Graphics and Games #WWDC15

Introduction to GameplayKit

Session 608

Bruno Sommer
R0ss Dexter
Joshua Boggs

© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

GameplayKit

GameplayKit

Mission

Provide gameplay solutions

- Common design patterns and architecture
- Standard gameplay algorithms

+ Applicable to many genres

Graphics- and engine-agnostic

- SpriteKit, SceneKit, Metal, and more

GameplayKit

Bringing game ideas to life

A

LI

Entities &

$—9—>
!

43

—O

State Machines

Components

¢

Lo X

Pathfi

glellgle

w63 <

MinMax Al

Random
Sources

Rule Systems

Entities and Components

Entities and Components
Background—=Classic problem

Where does [shoot:] go?

Where does [move:] go?

Where does [isTargetable] go?

Entities and Components
Background—Modern solution

/ v\
e
+ o

Entities and Components
Backgrounad

Great way to organize game logic
casy-to-maintain
Fasy-to-collaborate

Scales with complexity

Dynamic behavior

Entities and Components
GKENtity

Collection of components

Dynamically add/remove components _
Update all components

A A A

Entities and Components
GKComponent

Subclass to add functionality
Store component data as properties

Custom selectors extend functionality

Updated by their entity’s update

Implement logic in [updateWithDeltaTime:]

Entities and Components
GKComponentSystem

Collection of components from different entities
- All components are of the same class

Use when update order is important

- Update Al before movement, etc

Components in a system do not update with
their entity’s update

Entities and Components
Example

/* Make our archer x/
GKEntity *archer = [GKEntity entity];

/* Archers can move, shoot, be targeted x/

[archer addComponent: [MoveComponent component]];
[archer addComponent: [ShootComponent component]];
[archer addComponent: [TargetComponent component]];

/* Create MoveComponentSystem x/
GKComponentSystem *xmoveSystem =
[GKComponentSystem systemWithComponentClass:MoveComponent.class];

/* Add archer’s MoveComponent to the system x/
[moveSystem addComponent: [archer componentForClass:MoveComponent.classl]];

State Machines

State Machines
Example

_4
A

State Machines
Backgrouna

Backbone of many gameplay elements

Games are a collection of state machines

- Animation, Al, Ul levels, etc.

Common implementation removes boilerplate ' '

States reused throughout your game

State Machines
GKStateMachine

General purpose finite state machine

+ Single current state

+ All possible states

[enterState] causes state transition

- Checks if transition is valid

- Calls [ex1it] on previous,
[enter]on next state

Updates currentState

State Machines
GKState

Abstract class
Implement logic in Enter/Exit/Update
+ These are called by the state machine

Override [isValidNextState:]
to control edges

- By default, all edges are valid

+ Can be dynamic, based on internal state

II
II

State Machine

Example

/* Make some states - Chase, Flee, Defeated, Respawn x/
ChaseState xchase = [ChaseState statel;

FleeState xflee = [FleeState statel;

DefeatedState *xdefeated = [DefeatedState state];
RespawnState *xrespawn = [RespawnState statel;

/* Create a state machine x/
GKStateMachine xstateMachine = [GKStateMachine stateMachineWithStates:
@[chase, flee, defeated, respawn]l];

/* Enter our 1nitial state - Chase x/
[stateMachine enterState:chase];

Agents, Goals, and Behaviors

Agents, Goals, and Benhaviors
concepts

Agents are autonomously moving entities
+ Driven by behaviors and goals

+ Realistic constraints

Behaviors are made up of goals

- Goals combined via weights

Agents, Goals, and Benhaviors
Backgrouna

Games need believable movements
Organic behaviors look intelligent .
Realistic movement

- Has Inertia VS

/m\L

- Avoids obstacles

- Avoids other entities

- Follows paths

Agents, Goals, and Benhaviors
Overview

_4
A
_4

A

Agents, Goals, and Benhaviors
GKAgent

Simple autonomous point-mass

s a GKComponent

Update applies behavior

+ Goals change acceleration
- Velocity, position, rotation updated
Units are dimensionless

- Game-world specific

Agents, Goals, and Benhaviors
GKBehavior

Dictionary-like container of goals _

Dynamically modity behavior
- Add/remove goals

- Modify weights

Set behavior on agent to use it

T

T P T
-~ 1 1 B 8

Agents, Goals, and Benhaviors
Example

/* Make some goals, we want to seek the enemy, avoid obstacles, target speed */
GKGoal *seek = [GKGoal goalToSeekAgent:enemyAgent];

