
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

Seamless Linking to Your App

Conrad Shultz Safari and WebKit Software Engineer
Jonathan Grynspan Core Services Software Engineer

App Frameworks

Session 509

Your App, Your Website

Demo
WWDC App

Conrad Shultz
Safari and WebKit Software Engineer

Building Seamless Integration

Have your app handle link to your website
Have your website link to your app
Help your users log into your app

Building Seamless Integration

Have your app handle link to your website
Have your website link to your app
Help your users log into your app

Building Seamless Integration

Have your app handle link to your website
Have your website link to your app
Help your users log into your app

Building Seamless Integration

Have your app handle link to your website
Have your website link to your app
Help your users log into your app

Linking to Your App

Jonathan Grynspan
Core Services Software Engineer

Handling URLs in Your App

Handling URLs in Your App
Custom URL schemes

Handling URLs in Your App
Custom URL schemes

Let apps communicate with each other

Handling URLs in Your App
Custom URL schemes

Let apps communicate with each other
Don‘t always map to your app

Handling URLs in Your App
Custom URL schemes

Let apps communicate with each other
Don‘t always map to your app
Don‘t work without your app installed

Handling URLs in Your App
Custom URL schemes

Let apps communicate with each other
Don‘t always map to your app
Don‘t work without your app installed
Don‘t protect users‘ privacy

Let apps communicate with each other
Don‘t always map to your app
Don‘t work without your app installed
Don‘t protect users‘ privacy

Handling URLs in Your App
A better way?

Let apps communicate with each other
Don‘t always map to your app
Don‘t work without your app installed
Don‘t protect users‘ privacy

Let apps communicate with each other just as easily

Handling URLs in Your App
A better way?

Handling URLs in Your App
A better way?

Let apps communicate with each other just as easily
Don‘t always map to your app
Don‘t work without your app installed
Don‘t protect users‘ privacy

Handling URLs in Your App
A better way?

Let apps communicate with each other just as easily
Don‘t always map to your app
Don‘t work without your app installed
Don‘t protect users‘ privacy

Securely map to apps you choose

Handling URLs in Your App
A better way?

Let apps communicate with each other just as easily
Securely map to apps you choose
Don‘t work without your app installed
Don‘t protect users‘ privacy

Handling URLs in Your App
A better way?

Let apps communicate with each other just as easily
Securely map to apps you choose
Don‘t work without your app installed
Don‘t protect users‘ privacy
Work universally, fall back to Safari

Handling URLs in Your App
A better way?

Let apps communicate with each other just as easily
Securely map to apps you choose
Work universally, fall back to Safari
Don‘t protect users‘ privacy

Handling URLs in Your App
A better way?

Let apps communicate with each other just as easily
Securely map to apps you choose
Work universally, fall back to Safari
Don‘t protect users‘ privacyProtect users‘ privacy

A better way

Breakdown of a Universal Link

Breakdown of a Universal Link

https://developer.apple.com/videos/wwdc/2014/?include=101#101

Breakdown of a Universal Link

https://developer.apple.com/videos/wwdc/2014/?include=101#101

Scheme (”https“ or “http”)

Breakdown of a Universal Link

https://developer.apple.com/videos/wwdc/2014/?include=101#101

Domain

Breakdown of a Universal Link

https://developer.apple.com/videos/wwdc/2014/?include=101#101

Path or path prefix

Breakdown of a Universal Link

https://developer.apple.com/videos/wwdc/2014/?include=101#101

Getting Your Server Ready

Getting Your Server Ready

Create your “apple-app-site-association” file
Generate an SSL certificate
Sign your file
Upload to your server

Getting Your Server Ready
“apple-app-site-association” file

{
 "applinks": {
 "apps": [],
 "details": {
 "9JA89QQLNQ.com.apple.wwdc": {
 "paths": ["*"]  
 }
 }
 } 
}

Getting Your Server Ready
“apple-app-site-association” file

{
 "applinks": {
 "apps": [],
 "details": {
 "9JA89QQLNQ.com.apple.wwdc": {
 "paths": ["*"]  
 }
 }
 } 
}

{
 "applinks": {
 "apps": [],
 "details": {
 "9JA89QQLNQ.com.apple.wwdc": {
 "paths": ["*"] 
 }
 }
 } 
}

