Managing 3D Assets with Model I/O

Session 602

Nick Porcino Apple Inc.
Remi Palandri Apple Inc.
Claudia Roberts Apple Inc.

Model I/O

Model I/O

Framework for handling 3D assets and data

Import and export 3D asset files

- Describe lighting, materials, environments
- Process and generate asset data
- Bake lights, subdivide and voxelize meshes

For Physically Based Rendering

Designed for PBR tools and pipelines
 Integrated with Xcode 7 and GameKit APIs
 Available for iOS 9 and OS X 10.11

Introduction Model / O Workflow

Introduction Model / O Workflow

Introduction Model / O Workflow

Agenda The Model I/O Framework

Features overview

Data types and physical motivation

Geometry and voxels

Advanced lighting

Baking

Model I/O Overview

File Formats

Import formats

- Alembic .abc
- Polygon .ply
- Triangles .stl
- Wavefront .obj

Export formats

- Triangles .stl
- Wavefront .obj

Import and Export

```
Import
MDLAsset *asset = [[MDLAsset alloc] initWithURL:myURL];
Export
[asset exportAssetToURL:myURL];
```

Physical Realism

Realistic lights

- IES profile, temperature, image based Realistic materials
- Lambert / Blinn-Phong, physical BRDF
 Realistic cameras
- From lens to sensor
- Realistic environments
- Panoramic photographs
- Procedural skies

Modify and Bake Assets

```
Ambient occlusion
[mesh generateAmbientOcclusionTextureWithQuality: ...];
Light and shadow baking
[mesh generateLightMapTextureWithQuality: ...];
Normals calculation
[mesh addNormalsWithAttributeNamed: ...];
Tangent basis
[mesh addTangentBasisForTextureCoordinateAttributeNamed: ...];
```

Voxels

Voxels

```
Create voxels from an asset
[[MDLVoxelArray alloc] initWithAsset: ...];
Find voxels in a region
NSData *indices = [voxels voxelsWithinExtent:extent];
Constructive solid geometry
[voxels unionWithVoxels:sphereVoxels];
Create a mesh
MDLMesh *mesh = [voxels meshUsingAllocator:allocator];
```

System Integration

SceneKit, Metal, and OpenGL

Preview in Finder and QuickLook

Edit in Xcode

Playgrounds and Swift support

Data Types

Overview

Indexed container for 3D objects and materials

Transform hierarchies

Meshes

Cameras, lights

Created procedurally or from a URL

MDLAsset

allocators

descriptors

import and export

children

URL

MDLObject

MIDLOBJECT

MIDLOBJECT

MDLObject

MDLObject

Contains one or more vertex buffers

Vertex buffers contain information such as positions, and normals

Contains one or more submeshes

Submeshes contain triangle or polygon indices

Submeshes share data in vertex buffers

Intuitive parameters

A dielectric, like clay

Intuitive parameters

A pure metal

Intuitive parameters

A combination

Metallic with an acrylic clear coat

Intuitive parameters

A satin finish

Materials Intuitive parameters

A variety of finishes

MDLMaterial

MDLSubmesh

name
index buffer
geometry type

material

MDLMaterial

name
properties

scattering function

base material

→ Lambert / Blinn-Phong Physically Plausible

MDLMaterial

MDLSubmesh

name

index buffer

geometry type

material

MDLMaterial

name

properties

scattering function

base material

→ Single inheritance

MDLMaterial

MDLSubmesh name index buffer geometry type **MDLMaterial** material name **MDLMaterialProperty** properties scattering function name base material semantic type value

Lights Physical realism

Classic CG lights

Lights with physical parameters

- Geometry
- Lumens, color temperature

Baked light maps

IES standard light files

children

MDLCamera

A physical description of a camera

Lens characteristics

Shutter properties

Sensor properties

What the camera can see

How the image will be exposed

MDLCamera

MDLObject

MDLCamera

name

visibility

components

lens glass

transform

lens geometry

bounding box

exit aperture

parent

sensor

children

exposure

Default exposure settings

Underexposed and flashed for shadow detail

Skies Physical realism

Create a sky through physics

- Time of day
- Atmospheric condition

Skies

Physical realism

Create a sky through photography

• Take a spherical panorama with your phone or DSLR

Skies Physical realism

Create a sky through photography

• Take a spherical panorama with your phone or DSLR

Skies

Physical realism

Prepare it for rendering

```
MDLTexture *sky = [[MDLURLTexture alloc] initWithURL:picURL name:"skypano"];
```

Create a cube map for reflection and irradiance

MDLTexture *cube = [MDLTexture irradianceTextureCubeWithTexture:sky ...];

Advanced Lighting Irradiance

Incoming light from all directions

Efficient low-frequency representation

Important for physically based rendering

Skies Physical realism

And perfectly match the lighting

Integration with SceneKit

Integration with MetalKit

MetalKit will prepare buffers for rendering

- Traverse asset to find lights, cameras
- Use to drive custom Metal renderer

See "What's New in Metal, Part 2"
Integration with OpenGL and GLKit is similar

Models and Voxels

Claudia Roberts

Agenda

Geometry and modeling in Model I/O

Normal smoothing

Subdivision surfaces

Voxels

Demo

Normal Smoothing

Shared vertex normals

Approximates curvature of more complicated geometry

Flat vs smooth shading

Add smoothed out normals to the spaceship

[spaceship addNormalsWithAttributeNamed:@"normals" creaseThreshold:0.5];

