notifications

Occlusion notifications indicate visibility of windows or applications

For applications, implement delegate method
- (void)applicationDidChangeOcclusionState:(NSNotification *)notification

• Or check
if ([NSApp occlusionState] & NSApplicationOcclusionStateVisible)

For windows, implement delegate method
- (void)windowDidChangeOcclusionState:(NSNotification *)notification

• Or check
if ([window occlusionState] & NSWindowOcclusionStateVisible)

App Nap

App Nap

App Nap reduces an inactive app’s energy use

App Nap

App Nap reduces an inactive app’s energy use

App Nap relies on heuristics

App Nap

App Nap reduces an inactive app’s energy use

App Nap relies on heuristics

You are the authoritative source for what work is important

App Nap

App Nap reduces an inactive app’s energy use

App Nap relies on heuristics

You are the authoritative source for what work is important

In a well-behaved app, App Nap should never be in effect during work

App Nap

App Nap reduces an inactive app’s energy use

App Nap relies on heuristics

You are the authoritative source for what work is important

In a well-behaved app, App Nap should never be in effect during work
-NSProcessInfo (void)performActivityWithOptions:(NSActivityOptions)options
 reason:(NSString *)reason
 usingBlock:(void (^)(void))block

Avoiding Unnecessary Work

Monitor app state to know when work isn’t visible

Avoid updating UI until the user can see the results

Nap yourself when not in use, so App Nap doesn’t have to

Do It at a Better Time

On Power

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

On Power

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

On PowerUser runs your app

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

On PowerUser runs your app

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

😥

On PowerUser runs your app

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

Window

😥

On PowerUser runs your app

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

Window

😥

On PowerUser runs your app

Do It at a Better Time

Noon

Ba
tt

er
y

Re
m

ai
ni

ng

6AM 6PM

Window

NSBackgroundActivityScheduler

NSBackgroundActivityScheduler

New API in OS X Yosemite

NSBackgroundActivityScheduler

New API in OS X Yosemite

Allows scheduling arbitrary tasks for a good time in the future

NSBackgroundActivityScheduler

New API in OS X Yosemite

Allows scheduling arbitrary tasks for a good time in the future

Supports repeating or non-repeating activities

NSBackgroundActivityScheduler

New API in OS X Yosemite

Allows scheduling arbitrary tasks for a good time in the future

Supports repeating or non-repeating activities

Can be used to schedule
• Periodic content fetch

• Update install

• Garbage collection and data maintenance tasks

• Automatic saves or backups

Creating a Scheduler

activity = [[NSBackgroundActivityScheduler alloc]
 initWithIdentifier:@“com.apple.sample-app.MyActivity”];
!

Each activity must have an identifier

Identifier should be in reverse-DNS style

Name should be unique, but the same across app runs
• “com.example.MyApp.updatecheck”

Specifying Scheduling Properties

// Activity will fire in the next 10 minutes
activity.tolerance = 10 * 60;

Specifying Scheduling Properties

// Activity will fire in the next 10 minutes
activity.tolerance = 10 * 60;

// Activity will fire between 15 and 45 minutes from now
activity.interval = 30 * 60;
activity.tolerance = 15 * 60;

Specifying Scheduling Properties

// Activity will fire in the next 10 minutes
activity.tolerance = 10 * 60;

// Activity will fire between 15 and 45 minutes from now
activity.interval = 30 * 60;
activity.tolerance = 15 * 60;

// Activity will fire once each hour
activity.repeats = YES
activity.interval = 60 * 60;

Scheduling Your Work

Scheduling Your Work

[activity
 scheduleWithBlock:^(NSBackgroundActivityCompletionHandler completion){
!

!

!

 // do the work
!

!