Getting Your Server Ready
“apple-app-site-association” file

{
 "applinks": {
 "apps": [],
 "details": {
 "9JA89QQLNQ.com.apple.wwdc": {
 "paths": ["*"]

Getting Your Server Ready
“apple-app-site-association” file

 }
 }
 } 
}

{
 "applinks": {
 "apps": [],
 "details": {
 "9JA89QQLNQ.com.apple.wwdc": {
 "paths": ["*"]

Getting Your Server Ready
“apple-app-site-association” file

 "/wwdc/news/",
 "/videos/wwdc/2015/*"
] 

 "paths": [

 }
 }
 } 
}

Getting Your Server Ready

Create your “apple-app-site-association” file
Generate an SSL certificate
Sign your file
Upload to your server

Getting Your Server Ready

Create your “apple-app-site-association” file
Generate an SSL certificate
Sign your file
Upload to your server

Getting Your Server Ready
Signing your JSON file

openssl smime \
 -sign \
 -nodetach \
 -in "unsigned.json" \
 -out "apple-app-site-association" \
 -outform DER \
 -inkey "private-key.pem" \
 -signer "certificate.pem"

Getting Your Server Ready
Signing your JSON file

openssl smime \
 -sign \
 -nodetach \
 -in "unsigned.json" \
 -out "apple-app-site-association" \
 -outform DER \
 -inkey "private-key.pem" \
 -signer "certificate.pem"

openssl smime \
 -sign \
 -nodetach \
 -in "unsigned.json" \
 -out "apple-app-site-association" \
 -outform DER \
 -inkey "private-key.pem" \
 -signer "certificate.pem"

Getting Your Server Ready
Signing your JSON file

openssl smime \
 -sign \
 -nodetach \
 -in "unsigned.json" \
 -out "apple-app-site-association" \
 -outform DER \
 -inkey "private-key.pem" \
 -signer "certificate.pem" \

-certfile "intermediate-certificate.pem"

Getting Your Server Ready
Signing your JSON file

Getting Your Server Ready

Create your “apple-app-site-association” file
Generate an SSL certificate
Sign your file
Upload to your server

Getting Your Server Ready

Create your “apple-app-site-association” file
Generate an SSL certificate
Sign your file
Upload to your server

https://www.example.com/apple-app-site-association

Getting Your Server Ready

Create your “apple-app-site-association” file
Generate an SSL certificate
Sign your file
Upload to your server

Getting Your Server Ready

Create your “apple-app-site-association” file

Upload to your server

Getting Your App Ready

Getting Your App Ready
UIApplicationDelegate support

Getting Your App Ready
UIApplicationDelegate support

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]!) -> Void) ->
Bool

Getting Your App Ready
UIApplicationDelegate support

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]!) -> Void) ->
Bool  

var webpageURL : NSURL?

Getting Your App Ready
UIApplicationDelegate support

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]!) -> Void) ->
Bool  

var webpageURL : NSURL? 

var activityType : String

Getting Your App Ready
UIApplicationDelegate support

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]!) -> Void) ->
Bool  

var webpageURL : NSURL? 

var activityType : String 

let NSUserActivityTypeBrowsingWeb : String

Getting Your App Ready
UIApplicationDelegate support

func application(application: UIApplication, continueUserActivity
userActivity: NSUserActivity, restorationHandler: ([AnyObject]!) -> Void) ->
Bool  

var webpageURL : NSURL? 

var activityType : String 

let NSUserActivityTypeBrowsingWeb : String 

class NSURLComponents : NSObject

Getting Your App Ready
Configuring your associated domains

Getting Your App Ready
Best practices

Getting Your App Ready
Best practices

Validate input

Getting Your App Ready
Best practices

Validate input
Fail gracefully

Getting Your App Ready
Best practices

Validate input
Fail gracefully
Send data over HTTPS

Getting Your App Ready
Best practices

Validate input
Fail gracefully
Send data over HTTPS

Getting Your App Ready
Best practices

Validate input
Fail gracefully
Send data over HTTPS

Networking with NSURLSession Pacific Heights Thursday 9:00AM

Demo
Xcode and iOS 9 SDK

Jonathan Grynspan
Core Services Software Engineer

Linking to Your App

Conrad Shultz
Safari and WebKit Software Engineer

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Linking to Your App
Some advantages of universal links

No flashes or bouncing through Safari
No code required on your website
Graceful fallback to Safari
Platform-neutral
No extra server round-trips
Full user privacy protection

Smart App Banners
Promote your app from your website

Smart App Banners
What are smart app banners?

