
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

Performance on iOS and watchOS
Strategies and tools

Ben Englert iOS Performance

App Frameworks

Session 230

Introduction

Why should I think about performance?

Introduction

Why should I think about performance?
How should I think about performance?

Introduction

Why should I think about performance?
How should I think about performance?
Specific strategies

Introduction

Why should I think about performance?
How should I think about performance?
Specific strategies
New platform: watchOS 2

Performance Is a Feature

Performance Is a Feature

Performance Is a Feature

Responsiveness delights and engages users

Performance Is a Feature

Responsiveness delights and engages users
Be a good neighbor, especially in Multitasking on iPad

Performance Is a Feature

Responsiveness delights and engages users
Be a good neighbor, especially in Multitasking on iPad
Efficient apps extend battery life

Performance Is a Feature

Responsiveness delights and engages users
Be a good neighbor, especially in Multitasking on iPad
Efficient apps extend battery life
Supports the whole range of iOS 9 hardware

Thinking About Performance

Thinking About Performance

Choosing technologies

Thinking About Performance

Choosing technologies
Taking measurements

Thinking About Performance

Choosing technologies
Taking measurements
Setting goals

Thinking About Performance

Choosing technologies
Taking measurements
Setting goals
Performance workflow

Use the Right Tool for the Job
Proactively architect your app for great performance

Use the Right Tool for the Job
Proactively architect your app for great performance

Know the technologies

Use the Right Tool for the Job
Proactively architect your app for great performance

Know the technologies
Pick the best ones for your app

Use the Right Tool for the Job
Proactively architect your app for great performance

Know the technologies
Pick the best ones for your app
Apple technologies are optimized  
(we use them)

Use the Right Tool for the Job
Proactively architect your app for great performance

Know the technologies
Pick the best ones for your app
Apple technologies are optimized  
(we use them)
Benefit from software updates

Measuring Performance

Measuring Performance

Animations

Measuring Performance

Animations
• Instruments: Core Animation

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness
• Code instrumentation

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness
• Code instrumentation
• Instruments: System Trace

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness
• Code instrumentation
• Instruments: System Trace

Memory

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness
• Code instrumentation
• Instruments: System Trace

Memory
• Xcode debugger

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness
• Code instrumentation
• Instruments: System Trace

Memory
• Xcode debugger
• Instruments: Allocations

Measuring Performance

Animations
• Instruments: Core Animation

Responsiveness
• Code instrumentation
• Instruments: System Trace

Memory
• Xcode debugger
• Instruments: Allocations
• Instruments: Leaks

Code Instrumentation
Measuring responsiveness

 @IBAction func showImageTapped(sender: UIButton) {
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 }

Code Instrumentation
Collect start and end times

 @IBAction func showImageTapped(sender: UIButton) {
 let startTime = CFAbsoluteTimeGetCurrent()
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 let endTime = CFAbsoluteTimeGetCurrent()
 }

Code Instrumentation
Convert to appropriate units

 @IBAction func showImageTapped(sender: UIButton) {
 let startTime = CFAbsoluteTimeGetCurrent()
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 let endTime = CFAbsoluteTimeGetCurrent()
 let totalTime = (endTime - startTime) * 1000
 print("showImageTappedTimed took \(totalTime) milliseconds")
 }

Code Instrumentation
Don’t ship your instrumentation

 @IBAction func showImageTapped(sender: UIButton) {
#if MEASURE_PERFORMANCE
 let startTime = CFAbsoluteTimeGetCurrent()
#endif
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
#if MEASURE_PERFORMANCE
 let endTime = CFAbsoluteTimeGetCurrent()
 let totalTime = (endTime - startTime) * 1000
 print("showImageTappedTimed took \(totalTime) milliseconds”)
#endif
 }