!

 completion(NSBackgroundActivityResultFinished);
}];

Scheduling Your Work
Deferring in-progress work

[activity
 scheduleWithBlock:^(NSBackgroundActivityCompletionHandler completion){
 for (/* each item of work */) {
 if (activity.shouldDefer){
 completion(NSBackgroundActivityResultDeferred);
 return;
 }
 // do item of work
 }
 completion(NSBackgroundActivityResultFinished);
}];

Scheduling Your Work
Deferring in-progress work

[activity
 scheduleWithBlock:^(NSBackgroundActivityCompletionHandler completion){
 for (/* each item of work */) {
 if (activity.shouldDefer){
 completion(NSBackgroundActivityResultDeferred);
 return;
 }
 // do item of work
 }
 completion(NSBackgroundActivityResultFinished);
}];

NSBackgroundActivityScheduler

You specify scheduling requirements for work

NSBackgroundActivityScheduler

You specify scheduling requirements for work

System select the best time to perform that work

NSBackgroundActivityScheduler

You specify scheduling requirements for work

System select the best time to perform that work

Support for repeating tasks without drift

NSBackgroundActivityScheduler

You specify scheduling requirements for work

System select the best time to perform that work

Support for repeating tasks without drift

Available in OS X Yosemite or with the xpc_activity C API in 10.9

Your App

NSURLSession
Background Session

Your App

NSURLRequest

NSURLRequest

NSURLRequest

NSURLSession
Background Session

Your App

NSURLRequest

NSURLRequest

NSURLRequest

NSURLSession with
Background Session

Configuration

NSURLSessionDelegate

NSURLSession
Background Session

Out of Process SessionYour App

Task

Task

Task

NSURLRequest

NSURLRequest

NSURLRequest

NSURLSession with
Background Session

Configuration

NSURLSessionDelegate

NSURLSession
Background Session

Out of Process SessionYour App

Task

Task

Task

NSURLRequest

NSURLRequest

NSURLRequest

NSURLSession with
Background Session

Configuration

NSURLSessionDelegate

NSURLSession
Background Session

Out of Process Session

NSURLSession
Background Session

Task

Task

Task

Out of Process Session

NSURLSession
Background Session

Task

Task

Task

Task

Task

Task

Your App Out of Process Session

NSURLSession
Background Session

Task

Task

Task

Task

Task

Task

Your App Out of Process Session

NSURLSession
Background Session

NSURLSession with
Background Session

Configuration

Task

Task

Task
NSURLSessionDelegate

+ backgroundSessionConfigurationWithIdentifier:
“com.example.MySessionIdentifier”

Task

Task

Task

Discretionary Tasks

Discretionary Tasks

configuration.discretionary = YES;

Discretionary Tasks

configuration.discretionary = YES;

Discretionary sessions available in iOS 7.0 and OS X Yosemite

Discretionary Tasks

configuration.discretionary = YES;

Discretionary sessions available in iOS 7.0 and OS X Yosemite

Automatically picks the best time to do work

Discretionary Tasks

configuration.discretionary = YES;

Discretionary sessions available in iOS 7.0 and OS X Yosemite

Automatically picks the best time to do work

Provides bandwidth monitoring and automatic retry

Discretionary Tasks

configuration.discretionary = YES;

Discretionary sessions available in iOS 7.0 and OS X Yosemite

Automatically picks the best time to do work

Provides bandwidth monitoring and automatic retry

Scheduling window can be adjusted with
configuration.timeoutIntervalForResource = 24*60*60; // 1 day

• If this time elapses, an error will be thrown

• Should be >12 hours

Related Session

• What’s New in Foundation Networking Nob Hill Tuesday 3:15PM

Do It More Efficiently

Resource Management Properties

Responsiveness Efficiency

Resource Management Properties

Responsiveness Efficiency

CPU Scheduler Priority

I/O Priority

Resource Management Properties

Responsiveness Efficiency

CPU Scheduler Priority

I/O Priority

Timer Coalescing

Throughput/Efficiency CPU Hints

Quality of Service Classes

User Interactive Main thread, animations

User Initiated Immediate results

Utility Long-running tasks

Background Not user visible

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is this work actively involved in updating the UI?
e.g., main thread, animations, input event processing

User Initiated Is this work required to continue user interaction?
e.g., loading active content

Utility Is the user aware of the progress of this work?
e.g., long-running jobs with progress indicators

Background Can this work be deferred to a better time?
e.g., if so, use NSBackgroundActivityScheduler

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is this work actively involved in updating the UI?
e.g., main thread, animations, input event processing

User Initiated Is this work required to continue user interaction?
e.g., loading active content