Presented by Safari on iOS
Know whether an app is installed
Easy to add to your website
Used to index your app
More effective than custom URL schemes

Smart App Banners
What are smart app banners?

Presented by Safari on iOS
Know whether an app is installed
Easy to add to your website
Used to index your app
More effective than custom URL schemes

Smart App Banners
What are smart app banners?

Presented by Safari on iOS
Know whether an app is installed
Easy to add to your website
Used to index your app
More effective than custom URL schemes

Smart App Banners
What are smart app banners?

Presented by Safari on iOS
Know whether an app is installed
Easy to add to your website
Used to index your app
More effective than custom URL schemes

Smart App Banners
What are smart app banners?

Presented by Safari on iOS
Know whether an app is installed
Easy to add to your website
Used to index your app
More effective than custom URL schemes

Smart App Banners
What are smart app banners?

Presented by Safari on iOS
Know whether an app is installed
Easy to add to your website
Used to index your app
More effective than custom URL schemes

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

Use https://linkmaker.itunes.apple.com to find your App Store ID

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

app-argument is passed to application(_:openURL:sourceApplication:annotation:),
and is also used to index your app

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name="apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

app-argument is passed to application(_:openURL:sourceApplication:annotation:),
and is also used to index your app

Introducing Search APIs Mission Wednesday 11:00AM

Smart App Banners
Deploying smart app banners

Add a meta tag to your website’s head:
 <head>

 <meta name=“apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
data=optionalAffiliateData">

 </head>

Smart App Banners will not appear in the iOS Simulator

https://developer.apple.com/videos/wwdc/2014/

https://developer.apple.com/videos/wwdc/2014/

Shared Web Credentials
Help your users log into your app

Saved Passwords and Safari
How Safari helps users—and you

Securely save credentials for users
Sync to all devices with iCloud Keychain
Suggest secure passwords for users
AutoFill saved credentials

Saved Passwords and Safari
How Safari helps users—and you

Securely save credentials for users
Sync to all devices with iCloud Keychain
Suggest secure passwords for users
AutoFill saved credentials

Saved Passwords and Safari
How Safari helps users—and you

Securely save credentials for users
Sync to all devices with iCloud Keychain
Suggest secure passwords for users
AutoFill saved credentials

Saved Passwords and Safari
How Safari helps users—and you

Securely save credentials for users
Sync to all devices with iCloud Keychain
Suggest secure passwords for users
AutoFill saved credentials

Saved Passwords and Safari
How Safari helps users—and you

Securely save credentials for users
Sync to all devices with iCloud Keychain
Suggest secure passwords for users
AutoFill saved credentials

Shared Web Credentials
Adopting shared web credentials

Associate your app and your website
Teach your app to ask for Shared Web
Credentials

Shared Web Credentials
Adopting shared web credentials

Associate your app and your website
Teach your app to ask for Shared Web
Credentials

Shared Web Credentials
Adopting shared web credentials

Associate your app and your website
Teach your app to ask for Shared Web
Credentials

App-Website Association
Server-side

App-Website Association
Server-side

Add a new top-level dictionary to your apple-app-site-association JSON file:
 {
 "applinks": {
 "apps": [],
 "details": {
 "9JA89QQLNQ.com.apple.wwdc": {
 "paths": [
 "/wwdc/news/",
 "/videos/wwdc/2015/*"
] 
 }
 }
  
 }

  
 }

App-Website Association
Server-side

Add a new top-level dictionary to your apple-app-site-association JSON file:
 {
 "applinks": {

  
 }

  
 }

 …
 }

 "webcredentials": {

 "apps": ["A1B2C3D4E5.com.example.AppName"]

 }

App-Website Association
Server-side

Add a new top-level dictionary to your apple-app-site-association JSON file:
 {
 "applinks": {
 …
 }

