WWDCT5

App Frameworks

Performance on iOS and watchOS

Strategies and tools
Session 230

Ben Englert i0OS Performance

© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.



Introduction

Why should | think about performance?



Introduction

Why should | think about performance?

ow should | think about performance?



Introduction

Why should | think about performance?

ow should | think about performance?

Specific strategies



Introduction

Why should | think about performance?

ow should | think about performance?
Specific strategies

New platform: watchOS 2
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Performance Is a Feature

Responsiveness delights and engages users

Be a good neighbor, especially in Multitasking on iPad

Effhicient apps extend battery life
Supports the whole range of iOS 9 hardware
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Thinking About Performance

Choosing technologies
Taking measurements
Setting goals

Performance workflow
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Use the Right Tool for the Job

Proactively architect your app for great performance

Know the technologies
Pick the best ones for your app

Apple technologies are optimized
(we use them)

Benefit from software updates
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Measuring Performance

Animations
- Instruments: Core Animation
Responsiveness

- Code instrumentation

+ Instruments: System Trace

Memory

+ Xcode debugger
- Instruments: Allocations

- |nstruments: Leaks



Code Instrumentation
Measuring responsiveness

@IBAction func showImageTapped(sender: UIButton) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage




Code Instrumentation
Collect start and end times

@IBAction func showImageTapped(sender: UIButton) {
let startTime = CFAbsoluteTimeGetCurrent()
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage
let endTime = CFAbsoluteTimeGetCurrent()



Code Instrumentation
Convert to appropriate units

@IBAction func showImageTapped(sender: UIButton) {
let startTime = CFAbsoluteTimeGetCurrent()
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage
let endTime = CFAbsoluteTimeGetCurrent()
let totalTime = (endTime - startTime) x 1000
print ("showImageTappedTimed took \(totalTime) milliseconds")



Code Instrumentation
Don't ship your instrumentation

@IBAction func showImageTapped(sender: UIButton) {
#1T MEASURE PERFORMANCE
let startTime = CFAbsoluteTimeGetCurrent()
#endif
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = mylImage
#1T MEASURE PERFORMANCE
let endTime = CFAbsoluteTimeGetCurrent()
let totalTime = (endTime - startTime) x 1000
print("showImageTappedTimed took \(totalTime) milliseconds”)
#endif

}



Code Instrumentation
Measuring responsiveness



Code Instrumentation
Measuring responsiveness

Taps and button presses



Code Instrumentation
Measuring responsiveness

Taps and button presses

- [BAction



Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction

- toucheskEnded



Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction
- touchesEnded

+ UlGestureRecognizer target



Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction
- touchesEnded

+ UlGestureRecognizer target

abs and modal views




Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction
- touchesEnded

+ UlGestureRecognizer target

abs and modal views

- viewWillAppear and viewDidAppear
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Setting Performance Goals

60fps scrolling and animations

Advanced Graphics and Animations for iOS Apps WWDC14
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...on older devices!
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Performance Workflow

Don't guess
Avoid premature optimization
Make one change at a time

Just like ordinary debugging
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-



Profiling vs. Measuring

Profiling: Understanding overall app activity
+ Xcode debugger

- Instruments: Time Profiler

Measuring: Instrumenting a specific action

+ CFAbsoluteTimeGetCurrent

- Instruments: System Trace



Responsiveness

Reacting to user input
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Main Thread Consumes User Input

Touches and scrolling

Orientation

Multitasking resizes

A responsive main thread makes your app feel great

Busy main thread makes your app appear frozen
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Avoid Using the Main Thread for.. .

CPU-intensive work

Tasks that depend on external resources

Profiling in Depth Mission Thursday 3:30PM



What's a Blocking Call?

