
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

What’s New in Core Data

Rishi Verma Core Data Engineer
Scott Perry Core Data Engineer

App Frameworks

Session 220

What Is Core Data?
To persist or not to persist

Rishi Verma Core Data Engineer

Object Graph Management
Manage my graph with Core Data

Bridge your data simply into a Cocoa Model Layer
Persist data in the back end of your choice

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

Automatic Graph Management
Relationships can be complicated…

Automatic relationship maintenance

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

NSFetchRequest
Finding a needle in a haystack

Find the data you need

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

NSFetchRequest
Finding a needle in a haystack

Find the data you need

Apples

Apple Apple Pie

Snack Dessert

Apple Butter

Recipes

Sugar

Apple Bread

NSFetchRequest
Finding a needle in a haystack

Find the data you need
Batching

Apples Sugar

Apple Apple Bread

Snack

Apple Butter Apple Pie

Dessert

Recipes

NSFetchRequest
Finding a needle in a haystack

Find the data you need
Batching
Relationship prefetching

Apple Pie Apple Bread

Dessert

Recipes

Apples Sugar

AppleApple Butter

Snack

NSFetchRequest
Finding a needle in a haystack

Find the data you need
Batching
Relationship prefetching

Apple Pie Apple Bread

Dessert

Recipes

Apples Sugar

AppleApple Butter

Snack

NSFetchRequest
Finding a needle in a haystack

Find the data you need
Batching
Relationship prefetching

Then tie this with your UI and…

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

View and Controller Support
My UI brings all the updates to the users

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

My UI brings all the updates to the users

Apple Apple Pie Apple Bread

Snack Dessert

Recipes

View and Controller Support

My UI brings all the updates to the users

Apple Apple Pie Apple Bread

Snack Dessert

Recipes

View and Controller Support

My UI brings all the updates to the users
View and Controller Support

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

Banana
Bread

My UI brings all the updates to the users
View and Controller Support

Apples Sugar

Apple Apple Pie Apple Bread

Snack Dessert

Apple Butter

Recipes

Banana
Bread

Multi-Writer Conflict Handling
On your mark, set that merge policy, and done

CoreData versions all objects
Several types of merge policies available
• Defaults to error
• Persistent store vs. in-memory

Memory Efficiencies
APIs with benefits

Excellent memory scalability
Aggressive lazy loading

Memory

Apples Sugar

Apple Apple Pie Apple
Bread

Snack Dessert

Apple
Butter

Recipes

Apple Apple
Bread

Apple
Butter

Apples

Apple Pie

Snack Dessert

Recipes

Memory Efficiencies
APIs with benefits

Excellent memory scalability
Aggressive lazy loading

Memory

Apples Sugar

Apple Apple Pie Apple
Bread

Snack Dessert

Apple
Butter

Recipes

Apple Apple
Bread

Apple
Butter

Apples Apple Pie SnackDessert Recipes

Memory Efficiencies
APIs with benefits

Excellent memory scalability
Aggressive lazy loading

Memory

Apples Sugar

Apple Apple Pie Apple
Bread

Snack Dessert

Apple
Butter

Recipes

AppleApple
Bread

Apple
Butter

Smaller Footprint
Less is more

50%–70%
Less code

400,000

API Enhancements

hasPersistentChangedValues
NSManagedObject

var hasPersistentChangedValues: Bool { get }

No false positives setting a value to itself
Skips transient properties

objectIDsForRelationshipNamed
NSManagedObject

func objectIDsForRelationshipNamed(key: String) -> [NSManagedObjectID]

Reads cache or fetches the objectIDs
Doesn’t materialize entire relationship
Useful working with large, many-to-many relationships

objectIDsForRelationshipNamed
Code example

objectIDsForRelationshipNamed
Code example

let relations = person.objectIDsForRelationshipNamed("family")

objectIDsForRelationshipNamed
Code example

let relations = person.objectIDsForRelationshipNamed("family")

let fetchFamily = NSFetchRequest(entityName: “Person")
fetchFamily.fetchBatchSize = 100
fetchFamily.predicate = NSPredicate(format: "self IN %@", relations)

objectIDsForRelationshipNamed
Code example

let relations = person.objectIDsForRelationshipNamed("family")

let fetchFamily = NSFetchRequest(entityName: “Person")
fetchFamily.fetchBatchSize = 100
fetchFamily.predicate = NSPredicate(format: "self IN %@", relations)

