WWDCT5

App Frameworks

Performance on iOS and watchOS

Strategies and tools
Session 230

Ben Englert i0OS Performance

© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Introduction

Why should | think about performance?

Introduction

Why should | think about performance?

ow should | think about performance?

Introduction

Why should | think about performance?

ow should | think about performance?

Specific strategies

Introduction

Why should | think about performance?

ow should | think about performance?
Specific strategies

New platform: watchOS 2

Performance Is a Feature

Performance Is a Feature

Performance Is a Feature

Responsiveness delights and engages users

Performance Is a Feature

Responsiveness delights and engages users

Be a good neighbor, especially in Multitasking on iPad

Performance Is a Feature

Responsiveness delights and engages users

Be a good neighbor, especially in Multitasking on iPad

Effhicient apps extend battery life

Performance Is a Feature

Responsiveness delights and engages users

Be a good neighbor, especially in Multitasking on iPad

Effhicient apps extend battery life
Supports the whole range of iOS 9 hardware

Thinking About Performance

Thinking About Performance

Choosing technologies

Thinking About Performance

Choosing technologies

Taking measurements

Thinking About Performance

Choosing technologies
Taking measurements

Setting goals

Thinking About Performance

Choosing technologies
Taking measurements
Setting goals

Performance workflow

Use the Right Tool for the Job

Proactively architect your app for great performance

Use the Right Tool for the Job

Proactively architect your app for great performance

Know the technologies

Use the Right Tool for the Job

Proactively architect your app for great performance

Know the technologies

Pick the best ones for your app

Use the Right Tool for the Job

Proactively architect your app for great performance

Know the technologies
Pick the best ones for your app

Apple technologies are optimized
(we use them)

Use the Right Tool for the Job

Proactively architect your app for great performance

Know the technologies
Pick the best ones for your app

Apple technologies are optimized
(we use them)

Benefit from software updates

Measuring Performance

Measuring Performance

Animations

Measuring Performance

Animations

- |Instruments: Core Animation

Measuring Performance

Animations
- |Instruments: Core Animation

Responsiveness

Measuring Performance

Animations
- |Instruments: Core Animation
Responsiveness

- Code instrumentation

Measuring Performance

Animations
- |Instruments: Core Animation
Responsiveness

- Code instrumentation

+ Instruments: System Trace

Measuring Performance

Animations

* Instruments: Core Animation
Responsiveness

- Code instrumentation

+ Instruments: System Trace

Memory

Measuring Performance

Animations

* Instruments: Core Animation
Responsiveness

- Code instrumentation

+ Instruments: System Trace

Memory

+ Xcode debugger

Measuring Performance

Animations

* Instruments: Core Animation
Responsiveness

- Code instrumentation

+ Instruments: System Trace

Memory

+ Xcode debugger

- Instruments: Allocations

Measuring Performance

Animations
- Instruments: Core Animation
Responsiveness

- Code instrumentation

+ Instruments: System Trace

Memory

+ Xcode debugger
- Instruments: Allocations

- |nstruments: Leaks

Code Instrumentation
Measuring responsiveness

@IBAction func showImageTapped(sender: UIButton) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage

Code Instrumentation
Collect start and end times

@IBAction func showImageTapped(sender: UIButton) {
let startTime = CFAbsoluteTimeGetCurrent()
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage
let endTime = CFAbsoluteTimeGetCurrent()

Code Instrumentation
Convert to appropriate units

@IBAction func showImageTapped(sender: UIButton) {
let startTime = CFAbsoluteTimeGetCurrent()
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage
let endTime = CFAbsoluteTimeGetCurrent()
let totalTime = (endTime - startTime) x 1000
print ("showImageTappedTimed took \(totalTime) milliseconds")

Code Instrumentation
Don't ship your instrumentation

@IBAction func showImageTapped(sender: UIButton) {
#1T MEASURE PERFORMANCE
let startTime = CFAbsoluteTimeGetCurrent()
#endif
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = mylImage
#1T MEASURE PERFORMANCE
let endTime = CFAbsoluteTimeGetCurrent()
let totalTime = (endTime - startTime) x 1000
print("showImageTappedTimed took \(totalTime) milliseconds”)
#endif