Utility Is the user aware of the progress of this work?
e.g., long-running jobs with progress indicators

Background Can this work be deferred to a better time?
e.g., if so, use NSBackgroundActivityScheduler

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is this work actively involved in updating the UI?
e.g., main thread, animations, input event processing

User Initiated Is this work required to continue user interaction?
e.g., loading active content

Utility Is the user aware of the progress of this work?
e.g., long-running jobs with progress indicators

Background Can this work be deferred to a better time?
e.g., if so, use NSBackgroundActivityScheduler

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is this work actively involved in updating the UI?
e.g., main thread, animations, input event processing

User Initiated Is this work required to continue user interaction?
e.g., loading active content

Utility Is the user aware of the progress of this work?
e.g., long-running jobs with progress indicators

Background Can this work be deferred to a better time?
e.g., if so, use NSBackgroundActivityScheduler

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is it okay for User Interactive work to happen before my work?

User Initiated Is it okay for this work to compete with other User Initiated work?

Utility Is it okay for my work to take precedence over Utility work?

Background

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is it okay for User Interactive work to happen before my work?

User Initiated Is it okay for this work to compete with other User Initiated work?

Utility Is it okay for my work to take precedence over Utility work?

Background

UT

IN

UI

BG

Choosing a QoS Class

User Interactive Is it okay for User Interactive work to happen before my work?

User Initiated Is it okay for this work to compete with other User Initiated work?

Utility Is it okay for my work to take precedence over Utility work?

Background

UT

IN

UI

BG

Effects of QoS

Background

Effects of QoS

BackgroundUser Initiated

Effects of QoS

BackgroundUser Initiated

Effects of QoS

BackgroundUser Initiated

Time

Po
w

er

Time

Po
w

er

Adoption Case Study

Search

RAW Images

PhotoMeister 3000

Converting … (10/100)

Adoption Case Study

User Interactive
• Main Thread (automatic)

Search

RAW Images

PhotoMeister 3000

Converting … (10/100)

Adoption Case Study

User Interactive
• Main Thread (automatic)

User Initiated
• Thumbnail generation

• Image load (on click)

Search

RAW Images

PhotoMeister 3000

Converting … (10/100)

Adoption Case Study

User Interactive
• Main Thread (automatic)

User Initiated
• Thumbnail generation

• Image load (on click)

Utility
• Image import and conversion

Search

RAW Images

PhotoMeister 3000

Converting … (10/100)

Adoption Case Study

User Interactive
• Main Thread (automatic)

User Initiated
• Thumbnail generation

• Image load (on click)

Utility
• Image import and conversion

Background
• Search indexing

Search

RAW Images

PhotoMeister 3000

Converting … (10/100)

Queue Structure

Main Thread
(User Interactive)

Queue Structure

Thumbnail Generation NSOperationQueue

Main Thread
(User Interactive)

Queue Structure

Thumbnail Generation NSOperationQueue

Image Conversion NSOperationQueue

Main Thread
(User Interactive)

NSOperation(Queue) and QoS

NSOperation(Queue) and QoS

NSOperation and NSOperationQueue now have a qualityOfService property:
operation.qualityOfService = NSQualityOfServiceUtility;

NSOperation(Queue) and QoS

NSOperation and NSOperationQueue now have a qualityOfService property:
operation.qualityOfService = NSQualityOfServiceUtility;

If set on both the operation and queue, the higher will be used

NSOperation(Queue) and QoS

NSOperation and NSOperationQueue now have a qualityOfService property:
operation.qualityOfService = NSQualityOfServiceUtility;

If set on both the operation and queue, the higher will be used

If not set, NSOperations will infer a QoS from the environment when possible

Image Conversion NSOperationQueue

Thumbnail Generation NSOperationQueue

QoS Application

Main Thread
(User Interactive)

Image Conversion NSOperationQueue

Thumbnail Generation NSOperationQueue

QoS Application

Main Thread
(User Interactive)

Thumbnail Generation NSOperationQueue – User Initiated

Image Conversion NSOperationQueue

Thumbnail Generation NSOperationQueue

QoS Application

Main Thread
(User Interactive)