let batchedRelations = managedObjectContext.executeFetchRequest(fetchFamily)

objectIDsForRelationshipNamed
Code example

let relations = person.objectIDsForRelationshipNamed("family")

let fetchFamily = NSFetchRequest(entityName: “Person")
fetchFamily.fetchBatchSize = 100
fetchFamily.predicate = NSPredicate(format: "self IN %@", relations)

let batchedRelations = managedObjectContext.executeFetchRequest(fetchFamily)

for relative in batchedRelations {
// work with relations 100 rows at a time

}

refreshAllObjects
NSManagedObjectContext

func refreshAllObjects()

Affects all registered objects in a context
Preserves unsaved changes
Managed Object references remain valid
Useful for breaking retain cycles

mergeChangesFromRemoteContextSave
NSManagedObjectContext

class func mergeChangesFromRemoteContextSave(changeNotificationData:
[NSObject : AnyObject], intoContexts contexts: [NSManagedObjectContext])

Better for changes from different coordinators
Fetches latest row data
Handles ordering with nested contexts

No Love for Exceptions
This is not the data you are looking for

Why is Core Data unable to fulfill a fault?
Managed objects are implicit futures
• Cocoa place holders for a row of data
• Often lazily loaded
• Part of a larger graph

Data deleted out from underneath this reference

shouldDeleteInaccessibleFaults
NSManagedObjectContext

var shouldDeleteInaccessibleFaults: Bool

• Defaults to YES
• Does not effect APIs with error parameters

Bad faults marked deleted
Missing data treated as NULL/nil/0

NSPersistentStoreCoordinator API
It’s my file and I’ll do what I want to

Truncating and copying databases
Don’t bypass the API layers
• NSFileManager and POSIX are bad for databases
• Will corrupt your files if open connections exist

Deleting a file with open locks ends badly…very badly

destroyPersistentStoreAtURL
NSPersistentStoreCoordinator

func destroyPersistentStoreAtURL(url: NSURL, withType storeType: String,
options: [NSObject : AnyObject]?) throws

Honors locking protocols
Handles details reconfiguring emptied files
• Journal mode, page size, etc.
• Need to pass same options as addToPersistentStore
• Accidentally switching journal modes can deadlock

replacePersistentStoreAtURL
NSPersistentStoreCoordinator

func replacePersistentStoreAtURL(destinationURL: NSURL, destinationOptions:
[NSObject : AnyObject]?, withPersistentStoreFromURL sourceURL: NSURL,
sourceOptions: [NSObject : AnyObject]?, storeType: String) throws

Same pattern as destroyPersistentStoreAtURL
If destination doesn’t exist, this does a copy

Unique Constraints
I got 99 problems and they are all duplicates…

Find or Create Pattern
Unique constraints

managedObjectContext.performBlock {
 let createRequest = NSFetchRequest(entityName: "Recipe")
 createRequest.resultType = ManagedObjectIDResultType
 let predicate =
 NSPredicate(format: "source = %@ AND externalID = %@", source,externalID)

 let results = self.managedObjectContext.executeFetchRequest(createRequest)
 if (results.count) {
 //update it!
 } else {
 //create it!
 }
}

One of a Kind
Unique constraints

Unique attributes across all instances of an entity
• Email addresses
• Part numbers
• UPC
• ISBN
• Unique key/value pairs

Best Practices
Unique constraints

Best for values unmodified after object creation
Sub-entities may extend constraints
• Parent (UUID)
• Sub-entity (UUID, EMAIL)

Recovery uses merge policies

Demo
How to utilize unique constraints

Deleting Multiple Objects
Take one down, pass it around…

Scott Perry Code Generator

Object Deletion
The problem

Today, deleting objects requires Application Memory

Persistent 
Configuration 

Storage

Object Deletion
The problem

Today, deleting objects requires
• Fetching some objects

Application Memory

Persistent 
Configuration 

Storage

Object Deletion
The problem

Today, deleting objects requires
• Fetching some objects
• Marking each object for deletion

Application Memory

Persistent 
Configuration 

Storage

Object Deletion
The problem

Today, deleting objects requires
• Fetching some objects
• Marking each object for deletion
• Saving the changes

Application Memory

Persistent 
Configuration 

Storage

Object Deletion
The problem

Today, deleting objects requires
• Fetching some objects
• Marking each object for deletion
• Saving the changes
• Repeat