GKGoal xavoid = [GKGoal goalToAvoidObstacles:obstacles];

GKGoal xtargetSpeed = [GKGoal goalToReachTargetSpeed:50.0f];

/* Combine goals 1into behavior
GKBehavior xbehavior = [GKBehavior behaviorWithGoals:@[seek,avoid,targetSpeed]
andWeights:@[@1.0,@5.0,@0.511;

/* Make an agent - add the behavior to it x/
GKAgent2D xagent = [[GKAgent2Dx alloc] init];
agent.behavior = behavior;

Agents, Goals, and Benhaviors
GKAgentDelegate

Sync graphics, animations, physics, etc.
[agentWillUpdate: 1 called before updates

[agentDidUpdate:] called after updates

Agents, Goals, and Behaviors
SpriteKit delegate example

@implementation MyAgentSpriteNode
- (void)agentWillUpdate: (GKAgent2D x)agent {
/* Position the agent to match our sprite x/

agent.position = self.position;
agent.rotation = self.zRotation;

}

- (void)agentDidUpdate: (GKAgent2D *)agent {
/* Update the sprite’s position to match the agent x/
self.position = agent.position;
self.zRotation = agent.rotation;

}

@end

Demo
Agents and goals

Pathfinding

Pathfinding
The problem

,

Pathfinding
The problem

,

Pathfinding

The solution

,

Pathfinding

The solution

,

Pathfinding

concepts

Pathfinding operates on a navigation graph °

Graphs are collections of nodes e
Nodes are joined by connections

Connections are directional

Optimal path exists between any two

connected nodes e

Pathfinding
GKGraph

Abstract graph pbase class
Container of graph nodes
Dynamic add / remove nodes
Connect new nodes

Find paths between nodes

Two specializations

- Grid graphs

» Obstacle graphs

Pathfinding

Overview

Find paths in navigation graphs
Generate navigation graphs from
+ Obstacles

+ Grids

+ SpriteKit scenes

Dynamically modity graphs

Pathfinding
GKGridGraph

Specialized for a 2D Grid

Creates nodes on the grid
+ Cardinal connections
+ Optional diagonal connections

Fasy add/remove of grid nodes

Pathfinding
GKObstacleGraph

Specialized for pathing around obstacles

+ Obstacles are arbitrary polygons
Dynamically add/remove obstacles

Dynamically connect nodes

Buffer radius

- "Safety zone"around obstacles

- Game-dependent size

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

GKObstacleGrapnh Generation

Pathfinding
GKODbstacleGraph example

/* Make an obstacle — a simple square x/
vector_float2 points[] = {{400,400}, {500,400}, {500,500}, {400,500}};
GKPolygonObstacle *obstacle = [[GKPolygonObstacle alloc] initWithPoints:points count:4];

/* Make an obstacle graph */
GKObstacleGraph xgraph = [GKObstacleGraph graphWithObstacles:@l[obstacle] bufferRadius:10.0f];

/* Make nodes for hero position and destination */
GKGraphNode2D *startNode = [GKGraphNode2D nodeWithPoint:hero.position];
GKGraphNode2D *endNode = [GKGraphNode2D nodeWithPoint:goalPosition];

/* Connect start and end node to graph x/
[graph connectNodeUsingObstacles:startNode];
[graph connectNodeUsingObstacles:endNodel;

/* Find path from start to end %/
NSArray xpath = [graph findPathFromNode:startNode toNode:endNode];

Pathfinding
Advanced: GKGraphNode

Graph node base class

Subclass for

- Advanced or non-spatial costs
+ Control over pathfinding
Create your own graphs

- Manually manage connections

- Good for abstract or non-spatial graphs

Pathfinding

SpriteKit integration
Fasily generate obstacles from SKNode bounds, physics bodies, or textures

/* Makes obstacles from sprite textures *x/
(NSArrayx)obstaclesFromSpriteTextures: (NSArrayx)sprites accuracy: (float)accuracy;

/* Makes obstacles from node bounds x/
(NSArrayx)obstaclesFromNodeBounds: (NSArrayx)nodes;

/* Makes obstacles from node physics bodies x/
(NSArrayx)obstaclesFromNodePhysicsBodies: (NSArrayx)nodes;

Demo
SpriteKit integration

MinMax Al

ROSS Dexter

MinMax Al

Example

X

O X
Many games need equal Al opponents / 0
+ Can play the entire game

+ Play by the same rules as human players

olo|x
.
/o><
olo|x
4—
olx |
<><>></
.
ol

Chess, Checkers, Tic-Tac-Toe, etc.