Thumbnail Generation NSOperationQueue – User Initiated

Image Conversion NSOperationQueue – Utility

QoS Is Not Static

The logical QoS of an operation may change over time
• e.g., when user requests the result of work that’s already happening a lower QoS

QoS Is Not Static

The logical QoS of an operation may change over time
• e.g., when user requests the result of work that’s already happening a lower QoS

With NSOperation, the QoS of an operation can be promoted by:
• Enqueueing a higher QoS operation on the same queue

• Using addDependency: with a higher QoS operation
• waitUntilFinished: or waitUntilAllOperationsAreFinished:

from a higher QoS thread

Promotion

Main Thread

Image Click Event

Image Conversion NSOperationQueue – Utility

Promotion

Main Thread

Image Click Event
// Find operation for image

Image Conversion NSOperationQueue – Utility

Promotion

Main Thread

Image Click Event
// Find operation for image
operation.queuePriority =
 NSOperationQueuePriorityVeryHigh;

Image Conversion NSOperationQueue – Utility

Promotion

Main Thread

Image Click Event
// Find operation for image
operation.queuePriority =
 NSOperationQueuePriorityVeryHigh;
operation.qualityOfService =
 NSQualityOfServiceUserInitiated;

Image Conversion NSOperationQueue – Utility

Promotion

Main Thread

Image Click Event
// Find operation for image
operation.queuePriority =
 NSOperationQueuePriorityVeryHigh;
operation.qualityOfService =
 NSQualityOfServiceUserInitiated;

Image Conversion NSOperationQueue – Utility

Your Turn

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching
• Background

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching
• Background

Fetching new feeds

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching
• Background

Fetching new feeds
• Requested by user—User Initiated

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching
• Background

Fetching new feeds
• Requested by user—User Initiated

• Automatic—Utility

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching
• Background

Fetching new feeds
• Requested by user—User Initiated

• Automatic—Utility

Search indexing

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Your Turn

Loading content
• User Initiated

Image pre-fetching
• Background

Fetching new feeds
• Requested by user—User Initiated

• Automatic—Utility

Search indexing
• Background

SearchFeed Reader 9000

Updating Feeds…

News
!
Neat Things
!
Cats
!
Kittens
!
26 ways…

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Ut
volutpat accumsan tellus, eu
imperdiet est elementum sed.
Sed tincidunt, nibh ut
consectetur posuere, est metus.

Mauris in
elementum orci,
varius est. Sed
fringilla velit a
vestibulum sagi.

Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Debugging QoS

Debugging QoS

Set breakpoints to confirm requested QoS

Debugging QoS

Set breakpoints to confirm requested QoS

Use powermetrics to confirm which QoS is in use

Debugging QoS

Set breakpoints to confirm requested QoS

Use powermetrics to confirm which QoS is in use

Use spindump to determine the QoS code is executing with

QoS Accounting

% sudo powermetrics --show-process-qos --samplers tasks

QoS Accounting

% sudo powermetrics --show-process-qos --samplers tasks
*** Sampled system activity (Wed May 28 00:03:12 2014 -0700) (5006.36ms
elapsed) ***
!

*** Running tasks ***
!

Name ID CPU ms/s User%
MyApplication 8424 88.89 94.16
!

Deadlines (<2 ms, 2-5 ms) Wakeups (Intr, Pkg idle)
227.89 0.00 228.89 165.98
!

QOS (ms/s) Default Maint BG Util Lgcy U-Init U-Intr
 0.00 0.00 0.04 88.64 0.03 0.00 0.17

QoS Accounting

% sudo powermetrics --show-process-qos --samplers tasks
*** Sampled system activity (Wed May 28 00:03:12 2014 -0700) (5006.36ms
elapsed) ***
!

*** Running tasks ***
!

Name ID CPU ms/s User%
MyApplication 8424 88.89 94.16
!

Deadlines (<2 ms, 2-5 ms) Wakeups (Intr, Pkg idle)
227.89 0.00 228.89 165.98
!

QOS (ms/s) Default Maint BG Util Lgcy U-Init U-Intr
 0.00 0.00 0.04 88.64 0.03 0.00 0.17

QoS Accounting

% sudo powermetrics --show-process-qos --samplers tasks
*** Sampled system activity (Wed May 28 00:03:12 2014 -0700) (5006.36ms
elapsed) ***
!