Application Memory

Persistent 
Configuration 

Storage

Object Deletion
The problem

You shouldn’t have to load objects into memory to delete them

NSBatchDeleteRequest
The solution

Very similar to NSBatchUpdateRequest
• Acts directly on the Persistent Store

NSBatchDeleteRequest
The solution

Very similar to NSBatchUpdateRequest
• Acts directly on the Persistent Store

Instances of NSBatchDeleteRequest wrap an instance of NSFetchRequest
• One entity
• One or more stores
• Supports predicates as well as sort descriptors and offset/limit

NSBatchDeleteResult
The solution

Success/failure
Count of objects deleted
Object IDs of objects deleted

Batch Deletions
Limitations

Changes are not reflected in the context
Not all validation rules are enforced
No object notifications

Demo
NSBatchDeleteRequest

Model Versioning

Models Change

Recipe

instructions

name

overview

prepTime

thumbnailImage

image

ingredients

type

Models Change
Recipe

instructions

name

overview

prepTime

thumbnailImage

image

ingredients

type

Models Change
Recipe

instructions

name

overview

prepTime

thumbnailImage

image

ingredients

type

source

externalID

Models Change
…But migrations stay the same

Error Domain=NSCocoaErrorDomain Code=134130 "Persistent store migration failed, missing source managed
object model." UserInfo=0x1054a2380 {
 URL=file:///private/var/mobile/Containers/Data/Application/6CD803A7-91EC…
 metadata={
 NSPersistenceFrameworkVersion = 619;
 NSStoreModelVersionHashesVersion = 3;
 NSStoreModelVersionIdentifiers = (
 ""
);
 NSStoreType = SQLite;
 NSStoreUUID = "EF65B546-1D30-48A4-9090-E274F4DF7822";
 "_NSAutoVacuumLevel" = 2;
 NSStoreModelVersionHashes = {
 Recipe = <81b7e3b1 450cf990 6f1c8f36 89786a0b f61715cb afd9016b …
 …
 };
 },
 reason=Can't find model for source store
}

Models Change
…But migrations stay the same

Error Domain=NSCocoaErrorDomain Code=134130 "Persistent store migration failed, missing source managed
object model." UserInfo=0x1054a2380 {
 URL=file:///private/var/mobile/Containers/Data/Application/6CD803A7-91EC…
 metadata={
 NSPersistenceFrameworkVersion = 619;
 NSStoreModelVersionHashesVersion = 3;
 NSStoreModelVersionIdentifiers = (
 ""
);
 NSStoreType = SQLite;
 NSStoreUUID = "EF65B546-1D30-48A4-9090-E274F4DF7822";
 "_NSAutoVacuumLevel" = 2;
 NSStoreModelVersionHashes = {
 Recipe = <81b7e3b1 450cf990 6f1c8f36 89786a0b f61715cb afd9016b …
 …
 };
 },
 reason=Can't find model for source store
}

Iterating models is cumbersome
Forgetting to deploy model versions is dangerous

Models Change
The problem

Models Change
The problem

Iterating models is cumbersome
Forgetting to deploy model versions is dangerous
Automatic lightweight migrations should “Just Work™”

Model Caching
The solution

NSManagedObjectModel copied to store
Automatically updates existing stores
Lightweight migrations fetch the model from the store

Only SQLite stores
Cached model is not available to explicit migrations

Model Caching
Limitations

API Modernization

Generics and Nullability
Better living through more explicit types

nonnull (default), nullable, and null_resettable
__kindof allows for easier casting

id

Generics and Nullability
Better living through more explicit types

nonnull (default), nullable, and null_resettable
__kindof allows for easier casting

Recipe Ingredient

NSStringNSManagedObject

NSObject

Generics and Nullability
Better living through more explicit types

nonnull (default), nullable, and null_resettable
__kindof allows for easier casting

__kindof NSManagedObject *

Recipe Ingredient

NSStringNSManagedObject

NSObject

Generics and Nullability
Better living through more explicit types

nonnull (default), nullable, and null_resettable
__kindof allows for easier casting
Generated subclasses use generics for to-many relationships