}

Code Instrumentation
Measuring responsiveness

Code Instrumentation
Measuring responsiveness

Taps and button presses

Code Instrumentation
Measuring responsiveness

Taps and button presses

- [BAction

Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction

- toucheskEnded

Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction
- touchesEnded

+ UlGestureRecognizer target

Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction
- touchesEnded

+ UlGestureRecognizer target

abs and modal views

Code Instrumentation
Measuring responsiveness

Taps and button presses
» [BAction
- touchesEnded

+ UlGestureRecognizer target

abs and modal views

- viewWillAppear and viewDidAppear

Setting Performance Goals

Setting Performance Goals

60fps scrolling and animations

Setting Performance Goals

60fps scrolling and animations

Advanced Graphics and Animations for iOS Apps WWDC14

Setting Performance Goals

Setting Performance Goals

Respond to user actions in 100ms

Setting Performance Goals

Respond to user actions in 100ms

...on older devices!

Setting Performance Goals

Respond to user actions in 100ms

...on older devices!

0760 V60089SL 865071dY

WYY 0010S6ES

SMBTOOVOMTR-OEM

VIJK00/82 1JKO0/8 0939

Performance Workflow

Performance Workflow

Don't guess

Performance Workflow

Don't guess

Avoid premature optimization

Performance Workflow

Don't guess
Avoid premature optimization

Make one change at a time

Performance Workflow

Don't guess
Avoid premature optimization
Make one change at a time

Just like ordinary debugging

Performance Workflow

Performance Workflow

-

Profiling vs. Measuring

Profiling: Understanding overall app activity
+ Xcode debugger

- Instruments: Time Profiler

Measuring: Instrumenting a specific action

+ CFAbsoluteTimeGetCurrent

- Instruments: System Trace

Responsiveness

Reacting to user input

Main Thread Consumes User Input

Touches and scrolling
Orientation

Multitasking resizes

Main Thread Consumes User Input

Touches and scrolling

Orientation

Multitasking resizes

A responsive main thread makes your app feel great

Main Thread Consumes User Input

Touches and scrolling

Orientation

Multitasking resizes

A responsive main thread makes your app feel great

Busy main thread makes your app appear frozen

Avoid Using the Main Thread for.. .

CPU-intensive work

Tasks that depend on external resources

Avoid Using the Main Thread for.. .

CPU-intensive work

Tasks that depend on external resources

Profiling in Depth Mission Thursday 3:30PM

What's a Blocking Call?

Any code path that ends up making a syscall

What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory

What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory
» Disk 1/0

What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory
» Disk 1/0

- Network access

What's a Blocking Call?

Any code path that ends up making a syscall

Accessing resources not currently in memory
» Disk 1/0
- Network access

Waiting for work to complete on another thread

What's a Blocking Call?

‘synchronous”is a synonym for blocking

NSURLConnection.sendSynchronousRequest(..

What's a Blocking Call?

‘synchronous”is a synonym for blocking

NSURLConnection.sendSynchronousRequest(..

Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous APl you can switch to

NSURLConnection.sendSynchronousRequest(..

Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous APl you can switch to

NSURLConnection.sendAsynchronousRequest(..

Strategies for Avoiding Blocking Calls

In many cases, there is an existing asynchronous APl you can switch to

Some restructuring required

NSURLConnection.sendAsynchronousRequest(..

Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent

Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent
Use Grand Central Dispatch (GCD)

Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent
Use Grand Central Dispatch (GCD)
GCD manages a global thread pool

Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent
Use Grand Central Dispatch (GCD)
GCD manages a global thread pool

Express tasks as closures (a.k.a. blocks)

Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent
Use Grand Central Dispatch (GCD)

GCD manages a global thread pool

Express tasks as closures (a.k.a. blocks)

Closures run on an arbitrary thread

Strategies for Avoiding Blocking Calls

In other cases, there isn't an async equivalent
Use Grand Central Dispatch (GCD)

GCD manages a global thread pool

Express tasks as closures (a.k.a. blocks)
Closures run on an arbitrary thread

Ensure operations performed are thread-safe!

