
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

Going Social with  
ReplayKit and Game Center
What’s new in social gaming

Edwin Iskandar Software Engineer
Megan Gardner Software Engineer

Graphics and Games

Session 605

Agenda

What’s new in Game Center

Agenda

What’s new in Game Center
• Guest players

Agenda

What’s new in Game Center
• Guest players
• Unified server environment

Agenda

What’s new in Game Center
• Guest players
• Unified server environment

Introducing ReplayKit

Agenda

What’s new in Game Center
• Guest players
• Unified server environment

Introducing ReplayKit
• New way to add social to your games

Agenda

What’s new in Game Center
• Guest players
• Unified server environment

Introducing ReplayKit
• New way to add social to your games
• Share game experiences

What’s New in Game Center

Game Center
Social gaming

Friends
Leaderboards
Achievements
Real time multiplayer
Turn based multiplayer
Challenges

What’s New?

Guest players
Unified environment

Guest Players
Adding more to your multiplayer

Players
Current usage

GKLocalPlayer
• Only one per device
• Must be an authenticated Game Center user

Players
Current usage

GKLocalPlayer
• Only one per device
• Must be an authenticated Game Center user

GKPlayer
• Friend of the GKLocalPlayer
• Participant in a match

Players
Current usage

GKLocalPlayer
• Only one per device
• Must be an authenticated Game Center user

GKPlayer
• Friend of the GKLocalPlayer
• Participant in a match

Multiplayer
• Real time
• Turn based

Guest Players
What are they?

GKPlayer instances
• Do not require authentication
• First class participants in multiplayer games

Can fill up all the slots in a game
• Up to three for real time
• Up to fifteen for turn based

Guest Players
What you need to know

Great for pass and play and handling AI players
You define the identifier—needs to be unique across the game
Cannot earn achievements or post scores
Sessions with guest players only compatible with other players running iOS 9
• Game still compatible with players on older systems

Game Center Sandbox Environment
Unification with production

Sandbox
Original purpose

Environment for pre-release testing with Game Center
• Duplicated production Game Center functionality
• Same iTunes Connect metadata
• Different servers
• Different accounts

Production Sandbox

Leaderboards

Achievements

Accounts

Leaderboards

Achievements

Accounts

Released Unreleased

ProductionSandbox

Leaderboards

Achievements

Accounts

Leaderboards

Achievements

Accounts

Released Unreleased

Unified Environment
Benefits

Simplifies accounts
Compatible with TestFlight
Multiplayer works across versions (if enabled)
Automatic

Unified Environment
Considerations

New games appear in friend’s games list
• Including unreleased

Scores post to existing leaderboards
iOS 8 users still need to flip the switch

Leaderboards

All versions will post to the same leaderboards
New leaderboard only visible to those who have that version
Remove test scores via iTunes Connect

Multiplayer

Play against any other version, specified in the compatibility matrix
Release versions can match against unreleased versions

iTunes Connect

Up to two sets of metadata will be maintained
• Currently released version
• Unreleased version

iTunes Connect

Up to two sets of metadata will be maintained
• Currently released version
• Unreleased version

Which data you are vended as a user will depend on your CFBundleVersion
• CFBundleVersion > Released Bundle Version—unreleased data
• CFBundleVersion <= Released Bundle Version—currently released data

Post-Sandbox
Compatibility and visibility

CFBundleVersion Who Can See? Who Can Play? Where Will I Post?