Any code path that ends up making a syscall



What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory



What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory
» Disk 1/0



What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory
» Disk 1/0

- Network access



What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory
» Disk 1/0
- Network access

Waiting for work to complete on another thread
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Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous APl you can switch to

Some restructuring required

NSURLConnection.sendAsynchronousRequest(..
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Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent
Use Grand Central Dispatch (GCD)

GCD manages a global thread pool

Express tasks as closures (a.k.a. blocks)
Closures run on an arbitrary thread

Ensure operations performed are thread-safe!
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Thread Safety

Some objects are restricted to the main thread

Some objects, once created, can be used from any thread
- Protection is not built-in

- Implement protection using serial GCD queues

Read the headers
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@IBAction func showImageTapped(sender: UIButton) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage
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@IBAction func showImageTapped(sender: UIButton) {

let myData = NSData(contentsOfFile: self.path)! _
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self.1imageView.1image = myImage
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@IBAction func showImageTapped(sender: UIButton) {

let myData = NSData(contentsOfFile: self.path)! _

let myImage = self.watermarkedImageFromData(myData)
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Strategies for Avoiding Blocking Calls

@IBAction func showImageTapped(sender: UIButton) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage
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Grand Central Dispatch

User input delayed
Button Scroll or
press rotation

| [ ©
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Main thread



Strategies for Avoiding Blocking Calls

dispatch _async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage



Strategies for Avoiding Blocking Calls

dispatch_async(dispatch _get global _queue(QO0S_CLASS USER_INITIATED, 0)) A
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage



Strategies for Avoiding Blocking Calls
Quality of Service (QoS)

dispatch_async(dispatch_get _global queue(QO0S CLASS USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage
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dispatch_async(dispatch _get global_queue(QO0S_CLASS USER_INITIATED, 0)) +
let myData = NSData(contentsOfFile: self.path)!
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Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!

let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = mylImage @



Strategies for Avoiding Blocking Calls

var myImage: UIImage? = nil
dispatch_async(dispatch_get _global queue(QO0S_CLASS USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
myImage = self.watermarkedImageFromData(myData)

}

self.1imageView.1mage = myImage



Strategies for Avoiding Blocking Calls

var myImage: UIImage? = nil
dispatch_async(dispatch_get global_queue(QO0S_CLASS USER_INITIATED, 0)) +
let myData = NSData(contentsOfFile: self.path)!

myImage = self.watermarkedImageFromData(myData) (:::)
}

self.1imageView.1mage = myImage
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Grand Central Dispatch

Button
press

l mylmage == nil @

Main thread

\4

Dispatch queue



Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {
self.1imageView.1mage = myImage

}



Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {
self.1imageView.1mage = myImage

}



Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

self.1imageView.1image = mylImage

dispatch_async(dispatch_get _main_queue()) { (:::>

}



Grand Central Dispatch

Timely and thread-safe object access

Button
press

l

B

Main thread
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Dispatch queue




Grand Central Dispatch

Timely handling of user input

Button Scroll or
press rotation

| |
@ e [l

Main thread

\4

Dispatch queue
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Common Blocking Calls

Networking: NSURLConnection and friends

» Use asynchronous AP

-+ NSURLSession background session
Foundation initializers

- contentsOfFile:

- contentsOfURL:

Core Data

-+ Move some Core Data work to different concurrency modes

What's New in Core Data Mission Thursday 2:30PM
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Strategies for Avoiding Blocking Calls

Switch to asynchronous AP
Use GCD

Building Responsive and Efficient Apps with GCD Nob Hill Friday 10:00AM
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Memory

Multitasking requires memory tuning
watchOS considerations
Older haraware

Extensions



105 Memory System

Never enough to go around



105 Memory System

Never enough to go around

Suspended apps are not persisted



105 Memory System

Never enough to go around
Suspended apps are not persisted

They are evicted without storing



105 Memory System

Never enough to go around
Suspended apps are not persisted

They are evicted without storing

iOS App Performance: Memory WWDC12
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Memory
Memory Is time

Reclaiming memory takes time
Sudden high-memory demand impacts responsiveness

Preserves state in the background
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Rationalize Your App's Memory Footprint

Resources

+ Strings

+ Images

+ Core Data managed objects

Create a mental model of accessed resources

Check your work using Xcode debugger

Instruments: Allocations and Leaks

Improving Your App with Instruments WWDC14



B iPhone (9.0) Running SamplePhotosApp on iPhone

BFH = Q A & Lh ! SamplePhotosApp SamplePhotosApp ) m AAPLAppDelegate.m ) No Selection

_ At /*
v SamplePhotosApp Copyright (C) 2014 Apple Inc. All Rights Reserved.
See LICENSE.txt for this sample’s licensing information

@ cPu

Abstract:

(1 Memory
1111 The application's delegate.