*** Running tasks ***
!

Name ID CPU ms/s User%
MyApplication 8424 88.89 94.16
!

Deadlines (<2 ms, 2-5 ms) Wakeups (Intr, Pkg idle)
227.89 0.00 228.89 165.98
!

QOS (ms/s) Default Maint BG Util Lgcy U-Init U-Intr
 0.00 0.00 0.04 88.64 0.03 0.00 0.17

QoS Accounting

% sudo powermetrics --show-process-qos --samplers tasks
*** Sampled system activity (Wed May 28 00:03:12 2014 -0700) (5006.36ms
elapsed) ***
!

*** Running tasks ***
!

Name ID CPU ms/s User%
MyApplication 8424 88.89 94.16
!

Deadlines (<2 ms, 2-5 ms) Wakeups (Intr, Pkg idle)
227.89 0.00 228.89 165.98
!

QOS (ms/s) Default Maint BG Util Lgcy U-Init U-Intr
 0.00 0.00 0.04 88.64 0.03 0.00 0.17

Sampling QoS

% sudo spindump -timeline MyApplication

Sampling QoS

!
…
Thread 0x6bb7a DispatchQueue 6 1000 samples (1-1000) priority 16-20 cpu time 1.488s
<thread QoS utility, priority 20>
1000 start_wqthread + 13 (libsystem_pthread.dylib + 6657) [0x7fff82e73a01] 1-1000
 1000 _pthread_wqthread + 663 (libsystem_pthread.dylib + 15313) [0x7fff82e75bd1] 1-1000
 1000 _dispatch_worker_thread3 + 79 (libdispatch.dylib + 72233) [0x10002fa29] 1-1000
 1000 _dispatch_root_queue_drain + 1408 (libdispatch.dylib + 17968) [0x100022630] 1-1000
…
 4 __45-[AppDelegate applicationDidFinishLaunching:]_block_invoke + 181
(AppDelegate.m:25 in MyApplication + 4837) [0x1000012e5] 1-4
<thread QoS background>
 2 __45-[AppDelegate applicationDidFinishLaunching:]_block_invoke + 217
(AppDelegate.m:28 in MyApplication + 4837) [0x1000012e5] 1-4

% sudo spindump -timeline MyApplication

Sampling QoS

!
…
Thread 0x6bb7a DispatchQueue 6 1000 samples (1-1000) priority 16-20 cpu time 1.488s
<thread QoS utility, priority 20>
1000 start_wqthread + 13 (libsystem_pthread.dylib + 6657) [0x7fff82e73a01] 1-1000
 1000 _pthread_wqthread + 663 (libsystem_pthread.dylib + 15313) [0x7fff82e75bd1] 1-1000
 1000 _dispatch_worker_thread3 + 79 (libdispatch.dylib + 72233) [0x10002fa29] 1-1000
 1000 _dispatch_root_queue_drain + 1408 (libdispatch.dylib + 17968) [0x100022630] 1-1000
…
 4 __45-[AppDelegate applicationDidFinishLaunching:]_block_invoke + 181
(AppDelegate.m:25 in MyApplication + 4837) [0x1000012e5] 1-4
<thread QoS background>
 2 __45-[AppDelegate applicationDidFinishLaunching:]_block_invoke + 217
(AppDelegate.m:28 in MyApplication + 4837) [0x1000012e5] 1-4

% sudo spindump -timeline MyApplication

Sampling QoS

!
…
Thread 0x6bb7a DispatchQueue 6 1000 samples (1-1000) priority 16-20 cpu time 1.488s
<thread QoS utility, priority 20>
1000 start_wqthread + 13 (libsystem_pthread.dylib + 6657) [0x7fff82e73a01] 1-1000
 1000 _pthread_wqthread + 663 (libsystem_pthread.dylib + 15313) [0x7fff82e75bd1] 1-1000
 1000 _dispatch_worker_thread3 + 79 (libdispatch.dylib + 72233) [0x10002fa29] 1-1000
 1000 _dispatch_root_queue_drain + 1408 (libdispatch.dylib + 17968) [0x100022630] 1-1000
…
 4 __45-[AppDelegate applicationDidFinishLaunching:]_block_invoke + 181
(AppDelegate.m:25 in MyApplication + 4837) [0x1000012e5] 1-4
<thread QoS background>
 2 __45-[AppDelegate applicationDidFinishLaunching:]_block_invoke + 217
(AppDelegate.m:28 in MyApplication + 4837) [0x1000012e5] 1-4