'
SN

N
X|X]O X]|X X|O|X X X X X O
O X O X O X O X O X O X
OlO 0]0]|0 OlO 0|0|O0 O] X|]O0 O|X]|O
X|X]|O X|O0|X X(l)X X)l(O
O X O X O X O X
O| X|O O|X]|O0 Oo|X|O0 O|X]|O

MinMax Al

Example

MinMax Al
+ Looks at player moves
+ Builds decision tree

+ Maximizes potential gain

X|X|O
+ Minimizes potential l0ss O] X|X
O O

Tic-Tac-Toe example |
| . XX |0
- Right branch optimal o] x|[x
Ol X|0

- Other branches lead to potential loss win

o|o|x
‘:‘x
/o><

OOX\OOX
=
O|X X O X
X

O | X

N\ N\
X|O|X X X X|O X o)
0 X O X 0 X O X
0 O 0]0|0 O|X|O O|X]|O

l loss l l
X|O|X X|Oo|X X|X]|O
o) X 0 X O X
Oo|X]|O Oo|X|O O|X]O0
draw draw win

MinMax Al

Features

Al-controlled opponents
Suggest move for human players

Best suited for turn-based games

+ Any game with discrete moves

Variable difficulty
» Adjust ook ahead

- Select suboptimal moves

MinMax Al

Overview

l l l

e

Best Move

MinMax Al
GKGameModel protocol

Abstract of the current game state _

- List of players

+ Currently active player
+ Player scores

+ Possible player moves

Apply moves for players

+ Changes game state

MinMax Al

GKGameModel protocols

GKGameModelUpdate

- Abstract of a game move

+ Used by MinMax to build decision tree

- Apply to GKGameModel to change state
GKGameModelPlayer

- Abstract for a player of the game

+ Players make moves via GKGameModelUpdate

MinMax Al

GKMinmaxStrategist

maxLookAheadDepth is search depth

[bestMoveForPlayer:] for optimal outcome
- Ties can be broken at random
[randomMoveForPlayer:] for N best moves

Returns a GKGameModelUpdate

MinMax Al

GKMinmaxStrategist example

/* ChessGameModel 1implements GKGameModel x/
ChessGameModel *xchessGameModel = [ChessGameModel new];
GKMinmaxStrategist *minmax = [GKMinmaxStrategist new];

minmaX.gameModel = chessGameModel;
minmax.maxLookAheadDepth = 6;

/* Find the best move for the active player x/
ChessGameUpdate *xchessGameUpdate =
[minmax bestMoveForPlayer:chessGameModel.activePlayer];

/* Apply update to the game model *x/
[chessGameModel applyGameModelUpdate: chessGameUpdate];

Demo
Stone Flipper Al

Random Sources

Random Sources
Backgrounad

Games have unigue random number needs

rand () gives us random numbers, but we need more
- Platform-independent determinism
- Multiple sources

- Number distribution

This is where random sources come in

Random Sources
Features

Game quality random sources
+ Deterministic

- Serializable

+ Industry-standard algorithms
Random distributions

- True random

» (Gaussian

- Anti-clustering
NSArray shuffling

Random Sources
GKRandomSource

Base class for random sources

Adopts NSSecureCoding, NSCopying

Guaranteed determinism with same seed _

- [T no seed is given, one is drawn from a system source
[sharedRandom] is system’s underlying shared random

- Not deterministic

» Desirable for card shuffling, etc.

Random Source
Random source algorithms

ARC4

+ Low overhead, good characteristics
Linear Congruential

+ Very low overhead

Mersenne Twister

+ High-quality, but memory-intensive

Not suitable for cryptography

Random Sources
GKRandomDistribution

Base class for distribution

» Pure random distribution

Range between low and high value
[nextInt], [nextUniform], [nextBool]

Dice convenience constructors
» [d6]

» [d20]

e [die:]