Code Instrumentation
Measuring responsiveness

Code Instrumentation
Measuring responsiveness

Taps and button presses

Code Instrumentation
Measuring responsiveness

Taps and button presses
• IBAction

Code Instrumentation
Measuring responsiveness

Taps and button presses
• IBAction
• touchesEnded

Code Instrumentation
Measuring responsiveness

Taps and button presses
• IBAction
• touchesEnded
• UIGestureRecognizer target

Code Instrumentation
Measuring responsiveness

Taps and button presses
• IBAction
• touchesEnded
• UIGestureRecognizer target

Tabs and modal views

Code Instrumentation
Measuring responsiveness

Taps and button presses
• IBAction
• touchesEnded
• UIGestureRecognizer target

Tabs and modal views
• viewWillAppear and viewDidAppear

Setting Performance Goals

Setting Performance Goals

60fps scrolling and animations

Setting Performance Goals

60fps scrolling and animations

Advanced Graphics and Animations for iOS Apps WWDC14

Setting Performance Goals

Setting Performance Goals

Respond to user actions in 100ms

Setting Performance Goals

Respond to user actions in 100ms
…on older devices!

Setting Performance Goals

Respond to user actions in 100ms
…on older devices!

Performance Workflow

Performance Workflow

Don’t guess

Performance Workflow

Don’t guess
Avoid premature optimization

Performance Workflow

Don’t guess
Avoid premature optimization
Make one change at a time

Performance Workflow

Don’t guess
Avoid premature optimization
Make one change at a time
Just like ordinary debugging

Performance Workflow

ProfileChange code

Reproduce

Measure

Performance Workflow

ProfileChange code

Reproduce

Measure

Profiling vs. Measuring

Profiling: Understanding overall app activity
• Xcode debugger
• Instruments: Time Profiler

Measuring: Instrumenting a specific action
• CFAbsoluteTimeGetCurrent
• Instruments: System Trace

Responsiveness
Reacting to user input

Main Thread Consumes User Input

Touches and scrolling
Orientation
Multitasking resizes

Main Thread Consumes User Input

Touches and scrolling
Orientation
Multitasking resizes
A responsive main thread makes your app feel great

Main Thread Consumes User Input

Touches and scrolling
Orientation
Multitasking resizes
A responsive main thread makes your app feel great
Busy main thread makes your app appear frozen

Avoid Using the Main Thread for…

CPU-intensive work
Tasks that depend on external resources

Avoid Using the Main Thread for…

CPU-intensive work
Tasks that depend on external resources

Profiling in Depth Mission Thursday 3:30PM

What’s a Blocking Call?

Any code path that ends up making a syscall

What’s a Blocking Call?

Any code path that ends up making a syscall
Accessing resources not currently in memory

What’s a Blocking Call?

Any code path that ends up making a syscall
Accessing resources not currently in memory
• Disk I/O

What’s a Blocking Call?

Any code path that ends up making a syscall
Accessing resources not currently in memory
• Disk I/O
• Network access

What’s a Blocking Call?

Any code path that ends up making a syscall
Accessing resources not currently in memory
• Disk I/O
• Network access

Waiting for work to complete on another thread

What’s a Blocking Call?

“synchronous” is a synonym for blocking

NSURLConnection.sendSynchronousRequest(…

What’s a Blocking Call?

“synchronous” is a synonym for blocking

NSURLConnection.sendSynchronousRequest(…

Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous API you can switch to

NSURLConnection.sendSynchronousRequest(…

Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous API you can switch to

NSURLConnection.sendAsynchronousRequest(…

Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous API you can switch to
Some restructuring required

NSURLConnection.sendAsynchronousRequest(…

Strategies for Avoiding Blocking Calls

In other cases, there isn’t an async equivalent

Strategies for Avoiding Blocking Calls

In other cases, there isn’t an async equivalent
Use Grand Central Dispatch (GCD)

Strategies for Avoiding Blocking Calls

In other cases, there isn’t an async equivalent
Use Grand Central Dispatch (GCD)
GCD manages a global thread pool

Strategies for Avoiding Blocking Calls

In other cases, there isn’t an async equivalent
Use Grand Central Dispatch (GCD)
GCD manages a global thread pool
Express tasks as closures (a.k.a. blocks)