0.9 
“Beta” Game Center Friends Other beta versions Beta leaderboards

1.0
“Released” Game Center Friends All versions, including future

updates, if specified Released leaderboards

2.0
“Update” Game Center Friends All specified versions

Released leaderboards  
and update leaderboards,  

not viewable by  
Game Center friends

Recap
What’s new

Guest players
• Expands multiplayer opportunity

Recap
What’s new

Guest players
• Expands multiplayer opportunity

Unified environment
• Fulfills developers requests
• Simple and automatic
• Works great with TestFlight

ReplayKit

Edwin Iskandar Software Engineer

Sharing game experiences

ReplayKit

ReplayKit

ReplayKit

Record your running app

ReplayKit

Record your running app
Add voice commentary

ReplayKit

Record your running app
Add voice commentary
Playback, scrub, and trim

ReplayKit

Record your running app
Add voice commentary
Playback, scrub, and trim
Share
• Social networks
• Video destination sites

ReplayKit

ReplayKit

HD quality
• Low performance impact
• Minimal power usage

ReplayKit

HD quality
• Low performance impact
• Minimal power usage

Privacy safeguards

ReplayKit

HD quality
• Low performance impact
• Minimal power usage

Privacy safeguards
Available in iOS 9

ReplayKit

HD quality
• Low performance impact
• Minimal power usage

Privacy safeguards
Available in iOS 9
A7 and A8 based devices

Privacy Safeguards

Privacy Safeguards

Permission required
• User consent prompt
• Parental controls

Privacy Safeguards

Permission required
• User consent prompt
• Parental controls

Recording excludes system UI
• Notifications
• Keyboard entry

Privacy Safeguards

Permission required
• User consent prompt
• Parental controls

Recording excludes system UI
• Notifications
• Keyboard entry

No direct access to recordings
• Share sheet only

Architecture

Application

Application

RPScreenRecorder RPPreviewViewController

Application

Application

Replay Daemon

RPScreenRecorder RPPreviewViewController

Application

System

Application

Replay Daemon

Video and Audio Services

Hardware

RPScreenRecorder RPPreviewViewController

Application

System

Application

MovieReplay Daemon

Video and Audio Services

Hardware

RPScreenRecorder RPPreviewViewController

Application

System

Application

Movie Preview and Share ExtensionReplay Daemon

Video and Audio Services

Hardware

RPScreenRecorder RPPreviewViewController

Application

System

Application

RPScreenRecorder RPPreviewViewController

Application

Using ReplayKit
Getting started

Classes and Protocols

Classes and Protocols

RPScreenRecorder
• Start, stop, discard recording
• Check ability to record
• Enable microphone for commentary

Classes and Protocols

RPScreenRecorder
• Start, stop, discard recording
• Check ability to record
• Enable microphone for commentary

RPScreenRecorderDelegate
• If availability changes
• If recording stops (due to error)

Classes and Protocols

RPScreenRecorder
• Start, stop, discard recording
• Check ability to record
• Enable microphone for commentary

RPScreenRecorderDelegate
• If availability changes
• If recording stops (due to error)

RPPreviewViewController
• Preview the recording
• Edit and trim
• Share

Classes and Protocols

RPScreenRecorder
• Start, stop, discard recording
• Check ability to record
• Enable microphone for commentary

RPScreenRecorderDelegate
• If availability changes
• If recording stops (due to error)

RPPreviewViewController
• Preview the recording
• Edit and trim
• Share

RPPreviewViewControllerDelegate
• After view controller dismissal

Example
DemoBots

DemoBots

Taskbots keep the circuit board running
Bots are buggy, debug them
Bite size 2–3 minute levels
Source available at developer.apple.com

http://developer.apple.com

Main Menu

Game Level

Main Menu

Game Level

Level End

Main Menu

Game Level

Level End

Main Menu

Game Level

Level End

Start Recording

Stop Recording

Main Menu

Game Level

Level End

Start Recording

Stop Recording

Preview Edit Share

Main Menu

Shared Recorder

class RPScreenRecorder : NSObject {
class func sharedRecorder() -> RPScreenRecorder

let sharedRecorder = RPScreenRecorder.sharedRecorder()

Shared Recorder

class RPScreenRecorder : NSObject {
class func sharedRecorder() -> RPScreenRecorder

let sharedRecorder = RPScreenRecorder.sharedRecorder()