Generated Subclasses

Subclass.h

Subclass.m
Subclass.swift

Generated Subclasses

Subclass.h

Subclass+NSManagedProperties.h

Subclass.m

Subclass.swift

Subclass+NSManagedProperties.swift

Generated Subclasses

Subclass+NSManagedProperties.h
Subclass+NSManagedProperties.swift

import Foundation
import CoreData

extension Recipe {

 @NSManaged var thumbnailImage: NSObject?
 @NSManaged var source: String?
 @NSManaged var instructions: String?
 @NSManaged var prepTime: String?
 @NSManaged var overview: String?
 @NSManaged var externalID: String?
 @NSManaged var name: String?
 @NSManaged var ingredients: NSSet?
 @NSManaged var image: NSManagedObject?
 @NSManaged var type: NSManagedObject?

}

#import "Recipe.h"

NS_ASSUME_NONNULL_BEGIN

@interface Recipe (CoreDataProperties)

@property (nullable, nonatomic, retain) id thumbnailImage;
@property (nullable, nonatomic, retain) NSString *source;
@property (nullable, nonatomic, retain) NSString *instructions;
@property (nullable, nonatomic, retain) NSString *prepTime;
@property (nullable, nonatomic, retain) NSString *overview;
@property (nullable, nonatomic, retain) NSString *externalID;
@property (nullable, nonatomic, retain) NSString *name;
@property (nullable, nonatomic, retain) NSSet<Ingredient *> *ingredients;
@property (nullable, nonatomic, retain) NSManagedObject *image;
@property (nullable, nonatomic, retain) NSManagedObject *type;

@end

@interface Recipe (CoreDataGeneratedAccessors)

- (void)addIngredientsObject:(Ingredient *)value;
- (void)removeIngredientsObject:(Ingredient *)value;
- (void)addIngredients:(NSSet<Ingredient *> *)values;
- (void)removeIngredients:(NSSet<Ingredient *> *)values;

@end

NS_ASSUME_NONNULL_END

Generated Subclasses
Subclass+NSManagedProperties.h Subclass+NSManagedProperties.swift

Concurrency
Confinement is dead, long live queues

Concurrency
Confinement is dead, long live queues

ConfinementConcurrencyType is deprecated

Concurrency
Confinement is dead, long live queues

ConfinementConcurrencyType is deprecated
init() has been deprecated

Concurrency
Confinement is dead, long live queues

ConfinementConcurrencyType is deprecated
init() has been deprecated
init(concurrencyType:) is the designated initializer
• Use PrivateQueueConcurrencyType or MainQueueConcurrencyType

Concurrency
Confinement is dead, long live queues

ConfinementConcurrencyType is deprecated
init() has been deprecated
init(concurrencyType:) is the designated initializer
• Use PrivateQueueConcurrencyType or MainQueueConcurrencyType

NSManagedObjectContext Documentation developer.apple.com

What’s New in Core Data on iOS WWDC11

http://developer.apple.com

Core Data Performance

Apps Improve

Models get more complex
Stores get larger
Queries get more interesting

Apps Improve

Models get more complex
Stores get larger
Queries get more interesting
Apps stay fast!

Slow Can Be Surprising

Scale differs between development and production
The simulator is faster than the device

Slow Can Be Surprising

Scale differs between development and production
The simulator is faster than the device
Users use devices in production

Find Problems Before They Find You
Predicting the future with tools

Relationship Faults

Relationship Faults

Relationship Faults

Relationship Faults
Prefetch the objects you’re going to use

var recipeRequest = NSFetchRequest(entityName:"Recipe")

let sortDescriptor = NSSortDescriptor(key:"name", ascending: true)
recipeRequest.sortDescriptors = [sortDestcriptor]

recipeRequest.relationshipKeyPathsForPrefetching = ["type"]

context.executeFetchRequest(recipeRequest)

Relationship Faults

Relationship Faults

Relationship Faults
Prefetch the objects you’re going to use

var ingredientRequest = NSFetchRequest(entityName:"Ingredient")

ingredientRequest.predicate = NSPredicate(format:"recipe = %@",
argumentArray:[recipe])

context.executeFetchRequest(ingredientRequest)

Large Fetches

Large Fetches

Large Fetches

Large Fetches

Large Fetches
Take advantage of batching

var recipeRequest = NSFetchRequest(entityName:"Recipe")

let sortDescriptor = NSSortDescriptor(key:"name", ascending: true)
recipeRequest.sortDescriptors = [sortDestcriptor]

recipeRequest.fetchBatchSize = 30

context.executeFetchRequest(recipeRequest)

Complex Fetches
-com.apple.CoreData.SQLDebug 1

Larger time/count ratio

Complex Fetches
-com.apple.CoreData.SQLDebug 1

Larger time/count ratio

CoreData: sql: SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID, t0.ZINSTRUCTIONS,
t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE, t0.ZTHUMBNAILIMAGE,
t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK IN (SELECT
n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE, n1_t0.ZEXTERNALID))
CoreData: annotation: sql connection fetch time: 0.0766s
CoreData: annotation: total fetch execution time: 0.0786s for 85 rows.