% sudo spindump -timeline MyApplication

Quality of Service

Specify the responsiveness and energy requirements of work

Available in both Foundation and C APIs

Classify long-running or resource-intensive operations in your existing code

Aim for >90% of time at Utility or below when the user is inactive

Related Session

• Power, Performance, and Diagnostics:
What’s New in GCD and XPC

Russian Hill Thursday 2:00PM

Do It Less

Use Less…

StorageCPU Graphics

Reduce CPU Use

1% CPU

10% CPU

100% CPU

Reduce CPU Use

1% CPU

10% CPU

100% CPU

10% higher power draw

Reduce CPU Use

1% CPU

10% CPU

100% CPU

10% higher power draw

2x power draw

Reduce CPU Use

1% CPU

10% CPU

100% CPU

10% higher power draw

2x power draw

10x power draw

Performance Unit Tests

Performance Unit Tests

Additions to XCTestCase API in Xcode 6

Performance Unit Tests

Additions to XCTestCase API in Xcode 6

Helps you find performance regressions

Performance Unit Tests

Additions to XCTestCase API in Xcode 6

Helps you find performance regressions

!

- (void)testSomething
{
 [self measureBlock:^{
 // ...snip..
 }];
}

Related Sessions

• Testing in Xcode 6 Marina Thursday 9:00AM

• Continuous Integration with Xcode 6 Marina Thursday 2:00PM

Reduce CPU Use

Reduce CPU Use

CPU use has a huge dynamic range in power

Reduce CPU Use

CPU use has a huge dynamic range in power

Monitor CPU use with Xcode debug gauge

Reduce CPU Use

CPU use has a huge dynamic range in power

Monitor CPU use with Xcode debug gauge

Profile with Instruments

Reduce CPU Use

CPU use has a huge dynamic range in power

Monitor CPU use with Xcode debug gauge

Profile with Instruments

Prevent regressions with performance unit tests

Minimize Timers

Minimize Timers

Grand Central Dispatch timers

CFRunLoopTimer

NSTimer

sleep()

pthread_cond_timedwait()

dispatch_semaphore_wait()

select()

-[NSObject performSelector:withObject:afterDelay:]

CVDisplayLink

Timer Fixed Cost

Time

Po
w

er

Timer Fixed Cost

Time

Po
w

er

Timer Firings

Timer Fixed Cost

Time

Po
w

er

Timer Firings

Timer Fixed Cost

Time

Po
w

er

Timer Firings

Diagnosing Timer Issues
timerfires

$ sudo timerfires -p MyApplication -s -g

Diagnosing Timer Issues
timerfires

$ sudo timerfires -p MyApplication -s -g !

 COUNT PID PROCESS TYPE TIMER ROUTINE
 555 1603 MyApp dispatch MyApp`-[AppModel updateWidgets:]
 735 1603 MyApp CF MyApp`-[AppDelegate timerFired:]
 1127 1603 MyApp sleep
 libsystem_kernel.dylib`__semwait_signal+0xa
 libsystem_c.dylib`usleep+0x36
 MyApp`-[AppModel pollForChange]+0x1a
 libdispatch.dylib`_dispatch_call_block_and_release+0xc

Timer Coalescing

Time

Timer Coalescing

Time

Specify Timer Tolerance

Specify Timer Tolerance

[myTimer setTolerance:60.0];
!