Thread Safety

Some objects are restricted to the main thread

Thread Safety

Some objects are restricted to the main thread

Some objects, once created, can be used from any thread

Thread Safety

Some objects are restricted to the main thread

Some objects, once created, can be used from any thread

- Protection is not built-in

Thread Safety

Some objects are restricted to the main thread

Some objects, once created, can be used from any thread
- Protection is not built-in

- Implement protection using serial GCD queues

Thread Safety

Some objects are restricted to the main thread

Some objects, once created, can be used from any thread
- Protection is not built-in

- Implement protection using serial GCD queues

Read the headers

Strategies for Avoiding Blocking Calls

@IBAction func showImageTapped(sender: UIButton) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage

Strategies for Avoiding Blocking Calls

@IBAction func showImageTapped(sender: UIButton) {

let myData = NSData(contentsOfFile: self.path)! _

let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage

Strategies for Avoiding Blocking Calls

@IBAction func showImageTapped(sender: UIButton) {

let myData = NSData(contentsOfFile: self.path)! _

let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage

Strategies for Avoiding Blocking Calls

@IBAction func showImageTapped(sender: UIButton) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = myImage

Grand Central Dispatch

Current implementation

Main thread

Grand Central Dispatch

Current implementation

Button Scroll or
Press rotation

l |

Main thread

Grand Central Dispatch

Current implementation

Button Scroll or
Press rotation

l |
DRSS S IS N

Main thread

Grand Central Dispatch

User input delayed
Button Scroll or
press rotation

| [©
| oo oo [URRRRRG poieie

Main thread

Strategies for Avoiding Blocking Calls

dispatch _async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch _get global _queue(QO0S_CLASS USER_INITIATED, 0)) A
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage

Strategies for Avoiding Blocking Calls
Quality of Service (QoS)

dispatch_async(dispatch_get _global queue(QO0S CLASS USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch _get global_queue(QO0S_CLASS USER_INITIATED, 0)) +
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1mage = myImage

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!

let myImage = self.watermarkedImageFromData(myData)
self.1imageView.1image = mylImage @

Strategies for Avoiding Blocking Calls

var myImage: UIImage? = nil
dispatch_async(dispatch_get _global queue(QO0S_CLASS USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
myImage = self.watermarkedImageFromData(myData)

}

self.1imageView.1mage = myImage

Strategies for Avoiding Blocking Calls

var myImage: UIImage? = nil
dispatch_async(dispatch_get global_queue(QO0S_CLASS USER_INITIATED, 0)) +
let myData = NSData(contentsOfFile: self.path)!

myImage = self.watermarkedImageFromData(myData) (:::)
}

self.1imageView.1mage = myImage

Grand Central Dispatch

Button
press

l
) I

Main thread

\4

Dispatch queue

Grand Central Dispatch

Button
press

l mylmage == nil @

Main thread

\4

Dispatch queue

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {
self.1imageView.1mage = myImage

}

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

dispatch_async(dispatch_get_main_queue()) {
self.1imageView.1mage = myImage

}

Strategies for Avoiding Blocking Calls

dispatch_async(dispatch_get _global queue(QO0S_CLASS_ USER_INITIATED, 0)) {
let myData = NSData(contentsOfFile: self.path)!
let myImage = self.watermarkedImageFromData(myData)

self.1imageView.1image = mylImage

dispatch_async(dispatch_get _main_queue()) { (:::>

}

Grand Central Dispatch

Timely and thread-safe object access

Button
press

l

B

Main thread

\4

Dispatch queue

Grand Central Dispatch

Timely handling of user input

Button Scroll or
press rotation

| |
@ e [l

Main thread

\4

Dispatch queue

Common Blocking Calls

Common Blocking Calls

Networking: NSURLConnection and friends

Common Blocking Calls

Networking: NSURLConnection and friends

» Use asynchronous AP

Common Blocking Calls

Networking: NSURLConnection and friends
» Use asynchronous AP

-+ NSURLSession background session

Common Blocking Calls

Networking: NSURLConnection and friends
» Use asynchronous AP
-+ NSURLSession background session