Start Recording

class RPScreenRecorder : NSObject {
func startRecordingWithMicrophoneEnabled(microphoneEnabled: Bool,

 handler: ((NSError?) -> Void)?)

func levelDidStart() {
 sharedRecorder.startRecordingWithMicrophoneEnabled(true) { (error:) in
 if error != nil {
 // pause game and show error
 }
 }
}

Start Recording

class RPScreenRecorder : NSObject {
func startRecordingWithMicrophoneEnabled(microphoneEnabled: Bool,

 handler: ((NSError?) -> Void)?)

func levelDidStart() {
 sharedRecorder.startRecordingWithMicrophoneEnabled(true) { (error:) in
 if error != nil {
 // pause game and show error
 }
 }
}

Stop Recording

class RPScreenRecorder : NSObject {
func stopRecordingWithHandler(

 handler: ((RPPreviewViewController?, NSError?) -> Void)?)

func levelWillEnd() {
sharedRecorder.stopRecordingWithHandler {

 (previewViewController, error) -> Void in

 // Handle error
 if previewViewController != nil {
 // Keep a reference for later use
 self.previewViewController = previewViewController
 }
}

Stop Recording

class RPScreenRecorder : NSObject {
func stopRecordingWithHandler(

 handler: ((RPPreviewViewController?, NSError?) -> Void)?)

func levelWillEnd() {
sharedRecorder.stopRecordingWithHandler {

 (previewViewController, error) -> Void in

 // Handle error
 if previewViewController != nil {
 // Keep a reference for later use
 self.previewViewController = previewViewController
 }
}

Present Preview UI

class UIViewController : … {
func presentViewController(viewControllerToPresent: UIViewController,

 animated flag: Bool, completion: (() -> Void)?)

@IBAction func didPressViewRecordingButton() {

// Present the preview view controller we made a reference to before
self.presentViewController(previewViewController, animated: true,

 completion:nil)
}

Present Preview UI

class UIViewController : … {
func presentViewController(viewControllerToPresent: UIViewController,

 animated flag: Bool, completion: (() -> Void)?)

@IBAction func didPressViewRecordingButton() {

// Present the preview view controller we made a reference to before
self.presentViewController(previewViewController, animated: true,

 completion:nil)
}

Dismissing Preview UI

protocol RPPreviewViewControllerDelegate : NSObjectProtocol {

optional func previewControllerDidFinish(
 previewController: RPPreviewViewController)

@IBAction func didPressViewRecordingButton() {
previewViewController.previewViewControllerDelegate = self

}

func previewControllerDidFinish(previewController: RPPreviewViewController) {
 previewViewController.dismissViewControllerAnimated(true, completion: nil)

Dismissing Preview UI

protocol RPPreviewViewControllerDelegate : NSObjectProtocol {

optional func previewControllerDidFinish(
 previewController: RPPreviewViewController)

@IBAction func didPressViewRecordingButton() {
previewViewController.previewViewControllerDelegate = self

}

func previewControllerDidFinish(previewController: RPPreviewViewController) {
 previewViewController.dismissViewControllerAnimated(true, completion: nil)

Using ReplayKit
Getting started

Getting a shared instance of the recorder
Starting and stopping the recorder
Presenting and dismissing the Preview UI

Using ReplayKit
Fine tuning

Verifying Availability

Verifying Availability

Recording may be unavailable
• AirPlay in use
• TV-out in use
• Unsupported device

Verifying Availability

Recording may be unavailable
• AirPlay in use
• TV-out in use
• Unsupported device

Guidance
• Use available property to check for availability
• Disable recording UI if false
• Use screenRecorderDidChangeAvailability to listen for changes

Verifying Availability
Example

class RPScreenRecorder : NSObject {
var available: Bool { get }

func updateButtonUI() {
recordingToggleButton.hidden = !sharedRecorder.available

}

Verifying Availability
Example

class RPScreenRecorder : NSObject {
var available: Bool { get }

func updateButtonUI() {
recordingToggleButton.hidden = !sharedRecorder.available

}

Discarding the Recording

Automatically discarded when new
recording starts
• Only one recording at a time per app