Strategies for Avoiding Blocking Calls

In other cases, there isn’t an async equivalent
Use Grand Central Dispatch (GCD)
GCD manages a global thread pool
Express tasks as closures (a.k.a. blocks)
Closures run on an arbitrary thread

Strategies for Avoiding Blocking Calls

In other cases, there isn’t an async equivalent
Use Grand Central Dispatch (GCD)
GCD manages a global thread pool
Express tasks as closures (a.k.a. blocks)
Closures run on an arbitrary thread
Ensure operations performed are thread-safe!

Thread Safety

Some objects are restricted to the main thread

Thread Safety

Some objects are restricted to the main thread
Some objects, once created, can be used from any thread

Thread Safety

Some objects are restricted to the main thread
Some objects, once created, can be used from any thread
• Protection is not built-in

Thread Safety

Some objects are restricted to the main thread
Some objects, once created, can be used from any thread
• Protection is not built-in
• Implement protection using serial GCD queues

Thread Safety

Some objects are restricted to the main thread
Some objects, once created, can be used from any thread
• Protection is not built-in
• Implement protection using serial GCD queues

Read the headers

 @IBAction func showImageTapped(sender: UIButton) {
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 }

Strategies for Avoiding Blocking Calls

 @IBAction func showImageTapped(sender: UIButton) {
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 }

Strategies for Avoiding Blocking Calls

Load file data

 @IBAction func showImageTapped(sender: UIButton) {
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 }

Strategies for Avoiding Blocking Calls

Load file data

Decode and filter image

 @IBAction func showImageTapped(sender: UIButton) {
 let myData = NSData(contentsOfFile: self.path)!
 let myImage = self.watermarkedImageFromData(myData)
 self.imageView.image = myImage
 }

Strategies for Avoiding Blocking Calls

Load file data

Decode and filter image

Update image view

Grand Central Dispatch
Current implementation

Main thread

Button  
press

Load file data Decode and filter image Update image view

Grand Central Dispatch
Current implementation

Main thread

Button  
press

Load file data Decode and filter image Update image view

Scroll or
rotation

Grand Central Dispatch
Current implementation

Main thread

Button  
press

Load file data Decode and filter image Update image view

Scroll or
rotation

Handle input

Grand Central Dispatch
User input delayed

Main thread

Button  
press

Load file data Decode and filter image Update image view

Scroll or
rotation

Handle input

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.imageView.image = myImage

}

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.imageView.image = myImage

}

Strategies for Avoiding Blocking Calls
Quality of Service (QoS)

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.imageView.image = myImage

}

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.imageView.image = myImage

}

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.imageView.image = myImage

}

Strategies for Avoiding Blocking Calls

var myImage: UIImage? = nil
dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {

let myData = NSData(contentsOfFile: self.path)!
myImage = self.watermarkedImageFromData(myData)

}

self.imageView.image = myImage

Strategies for Avoiding Blocking Calls

var myImage: UIImage? = nil
dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {

let myData = NSData(contentsOfFile: self.path)!
myImage = self.watermarkedImageFromData(myData)

}

self.imageView.image = myImage

Grand Central Dispatch

Main thread

Button  
press

GCD Update image view

Dispatch queue

Load file data Decode and filter image

Grand Central Dispatch

myImage == nil

Main thread

Button  
press

GCD Update image view

Dispatch queue

Load file data Decode and filter image

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {

self.imageView.image = myImage
}

}

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {

self.imageView.image = myImage
}

}

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {

self.imageView.image = myImage
}

}

Strategies for Avoiding Blocking Calls

Grand Central Dispatch
Timely and thread-safe object access

Main thread

Button  
press

GCD Update image view

Dispatch queue

GCDLoad file data Decode and filter image

Grand Central Dispatch
Timely handling of user input

Scroll or
rotation

Handle input

Main thread

Button  
press

GCD Update image view

Dispatch queue

GCDLoad file data Decode and filter image

Common Blocking Calls

Common Blocking Calls

Networking: NSURLConnection and friends

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Foundation initializers

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Foundation initializers
• contentsOfFile:

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Foundation initializers
• contentsOfFile:
• contentsOfURL:

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Foundation initializers
• contentsOfFile:
• contentsOfURL:

Core Data

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Foundation initializers
• contentsOfFile:
• contentsOfURL:

Core Data
• Move some Core Data work to different concurrency modes

Common Blocking Calls

Networking: NSURLConnection and friends
• Use asynchronous API
• NSURLSession background session

Foundation initializers
• contentsOfFile:
• contentsOfURL:

Core Data
• Move some Core Data work to different concurrency modes

What’s New in Core Data Mission Thursday 2:30PM

Strategies for Avoiding Blocking Calls

Switch to asynchronous API

Strategies for Avoiding Blocking Calls

Switch to asynchronous API
Use GCD

Strategies for Avoiding Blocking Calls

Switch to asynchronous API
Use GCD

Building Responsive and Efficient Apps with GCD Nob Hill Friday 10:00AM

Memory

Memory

Multitasking requires memory tuning

Memory

Multitasking requires memory tuning
watchOS considerations

Memory

Multitasking requires memory tuning
watchOS considerations
Older hardware

Memory

Multitasking requires memory tuning
watchOS considerations
Older hardware
Extensions

iOS Memory System

Never enough to go around

iOS Memory System

Never enough to go around
Suspended apps are not persisted

iOS Memory System

Never enough to go around
Suspended apps are not persisted
They are evicted without storing

iOS Memory System

Never enough to go around
Suspended apps are not persisted
They are evicted without storing

iOS App Performance: Memory WWDC12

Memory
Memory is time

Reclaiming memory takes time

Memory
Memory is time

Reclaiming memory takes time
Sudden high-memory demand impacts responsiveness

Memory
Memory is time

Reclaiming memory takes time
Sudden high-memory demand impacts responsiveness
Preserves state in the background

Rationalize Your App’s Memory Footprint

Rationalize Your App’s Memory Footprint

Resources

Rationalize Your App’s Memory Footprint

Resources
• Strings

Rationalize Your App’s Memory Footprint

Resources
• Strings
• Images

Rationalize Your App’s Memory Footprint

Resources
• Strings
• Images
• Core Data managed objects

Rationalize Your App’s Memory Footprint

Resources
• Strings
• Images
• Core Data managed objects

Create a mental model of accessed resources

Rationalize Your App’s Memory Footprint

Resources
• Strings
• Images
• Core Data managed objects

Create a mental model of accessed resources
Check your work using Xcode debugger

Rationalize Your App’s Memory Footprint

Resources
• Strings
• Images
• Core Data managed objects

Create a mental model of accessed resources
Check your work using Xcode debugger
Instruments: Allocations and Leaks

Rationalize Your App’s Memory Footprint

Resources
• Strings
• Images
• Core Data managed objects

Create a mental model of accessed resources
Check your work using Xcode debugger
Instruments: Allocations and Leaks

Improving Your App with Instruments WWDC14

Application Lifecycle

Use NSCache

Application Lifecycle

Use NSCache
Listen for notifications

Application Lifecycle

Use NSCache
Listen for notifications
• UIApplicationDidEnterBackgroundNotification

Application Lifecycle

Use NSCache
Listen for notifications
• UIApplicationDidEnterBackgroundNotification
• UIApplicationDidReceiveMemoryWarningNotification