Subdivision Surfaces

Vary surface detail

Generate subdivided mesh from source mesh Increase level of detail only when and where necessary

Physical realism

Volumetric representation consistent with the real world

Procedural modeling/generation

Easily explore dataset via neighborhood, child traversal

Facilitates real-world operations like slicing and cutting

Physical realism

Volumetric representation consistent with the real world

Procedural modeling/generation

Easily explore dataset via neighborhood, child traversal

Facilitates real-world operations like slicing and cutting

Physical realism

Volumetric representation consistent with the real world

Procedural modeling/generation

Easily explore dataset via neighborhood, child traversal

Facilitates real-world operations like slicing and cutting

Physical realism

Volumetric representation consistent with the real world

Procedural modeling/generation

Easily explore dataset via neighborhood, child traversal

Facilitates real-world operations like slicing and cutting

Sparse volume grid accessed by a spatial index

Sparse volume grid accessed by a spatial index Quick neighbor finding

Sparse volume grid accessed by a spatial index

Quick neighbor finding

Interior, exterior, surface shell levels

Sparse volume grid accessed by a spatial index

Quick neighbor finding

Interior, exterior, surface shell levels

Model healing and clean-up

Create polygonal mesh from voxels


```
// Set voxels corresponding to mesh
[grid setVoxelsForMesh:m divisions:25 interiorShells:0.f exteriorShells:0.f];
```

```
// Set voxels corresponding to mesh
[grid setVoxelsForMesh:m divisions:25 interiorShells:0.f exteriorShells:0.f];

// Given a second MDLVoxelArray, perform boolean operations
[grid intersectWithVoxels:voxels];
[grid unionWithVoxels:voxels];
[grid differenceWithVoxels:voxels];
```

```
// Set voxels corresponding to mesh
[grid setVoxelsForMesh:m divisions:25 interiorShells:0.f exteriorShells:0.f];

// Given a second MDLVoxelArray, perform boolean operations
[grid intersectWithVoxels:voxels];
[grid unionWithVoxels:voxels];
[grid differenceWithVoxels:voxels];

// Retrieve voxel data
NSData *voxelData = [grid getVoxelIndices];
```

```
// Set voxels corresponding to mesh
[grid setVoxelsForMesh:m divisions:25 interiorShells:0.f exteriorShells:0.f];
// Given a second MDLVoxelArray, perform boolean operations
[grid intersectWithVoxels:voxels];
[grid unionWithVoxels:voxels];
[grid differenceWithVoxels:voxels];
  Retrieve voxel data
NSData *voxelData = [grid getVoxelIndices];
// Create mesh from voxel grid
MDLMesh *mesh = [grid meshUsingAllocator:allocator];
```

Demo

Voxels

Advanced Lighting and Baking

Remi Palandri

Advanced Lighting Global illumination

Global illumination looks great

But very expensive

We want to approximate Gl

Balance performance/quality

Ambient occlusion

Ambient occlusion

Measure of geometry occlusion

Advanced Lighting Ambient occlusion

Measure of geometry occlusion

Advanced Lighting Ambient occlusion

Measure of geometry occlusion
Uses offline raytracing

Ambient occlusion

Measure of geometry occlusion

Uses offline raytracing

Input—a mesh and a set of occlusion meshes

Ambient occlusion

Measure of geometry occlusion

Uses offline raytracing

Input—a mesh and a set of occlusion meshes

Output—a set of occlusion values

Ambient occlusion

Measure of geometry occlusion

Uses offline raytracing

Input—a mesh and a set of occlusion meshes

Output—a set of occlusion values

Stored in vertices or a texture

Ambient occlusion

Measure of geometry occlusion

Uses offline raytracing

Input—a mesh and a set of occlusion meshes

Output—a set of occlusion values

Stored in vertices or a texture

MDLMesh operations

```
// Bake the spaceship with itself
[shipMesh generateAmbientOcclusionVertexColorsWithQuality:0.6
                                        attenuationFactor:0.8
                                        objectsToConsider:@[shipMesh]
                                     vertexAttributeNamed:@"aoTextureCoord" ];
  Bake the ground floor with its surrounding objects
[groundMesh generateAmbientOcclusionTextureWithQuality:0.6
                                     attenuationFactor:0.8
                                     objectsToConsider:@[boxMesh, groundMesh]
                                  vertexAttributeNamed:@"aoTextureCoord"
                                materialPropertyNamed:@"aoTextureProperty" ];
```

Demo

Xcode Integration

Computes the effect of lights

Computes the effect of lights

Computes the effect of lights

Computes the effect of lights
Supports lots of lights

Computes the effect of lights

Supports lots of lights

Calculated offline

Computes the effect of lights

Supports lots of lights

Calculated offline

Complex lights supported

Summary

Import and export 3D asset files

Physical basis for rendering

Models, lights, cameras, materials, skies

Integration with the system and frameworks

Tools in Xcode

More Information

Documentation and Videos

http://developer.apple.com

Apple Developer Forums

http://developer.apple.com/forums

Developer Technical Support

http://developer.apple.com/support/technical

General Inquiries

Allan Schaffer, Game Technologies Evangelist aschaffer@apple.com

Related Sessions

Enhancements to SceneKit	Mission	Wednesday 2:30PM
What's New in Metal, Part 2	Mission	Thursday 9:00AM

Labs

Model I/O Lab	Graphics, Games, and Media Lab D	Tuesday 3:30PM
Model I/O Lab	Graphics, Games, and Media Lab D	Wednesday 9:00AM

ÓWWDC15