Foundation initializers

Common Blocking Calls

Networking: NSURLConnection and friends
» Use asynchronous AP

-+ NSURLSession background session
Foundation initializers

- contentsOfFile:

Common Blocking Calls

Networking: NSURLConnection and friends
» Use asynchronous AP

-+ NSURLSession background session
Foundation initializers

- contentsOfFile:
- contentsOfURL:

Common Blocking Calls

Networking: NSURLConnection and friends
» Use asynchronous AP

-+ NSURLSession background session
Foundation initializers

- contentsOfFile:

- contentsOfURL:

Core Data

Common Blocking Calls

Networking: NSURLConnection and friends
» Use asynchronous AP

-+ NSURLSession background session
Foundation initializers

- contentsOfFile:

- contentsOfURL:

Core Data

-+ Move some Core Data work to different concurrency modes

Common Blocking Calls

Networking: NSURLConnection and friends

» Use asynchronous AP

-+ NSURLSession background session
Foundation initializers

- contentsOfFile:

- contentsOfURL:

Core Data

-+ Move some Core Data work to different concurrency modes

What's New in Core Data Mission Thursday 2:30PM

Strategies for Avoiding Blocking Calls

Switch to asynchronous AP

Strategies for Avoiding Blocking Calls

Switch to asynchronous AP
Use GCD

Strategies for Avoiding Blocking Calls

Switch to asynchronous AP
Use GCD

Building Responsive and Efficient Apps with GCD Nob Hill Friday 10:00AM

Memory

Memory

Multitasking requires memory tuning

Memory

Multitasking requires memory tuning

watchOS considerations

Memory

Multitasking requires memory tuning
watchOS considerations

Older hardware

Memory

Multitasking requires memory tuning
watchOS considerations
Older haraware

Extensions

105 Memory System

Never enough to go around

105 Memory System

Never enough to go around

Suspended apps are not persisted

105 Memory System

Never enough to go around
Suspended apps are not persisted

They are evicted without storing

105 Memory System

Never enough to go around
Suspended apps are not persisted

They are evicted without storing

iOS App Performance: Memory WWDC12

Memory
Memory Is time

Reclaiming memory takes time

Memory
Memory Is time

Reclaiming memory takes time

Sudden high-memory demand impacts responsiveness

Memory
Memory Is time

Reclaiming memory takes time
Sudden high-memory demand impacts responsiveness

Preserves state in the background

Rationalize Your App's Memory Footprint

Rationalize Your App's Memory Footprint

Resources

Rationalize Your App's Memory Footprint

Resources

+ Strings

Rationalize Your App's Memory Footprint

Resources
+ Strings

+ Images

Rationalize Your App's Memory Footprint

Resources
+ Strings
+ Images

+ Core Data managed objects

Rationalize Your App's Memory Footprint

Resources
+ Strings
+ Images
+ Core Data managed objects

Create a mental model of accessed resources

Rationalize Your App's Memory Footprint

Resources
+ Strings
+ Images
+ Core Data managed objects

Create a mental model of accessed resources

Check your work using Xcode debugger

Rationalize Your App's Memory Footprint

Resources
+ Strings
+ Images
+ Core Data managed objects

Create a mental model of accessed resources
Check your work using Xcode debugger

Instruments: Allocations and Leaks

Rationalize Your App's Memory Footprint

Resources

+ Strings

+ Images

+ Core Data managed objects

Create a mental model of accessed resources

Check your work using Xcode debugger

Instruments: Allocations and Leaks

Improving Your App with Instruments WWDC14

B iPhone (9.0) Running SamplePhotosApp on iPhone

BFH = Q A & Lh ! SamplePhotosApp SamplePhotosApp) m AAPLAppDelegate.m) No Selection

_ At /*
v SamplePhotosApp Copyright (C) 2014 Apple Inc. All Rights Reserved.
See LICENSE.txt for this sample’s licensing information

@ cPu

Abstract:

(1 Memory
1111 The application's delegate.