 "webcredentials": {

 "apps": ["A1B2C3D4E5.com.example.AppName"]

 } 
 }

App-Website Association
Server-side

Add a new top-level dictionary to your apple-app-site-association JSON file:
 {
 "applinks": {
 …
 }

 "webcredentials": {

 "apps": ["A1B2C3D4E5.com.example.AppName"]

 } 
 }

App-Website Association
App-side

App-Website Association
App-side

Add a new entry to your app’s com.apple.developer.associated-domains entitlement:
 webcredentials:example.com

App-Website Association
App-side

Add a new entry to your app’s com.apple.developer.associated-domains entitlement:
 webcredentials:example.com

Shared Web Credentials
The app workflow

Log In

Save Credentials

Prompt User

Check Safari for Credentials

Check for Saved Credentials

Shared Web Credentials
The app workflow

Log In

Save Credentials

Prompt User

Check Safari for Credentials

Check for Saved Credentials

Shared Web Credentials
The app workflow

Log In

Save Credentials

Prompt User

Check Safari for Credentials

Check for Saved Credentials

Check Safari for Credentials

Shared Web Credentials
The app workflow

Log In

Save Credentials

Prompt User

Check Safari for Credentials

Check for Saved Credentials

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement.
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in
 if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 {
 let credentials = cfCredentials as [AnyObject]
 let credential = credentials[0]
 let userName = credential[kSecAttrAccount as String]
 let password = credential[kSecSharedPassword as String]
 dispatch_async(dispatch_get_main_queue()) {
 // Log in with the user name and password.
 }
 } else {
 dispatch_async(dispatch_get_main_queue()) {
 // Show in-app login UI.
 }
 }
}

Shared Web Credentials
Updating Safari’s saved credentials

SecAddSharedWebCredential("example.com",
 userName,
 password) { error in }

let password: String = SecCreateSharedWebCredentialPassword().takeRetainedValue() as String
print("The generated password was: \(password)")
// E.g.: The generated password was: uFA-T9C-aRD-cDP

Shared Web Credentials
Generating secure passwords

let password: String = SecCreateSharedWebCredentialPassword().takeRetainedValue() as String
print("The generated password was: \(password)")
// E.g.: The generated password was: uFA-T9C-aRD-cDP

Shared Web Credentials
Generating secure passwords

Your App, Your Website, and Safari WWDC14

Summary

Give your users the best experience by having your app handle link to your website
Deploy Smart App Banners to help users of your website discover your app
Help your users log into your app by adopting Shared Web Credentials

Summary

Give your users the best experience by having your app handle link to your website
Deploy Smart App Banners to help users of your website discover your app
Help your users log into your app by adopting Shared Web Credentials

Summary

Give your users the best experience by having your app handle link to your website
Deploy Smart App Banners to help users of your website discover your app
Help your users log into your app by adopting Shared Web Credentials

Summary

Give your users the best experience by having your app handle links to your website
Deploy Smart App Banners to help users of your website discover your app
Help your users log into your app by adopting Shared Web Credentials

More Information

Technical Support
Apple Developer Forums
http://developer.apple.com/forums

Developer Technical Support
http://developer.apple.com/contact

Shared Web Credentials Reference
http://developer.apple.com/library/ios/documentation/Security/Reference/
SharedWebCredentialsRef/

http://developer.apple.com/library/ios/documentation/Security/Reference/SharedWebCredentialsRef/

More Information

General Inquiries
Jon Davis Web Technologies Evangelist
web-evangelist@apple.com

Jake Behrens App Frameworks Evangelist
behrens@apple.com

Related Sessions

Introducing Safari View Controller Nob Hill Tuesday 1:30PM

Privacy and Your App Pacific Heights Tuesday 2:30PM

Introducing Search APIs Mission Wednesday 11:00AM

Networking with NSURLSession Pacific Heights Thursday 9:00AM

Your App, Your Website, and Safari WWDC14

Adopting Handoff on iOS and OS X WWDC14

Labs

App Search and Spotlight Frameworks Lab E Friday 1:30PM

Safari and WebKit Graphics, Games,
and Media Lab A Friday 12:00PM

