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func application(application: UIApplication, continueUserActivity 
userActivity: NSUserActivity, restorationHandler: ([AnyObject]!) -> Void) -> 
Bool  

var webpageURL : NSURL? 

var activityType : String 

let NSUserActivityTypeBrowsingWeb : String 

class NSURLComponents : NSObject 
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Add a meta tag to your website’s head:
 <head> 

  <meta name=“apple-itunes-app" content="app-id=640199958, app-
argument=https://developer.apple.com/wwdc/schedule, affiliate-
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 </head> 

Smart App Banners will not appear in the iOS Simulator
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Retrieving Safari’s Saved Credentials

// Find all matching user names from domains specified in the entitlement. 
SecRequestSharedWebCredential(nil, nil) { cfCredentials, error in 
    if let cfCredentials = cfCredentials where CFArrayGetCount(cfCredentials) != 0 { 
        let credentials = cfCredentials as [AnyObject] 
        let credential = credentials[0] 
        let userName = credential[kSecAttrAccount as String] 
        let password = credential[kSecSharedPassword as String] 
        dispatch_async(dispatch_get_main_queue()) { 
            // Log in with the user name and password. 
        } 
    } else { 
        dispatch_async(dispatch_get_main_queue()) { 
            // Show in-app login UI. 
        } 
    } 
}
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Updating Safari’s saved credentials

SecAddSharedWebCredential("example.com", 
                          userName, 
                          password) { error in }



let password: String = SecCreateSharedWebCredentialPassword().takeRetainedValue() as String 
print("The generated password was: \(password)") 
// E.g.: The generated password was: uFA-T9C-aRD-cDP
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Shared Web Credentials
Generating secure passwords
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More Information

Technical Support
Apple Developer Forums
http://developer.apple.com/forums

Developer Technical Support
http://developer.apple.com/contact

Shared Web Credentials Reference
http://developer.apple.com/library/ios/documentation/Security/Reference/
SharedWebCredentialsRef/

http://developer.apple.com/library/ios/documentation/Security/Reference/SharedWebCredentialsRef/


More Information

General Inquiries
Jon Davis Web Technologies Evangelist
web-evangelist@apple.com

Jake Behrens App Frameworks Evangelist
behrens@apple.com



Related Sessions

Introducing Safari View Controller Nob Hill Tuesday 1:30PM

Privacy and Your App Pacific Heights Tuesday 2:30PM

Introducing Search APIs Mission Wednesday 11:00AM

Networking with NSURLSession Pacific Heights Thursday 9:00AM

Your App, Your Website, and Safari WWDC14

Adopting Handoff on iOS and OS X WWDC14



Labs

App Search and Spotlight Frameworks Lab E Friday 1:30PM

Safari and WebKit Graphics, Games, 
and Media Lab A Friday 12:00PM