Application Lifecycle
Responding to changes

init() {
 NSNotificationCenter.defaultCenter()
 .addObserverForName(UIApplicationDidReceiveMemoryWarningNotification,
 object: self,
 queue: NSOperationQueue.mainQueue())
 { [unowned self] (NSNotification notification) -> Void in

 self.purgeCaches() // custom cache purging behavior
 }
}

deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self)
}

Application Lifecycle
Responding to changes

init() {
 NSNotificationCenter.defaultCenter()
 .addObserverForName(UIApplicationDidReceiveMemoryWarningNotification,
 object: self,
 queue: NSOperationQueue.mainQueue())
 { [unowned self] (NSNotification notification) -> Void in

 self.purgeCaches() // custom cache purging behavior
 }
}

deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self)
}

Application Lifecycle
Responding to changes

init() {
 NSNotificationCenter.defaultCenter()
 .addObserverForName(UIApplicationDidReceiveMemoryWarningNotification,
 object: self,
 queue: NSOperationQueue.mainQueue())
 { [unowned self] (NSNotification notification) -> Void in

 self.purgeCaches() // custom cache purging behavior
 }
}

deinit {
 NSNotificationCenter.defaultCenter().removeObserver(self)
}

Memory Strategies
Covered in detail

Memory Strategies
Covered in detail

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

Memory Strategies
Covered in detail

Resource types and access patterns

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

Memory Strategies
Covered in detail

Resource types and access patterns
Responding to system memory state while running

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

New Platform
Native code on watchOS

New Platform
Native code on watchOS

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense
• Your existing code

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense
• Your existing code
• Familiar APIs and frameworks

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense
• Your existing code
• Familiar APIs and frameworks

Implement new mechanisms

Designing for Apple Watch Presidio Wednesday 4:30PM

watchOS
Quick and simple

Short, simple interactions

watchOS
Quick and simple

Short, simple interactions
Recent and relevant data in Apps, Notifications, Glances

watchOS
Quick and simple

Short, simple interactions
Recent and relevant data in Apps, Notifications, Glances
Launch time is critical

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic
• Send appropriately sized and formatted responses

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic
• Send appropriately sized and formatted responses
• Remove unused keys from JSON or XML blobs

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic
• Send appropriately sized and formatted responses
• Remove unused keys from JSON or XML blobs
• Send appropriately sized images

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic
• Send appropriately sized and formatted responses
• Remove unused keys from JSON or XML blobs
• Send appropriately sized images
• Send an appropriate number of records (one screen)

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated
• Bidirectional shared state

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated
• Bidirectional shared state
• WCSession.defaultSession().updateApplicationContext(…)

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated
• Bidirectional shared state
• WCSession.defaultSession().updateApplicationContext(…)
• Benefit from Background App Refresh

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
• Implement a lightweight service on iPhone

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
• Implement a lightweight service on iPhone
• WCSession.defaultSession().sendMessage(…)

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
• Implement a lightweight service on iPhone
• WCSession.defaultSession().sendMessage(…)
• Parse and pare down server responses on iPhone

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
• Implement a lightweight service on iPhone
• WCSession.defaultSession().sendMessage(…)
• Parse and pare down server responses on iPhone
• Reply over WCSession with minimal working set

Summary

Performance is a feature
Efficient apps feel great, build trust, and save power
Learn about Apple technologies and choose the best ones for your app
Keep your main thread ready for user input
Understand when and why your app uses memory
On watchOS, fetch and process a minimal set of information

More Information

Documentation
Performance Overview
Instruments User Guide
Concurrency Programming Guide
Threading Programming Guide

http://developer.apple.com/library

Technical Support
Apple Developer Forums
Developer Technical Support
http://developer.apple.com/forums

General Inquiries
Curt Rothert, App Frameworks Evangelist
rothert@apple.com

http://developer.apple.com/library
mailto:rothert@apple.com

Related Sessions

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

Designing for Apple Watch Presidio Wednesday 4:30PM

What’s New in Core Data Mission Thursday 2:30PM

Profiling in Depth Mission Thursday 3:30PM

Building Responsive and Efficient Apps with GCD Nob Hill Friday 10:00AM

iOS App Performance: Memory WWDC12

Advanced Graphics and Animations for iOS Apps WWDC14

Improving Your App with Instruments WWDC14

Related Labs

Power and Performance Lab Frameworks Lab C Friday 12:00PM