Discard when preview no longer accessible
• Use discardRecordingWithHandler

Discarding the Recording

Automatically discarded when new
recording starts
• Only one recording at a time per app

Discard when preview no longer accessible
• Use discardRecordingWithHandler

Discarding the Recording
Example

class RPScreenRecorder : NSObject {
func discardRecordingWithHandler(handler: () -> Void)

func willTransitionToNextLevel() {
sharedRecorder.discardRecordingWithHandler {
 // start next level

 self.transitionToNextLevel()
 }
}

Discarding the Recording
Example

class RPScreenRecorder : NSObject {
func discardRecordingWithHandler(handler: () -> Void)

func willTransitionToNextLevel() {
sharedRecorder.discardRecordingWithHandler {
 // start next level

 self.transitionToNextLevel()
 }
}

Recording Indicator

Indicate that recording is on
Indicate that microphone is on

REC

Recording Indicator
Example

class RPScreenRecorder : NSObject {

var recording: Bool { get }
var microphoneEnabled: Bool { get }

func recordingDidStart() {
recordingIndicator.hidden = !sharedRecorder.recording
microphoneIndicator.hidden = !sharedRecorder.microphoneEnabled

}

Recording Indicator
Example

class RPScreenRecorder : NSObject {

var recording: Bool { get }
var microphoneEnabled: Bool { get }

func recordingDidStart() {
recordingIndicator.hidden = !sharedRecorder.recording
microphoneIndicator.hidden = !sharedRecorder.microphoneEnabled

}

Excluding UI

Excluding UI

Hide elements that are uninteresting to a spectator
• Recording indicators
• Virtual controls
• Pause and menu buttons

Excluding UI

Hide elements that are uninteresting to a spectator
• Recording indicators
• Virtual controls
• Pause and menu buttons

ReplayKit only records your applications main UIWindow
• Use a separate UIWindow to hide UI

When to Record
Automatic vs. user-initiated

When to Record
Automatic vs. user-initiated

App controlled (automatic)
• Short gameplay sessions

When to Record
Automatic vs. user-initiated

App controlled (automatic)
• Short gameplay sessions

User-initiated
• Longer gameplay sessions
• Spread out interesting events

When to Record
Automatic vs. user-initiated

App controlled (automatic)
• Short gameplay sessions

User-initiated
• Longer gameplay sessions
• Spread out interesting events

Choose what is appropriate

Using ReplayKit

Getting Started
• Getting a shared instance of the recorder
• Starting and stopping the recorder
• Presenting and dismissing the Preview UI 
 
 
 
 
 

Fine Tuning
• Verifying availability
• Discarding the recording
• Showing indicator
• Excluding UI
• When to record

Demo
Call of Champions

Cinco Barnes
Chief Vision Officer, Spacetime Studios

What’s New in Social Gaming

What’s New in Social Gaming

New in Game Center
• Guest players allow for new modes in multiplayer
• Unified server environment to streamline development and testing

What’s New in Social Gaming

New in Game Center
• Guest players allow for new modes in multiplayer
• Unified server environment to streamline development and testing

Introducing ReplayKit
• Records audio and visuals of running application
• Efficient with privacy safeguards
• Compact framework with simple adoption

More Information

Documentation and Videos
http://developer.apple.com
Apple Developer Forums
http://developer.apple.com/forums
Developer Technical Support
http://developer.apple.com/support/technical

General Inquiries
Allan Schaffer, Game Technologies Evangelist
aschaffer@apple.com

Related Labs

ReplayKit Lab Graphics, Games,
and Media Lab D Wednesday 2:30PM

ReplayKit Lab Graphics, Games,
and Media Lab D Thursday 9:00AM