Complex Fetches
-com.apple.CoreData.SQLDebug 1

Larger time/count ratio

CoreData: sql: SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID, t0.ZINSTRUCTIONS,
t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE, t0.ZTHUMBNAILIMAGE,
t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK IN (SELECT
n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE, n1_t0.ZEXTERNALID))
CoreData: annotation: sql connection fetch time: 0.0766s
CoreData: annotation: total fetch execution time: 0.0786s for 85 rows.

CoreData: annotation: Connecting to sqlite database file at "/Users/numist/…
…

Complex Fetches
EXPLAIN QUERY PLAN

$ sqlite3 "/Users/numist/…/Recipes.sqlite"
sqlite>

Complex Fetches
EXPLAIN QUERY PLAN

$ sqlite3 "/Users/numist/…/Recipes.sqlite"
sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));

Complex Fetches
EXPLAIN QUERY PLAN

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0
1 0 0 USE TEMP B-TREE FOR GROUP BY

Complex Fetches
EXPLAIN QUERY PLAN

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0
1 0 0 USE TEMP B-TREE FOR GROUP BY

Complex Fetches
EXPLAIN QUERY PLAN

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0
1 0 0 USE TEMP B-TREE FOR GROUP BY

Complex Fetches
EXPLAIN QUERY PLAN

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0
1 0 0 USE TEMP B-TREE FOR GROUP BY

Complex Fetches
EXPLAIN QUERY PLAN

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0
1 0 0 USE TEMP B-TREE FOR GROUP BY

Complex Fetches
Large fetches benefit from indexes

Complex Fetches
Large fetches benefit from indexes

Complex Fetches
Large fetches benefit from indexes

Complex Fetches
Verify a better plan

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0 USING COVERING INDEX
 ZRECIPE_ZSOURCE_ZEXTERNALID

Complex Fetches
Irreducible complexity

sqlite> EXPLAIN QUERY PLAN SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZEXTERNALID,
t0.ZINSTRUCTIONS, t0.ZNAME, t0.ZOVERVIEW, t0.ZPREPTIME, t0.ZSOURCE,
t0.ZTHUMBNAILIMAGE, t0.ZIMAGE, t0.ZTYPE FROM ZRECIPE t0 WHERE NOT (t0.Z_PK
IN (SELECT n1_t0.Z_PK FROM ZRECIPE n1_t0 GROUP BY n1_t0.ZSOURCE,
n1_t0.ZEXTERNALID));
sele order from deta
---- ------------- ---- ----
0 0 0 SCAN TABLE ZRECIPE AS t0
0 0 0 EXECUTE LIST SUBQUERY 1
1 0 0 SCAN TABLE ZRECIPE AS n1_t0 USING COVERING INDEX
 ZRECIPE_ZSOURCE_ZEXTERNALID

Complex Fetches
Irreducible complexity

Get off the main thread
• Private queue context
• NSAsynchronousFetchRequest

Look for Problem Patterns

Relationship faults
• Lots of small queries slow down your app

Large fetches
• Make Core Data do the work

Complex fetches
• Add indices and try more powerful predicates
• Avoid blocking UI threads

http://bugreport.apple.com

Bugs
• Sample app bonus

Feature requests
Enhancement ideas
Performance issues
• Sample store bonus

Documentation improvements

Developer Portal
developer.apple.com

Documentation and Sample Code
developer.apple.com/library

Developer Forums
developer.apple.com/forums

Developer Technical Support
developer.apple.com/support/technical

More Information

http://developer.apple.com/forums
http://developer.apple.com/forums

Core Data Lab Frameworks Lab C Thursday 3:30PM

Core Data Lab Frameworks Lab E Friday 10:00AM

Related Labs