—+ Energy Impact
1 */

Zero KB/s _
#import "AAPLAppDelegate.h"

2 Network Zero KB/s @implementation AAPLAppDelegate

@ FPS @end

< SamplePhotosApp

Il ‘52 Sam...App B iPhone (9.0) Running SamplePhotosApp on iPhone

D & o =) SamplePhotosApp SamplePhotosApp / m AAPLAppDelegate.m) No Selection

/%
Copyright (C) 2014 Apple Inc. All Rights Reserved.
See LICENSE.txt for this sample’s licensing information

Sam ""\‘DF> hotocADn
dimpiernotosAppP

CPU

Abstract:
Memory

The application's delegate.
Energy Impact
*/
Disk .
| #import "AAPLAppDelegate.h"

Network @implementation AAPLAppDelegate

FPS @end

</ SamplePhotosApp

O [H[[Z] || Auto?

Vv SamplePhotosApp

[+ Energy Impact

| Disk Zero KB/s

{miiiicy

Zero KB/s

v SamplePhotosApp

[+ Energy Impact

| Disk Zero KB/s

b

=) Network Zero KB/s

@ FPS

v SamplePhotosApp

gennnnnnnnnnnneniRnnnn i unniiiniiinnniinini

[+ Energy Impact

;Z{ Disk Zero KB/s

-5 Network Zero KB/s

@ FPS

v SamplePhotosApp

(W) CPU

plin. nﬂulnn -l o

.| Memory

gennnnnnnnnnnneniRinnnn i iunniiiniiinnniinini

[+ Energy Impact

| Disk Zero KB/s
)

—

() Network Zero KB/s

@ FPS

v SamplePhotosApp (D

0%

9.3 MB

ppnnnnnnnnnnn e Rnnn 0 a0 RunnRR R nanaunanana i innnnnunnnns

[» Energy Impact

.E___j Disk Zero KB/s
i

&) Network Zero KB/s

@ FPS

v SamplePhotosApp

(m) cPU
alln. | TR T

.| Memory

ppnnnnnnnnnen e 0nnn N0 Runn R R R R n e n i nnnnnunnnns

[» Energy Impact

| Disk Zero KB/s
l

&) Network Zero KB/s

Application Lifecycle

Use NSCache

Application Lifecycle

Use NSCache

Listen for notifications

Application Lifecycle

Use NSCache

Listen for notifications

- UlApplicationDidEnterBackgroundNotification

Application Lifecycle

Use NSCache

Listen for notifications
- UlApplicationDidEnterBackgroundNotification
- UlApplicationDidReceiveMemoryWarningNotification

Application Lifecycle

Responding to changes

init() {
NSNotificationCenter.defaultCenter()
.addObserverForName(UIApplicationDidReceiveMemoryWarningNotification,
object: self,
queue: NSOperationQueue.mainQueue())
{ [unowned self] (NSNotification notification) —-> Void in
self.purgeCaches() // custom cache purging behavior

deinit {
NSNotificationCenter.defaultCenter().removeObserver(self)

Application Lifecycle

Responding to changes

init() {
NSNotificationCenter.defaultCenter()
.addObserverForName (UIApplicationDidReceiveMemoryWarningNotification,
object: self,
queue: NSOperationQueue.mainQueue())
{ [unowned self] (NSNotification notification) -> Void in
self.purgeCaches() // custom cache purging behavior

deinit {
NSNotificationCenter.defaultCenter().removeObserver(self)