—+ Energy Impact
1 */

Zero KB/s _
#import "AAPLAppDelegate.h"

2 Network Zero KB/s @implementation AAPLAppDelegate

@ FPS @end

< SamplePhotosApp




Il ‘52 Sam...App B iPhone (9.0) Running SamplePhotosApp on iPhone

D & o =) SamplePhotosApp SamplePhotosApp / m AAPLAppDelegate.m ) No Selection

/%
Copyright (C) 2014 Apple Inc. All Rights Reserved.
See LICENSE.txt for this sample’s licensing information

Sam ""\‘DF> hotocADn
dimpiernotosAppP

CPU

Abstract:
Memory

The application's delegate.
Energy Impact
*/
Disk .
| #import "AAPLAppDelegate.h"

Network @implementation AAPLAppDelegate

FPS @end

</ SamplePhotosApp
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Application Lifecycle

Use NSCache

Listen for notifications
- UlApplicationDidEnterBackgroundNotification
- UlApplicationDidReceiveMemoryWarningNotification



Application Lifecycle

Responding to changes

init() {
NSNotificationCenter.defaultCenter()
.addObserverForName(UIApplicationDidReceiveMemoryWarningNotification,
object: self,
queue: NSOperationQueue.mainQueue())
{ [unowned self] (NSNotification notification) —-> Void in
self.purgeCaches() // custom cache purging behavior

deinit {
NSNotificationCenter.defaultCenter().removeObserver(self)
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Application Lifecycle

Responding to changes

init() {
NSNotificationCenter.defaultCenter()
.addObserverForName (UIApplicationDidReceiveMemoryWarningNotification,
object: self,
queue: NSOperationQueue.mainQueue())
{ [unowned self] (NSNotification notification) —-> Void in
self.purgeCaches() // custom cache purging behavior

deinit {
NSNotificationCenter.defaultCenter().removeObserver(self)
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Memory Strategies
Covered in detall

Resource types and access patterns

Responding to system memory state while running

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM
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New Platform
Native code on watchOS

Reuse what makes sense
» Your existing code

- Familiar APls and frameworks

Implement new mechanisms

Designing for Apple Watch Presidio Wednesday 4:30PM
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watchOS

Quick and simple

Short, simple interactions

Recent and relevant data in Apps, Notifications, Glances

Launch time is critical
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watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic

- Send appropriately sized and formatted responses
- Remove unused keys from JSON or XML blobs

+ Send appropriately sized images

- Send an appropriate number of records (one screen)
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watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated
- Bidirectional shared state

+ WCSession.defaultSession().updateApplicationContext(..)
- Benefit from Background App Refresh
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watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
- Implement a lightweight service on iPhone

- WCSession.defaultSession().sendMessage(..)

- Parse and pare down server responses on iPhone

+ Reply over WCSession with minimal working set



Summary

Performance is a feature

Ffhcient apps feel great, build trust, and save power

Learn about Apple technologies and choose the best ones for your app
Keep your main thread ready for user input

Understand when and why your app uses memory

On watchOS, fetch and process a minimal set of information



More Information

Documentation echnical Support

Performance Overview Apple Developer Forums
Instruments User Guide Developer Technical Support
Concurrency Programming Guide nttp://developer.apple.com/forums

Threading Programming Guide

General Inquiries
Curt Rothert, App Frameworks Evangelist
rothert@apple.com

http://developer.apple.com/library
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