CFRunLoopTimerSetTolerance(myTimer, 60.0);
!

dispatch_source_set_timer(my_timer, DISPATCH_TIME_NOW,
 30 * NSEC_PER_SEC, 60 * NSEC_PER_SEC);

Minimize Timers

Be mindful of wakeup overhead

Monitor for wakeups

Debug with timerfires

Specify timer tolerance

Related Session

• Energy Best Practices WWDC 2013

Efficient Graphics

Efficient Graphics

Efficient Graphics

Efficient Graphics

Efficient Graphics

Limit Screen Updates

Avoid extraneous screen updates

Unnecessary drawing kicks graphics hardware out of low-power modes

Drawing more content than needed causes extra power draw to update the screen
• Use needsToDrawRect: or getRectsBeingDrawn:count: methods to fine-tune drawing

Flash Screen Updates

Flash Screen Updates

Flash Screen Updates

Graphics Tools for Xcode: http://developer.apple.com

Flash Screen Updates

Core Animation

Visual Effects

Translucent blurs have an energy cost

Avoid placing over updating elements

App

Visual Effects

Translucent blurs have an energy cost

Avoid placing over updating elements NSVisualEffectView

App

Animating Content

Visual Effects

Translucent blurs have an energy cost

Avoid placing over updating elements NSVisualEffectView

App

Animating Content

Visual Effects

Translucent blurs have an energy cost

Avoid placing over updating elements NSVisualEffectView

Efficient Graphics

Draw minimally and efficiently

Monitor drawing with Quartz Debug or Instruments

Avoid blurs on updating content

Flash Power

Writes to Flash are much more energy hungry than reads
• Write the minimum content necessary

• Do writes in aggregate for better power efficiency

Flash Power

Writes to Flash are much more energy hungry than reads
• Write the minimum content necessary

• Do writes in aggregate for better power efficiency

Any I/O will pull device out of low-power states
• Use caching to your advantage

Do It Less

Profile and monitor CPU

Reduce timers

Be efficient in the use of graphics

Minimize I/O

Summary

Improving your app’s energy consumption improves user experience

Summary

Improving your app’s energy consumption improves user experience

Continuously monitor your app’s energy and resource consumption

Summary

Improving your app’s energy consumption improves user experience

Continuously monitor your app’s energy and resource consumption

Look for ways to
• Do it never—Respond to changes in active state

Summary

Improving your app’s energy consumption improves user experience

Continuously monitor your app’s energy and resource consumption

Look for ways to
• Do it never—Respond to changes in active state

• Do it at a better time—Let the system schedule work

Summary

Improving your app’s energy consumption improves user experience

Continuously monitor your app’s energy and resource consumption

Look for ways to
• Do it never—Respond to changes in active state

• Do it at a better time—Let the system schedule work

• Do it more efficiently—Specify Quality of Service Classes on your work

Summary

Improving your app’s energy consumption improves user experience

Continuously monitor your app’s energy and resource consumption

Look for ways to
• Do it never—Respond to changes in active state

• Do it at a better time—Let the system schedule work

• Do it more efficiently—Specify Quality of Service Classes on your work

• Do it less—Optimize and improve your resource use

Summary

Improving your app’s energy consumption improves user experience

Continuously monitor your app’s energy and resource consumption

Look for ways to
• Do it never—Respond to changes in active state

• Do it at a better time—Let the system schedule work

• Do it more efficiently—Specify Quality of Service Classes on your work

• Do it less—Optimize and improve your resource use

And stick around for Part 2

More Information

Paul Danbold
Core OS Evangelist
danbold@apple.com

!

Energy Best Practices
WWDC 2013

Building Resource Efficient Apps
WWDC 2013

Apple Developer Forums
http://devforums.apple.com

Related Sessions

• What’s New in Foundation Networking Nob Hill Tuesday 3:15PM

• Improving Your App with Instruments Marina Tuesday 4:30PM

• Writing Energy Efficient Code, Part 2 Russian Hill Wednesday 11:30AM

• Testing in Xcode 6 Marina Thursday 9:00AM

• Fix Bugs Faster Using Activity Tracing Russian Hill Thursday 11:30AM

• Continuous Integration with Xcode 6 Marina Thursday 2:00PM

• Power, Performance, and Diagnostics:
What’s New in GCD and XPC

Russian Hill Thursday 2:00PM

Labs

• Power and Performance Lab Core OS Lab B Wednesday 2:00PM

• Instruments Lab Tools Lab B Thursday 9:00AM

• Power and Performance Lab Core OS Lab A Thursday 3:15PM