Application Lifecycle

Responding to changes

init() {
NSNotificationCenter.defaultCenter()
.addObserverForName (UIApplicationDidReceiveMemoryWarningNotification,
object: self,
queue: NSOperationQueue.mainQueue())
{ [unowned self] (NSNotification notification) —-> Void in
self.purgeCaches() // custom cache purging behavior

deinit {
NSNotificationCenter.defaultCenter().removeObserver(self)

Memory Strategies
Covered in detail

Memory Strategies
Covered in detall

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

Memory Strategies
Covered in detall

Resource types and access patterns

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

Memory Strategies
Covered in detall

Resource types and access patterns

Responding to system memory state while running

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

New Platform
Native code on watchOS

New Platform
Native code on watchOS

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense

» Your existing code

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense
» Your existing code

- Familiar APls and frameworks

Designing for Apple Watch Presidio Wednesday 4:30PM

New Platform
Native code on watchOS

Reuse what makes sense
» Your existing code

- Familiar APls and frameworks

Implement new mechanisms

Designing for Apple Watch Presidio Wednesday 4:30PM

watchOS

Quick and simple

Short, simple interactions

watchOS

Quick and simple

Short, simple interactions

Recent and relevant data in Apps, Notifications, Glances

watchOS

Quick and simple

Short, simple interactions

Recent and relevant data in Apps, Notifications, Glances

Launch time is critical

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic

- Send appropriately sized and formatted responses

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic
- Send appropriately sized and formatted responses

- Remove unused keys from JSON or XML blobs

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic
- Send appropriately sized and formatted responses
- Remove unused keys from JSON or XML blobs

+ Send appropriately sized images

watchOS Performance Strategies
Minimize network traffic and processing

Implementing new server logic

- Send appropriately sized and formatted responses
- Remove unused keys from JSON or XML blobs

+ Send appropriately sized images

- Send an appropriate number of records (one screen)

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated

- Bidirectional shared state

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated
- Bidirectional shared state

+ WCSession.defaultSession().updateApplicationContext(..)

watchOS Performance Strategies
Show fresh, relevant information

Keep app context updated
- Bidirectional shared state

+ WCSession.defaultSession().updateApplicationContext(..)
- Benefit from Background App Refresh

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic

- Implement a lightweight service on iPhone

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
- Implement a lightweight service on iPhone

- WCSession.defaultSession().sendMessage(..)

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
- Implement a lightweight service on iPhone

- WCSession.defaultSession().sendMessage(..)

- Parse and pare down server responses on iPhone

watchOS Performance Strategies
Minimize network traffic and processing

Relying on existing server logic
- Implement a lightweight service on iPhone

- WCSession.defaultSession().sendMessage(..)

- Parse and pare down server responses on iPhone

+ Reply over WCSession with minimal working set

Summary

Performance is a feature

Ffhcient apps feel great, build trust, and save power

Learn about Apple technologies and choose the best ones for your app
Keep your main thread ready for user input

Understand when and why your app uses memory

On watchOS, fetch and process a minimal set of information

More Information

Documentation echnical Support

Performance Overview Apple Developer Forums
Instruments User Guide Developer Technical Support
Concurrency Programming Guide nttp://developer.apple.com/forums

Threading Programming Guide

General Inquiries
Curt Rothert, App Frameworks Evangelist
rothert@apple.com

http://developer.apple.com/library

http://developer.apple.com/library
mailto:rothert@apple.com

Related Sessions

Optimizing Your App for Multitasking on iPad in iOS 9
Designing for Apple Watch
What's New in Core Data

Profiling in Depth

Building Responsive and Efficient Apps with GCD
iOS App Performance: Memory
Advanced Graphics and Animations for iOS Apps

Improving Your App with Instruments

Presidio

Presidio

Mission

Mission

Nob Hill

Wednesday 3:30PM
Wednesday 4:30PM
Thursday 2:30PM
Thursday 3:30PM
Friday 10:00AM
WWDC(C12
WWDC14

WWDC14

Related Laps

Power and Performance Lab Frameworks Lab C Friday 12:00PM

& WWDCI15