Random Sources
GKGaussianDistribution

“Bell curve”distribution
- Biased toward mean value

- Decreasing probability away from mean

All values within three standard deviations

Outlying values cullea

Range

Output

Random Sources
GKGaussianDistribution

“Bell curve”distribution
- Biased toward mean value

- Decreasing probability away from mean

All values within three standard deviations

Outlying values cullea

Range

Output

Random Sources
GKGaussianDistribution

“Bell curve”distribution
- Biased toward mean value

- Decreasing probability away from mean

All values within three standard deviations

Outlying values cullea

Range

Output

Random Sources
GKShuffledDistribution

Anti-clustering distribution

- Reduces or eliminates “runs”

- Still random over time
uniformDistance defines local reduction

+ 0.0 = pure random

- 1.0 = all values different

Range

Output

Random Sources
GKShuffledDistribution

Anti-clustering distribution

- Reduces or eliminates “runs”

- Still random over time
uniformDistance defines local reduction

+ 0.0 = pure random

- 1.0 = all values different

Range

Output

Random Sources
GKShuffledDistribution

Anti-clustering distribution

- Reduces or eliminates “runs”

- Still random over time
uniformDistance defines local reduction

+ 0.0 = pure random

- 1.0 = all values different

Range

Output

Random Sources
Simple usage

/* Create a six-sided die with 1ts own random source x/
let d6 = GKRandomDistribution.d6()

/* Get die value between 1 and 6 x/
let choice = d6.nextInt()

Random Sources
Simple usage

/* Create a twenty-sided die with 1ts own random source x/
let d20 = GKRandomDistribution.d20()

/* Get die value between 1 and 20 x/
let choice = d20.nextInt()

Random Sources

Simple usage

/* Create a custom 256-sided die with i1its own random source x/
let d256 = GKRandomDistribution.die(lowest:1, highest:256)

/* Get die value between 1 and 256 x/
let choice = d256.nextInt()

Random Sources
Intermediate usage

/* Create a twenty-sided die with a bell curve bias x/
let d20 = GKGaussianDistribution.d20()

/* Get die value between 1 and 20 that 1s most likely to be around 11 *x/
let choice = d20.nextInt()

Random Sources

Intermediate usage

/* Create a twenty-sided die with no clustered values — fair random x/
let d20 = GKShuffledDistribution.d20()

/* Get die value between 1 and 20 x/
let choice = d20.nextInt()

/* Get another die value that 1s not the same as ‘choice’ x/
let secondChoice = d20.nextInt()

Random Sources
Intermediate usage

/* Make a deck of cards x/
var deck = [Ace, King, Queen, Jack, Ten]

/* Shuffle them x/
deck = GKRandomSource.sharedRandom().shuffle(deck)
/* possible result - [Jack, King, Ten, Queen, Acel] x/

/* Get a random card from the deck x/
let card = deck[0]

Rule Systems
Joshua Boggs

Rule Systems
Game ingredients

A game consists of three elements:

Nouns (Properties)
- Position, speed, health, equipment, etc.
Verbs (Actions)

Run, jump, use item, accelerate, etc.

Rules

+ How your nouns and verbs interact

Rule Systems
What is a rule system?

Binary Driver Al

- Input is distance

- Qutput is either [slowDown] or [speedUp]

Conditional
/* Test 1s distance x/ 0 5 10
if (car.distance < 5) {
[car slowDown]; .
! Distance

else if (car.distance >= 5) {
[car speedUp];

}

Rule Systems
What is a rule system?

Brake Accelerate

Fuzzy Driver Al
- Input is distance

- Rules output facts

Facts
0 5 10

closeness = 1.0f — distance / 10.0f;
farness = distance / 10.0f; Distance

Can be both close and far

Rule Systems
Motivation

Complex reasoning with fuzzy logic

- Facts can be grades of true

+ Fuzzy logic deals with approximations

Separate what we should do from how we should do it
- State facts about the world

- Take deferred actions based on those facts

Rule Systems
GKRule

- Predicate matches against facts and state
- Action fires only if predicate is true
Action can be simple [assertFact:]

+ Or complex block

Serializable

Rule Systems
Approximation

Rule Systems provide approximate answers to questions

- How close am | to the car in front?

- Very far
farGrade = 1.0f;

- Somewhere in between

farGrade = closeGrade = 0.5:

- 'Close-ish’

closeGrade 0.75f:
farGrade = 0.25f;

Rule Systems
GKRuleSystem

An ordered collection of rules and facts

Assert facts by calling [evaluate]

+ Rules use the state dictionary as input
+ Facts array holds the asserted output
- Repeat evaluation for each new fact

- [reset] and clear old facts to repeat

Rule Systems
Code example

/* Make a rule system x/
GKRuleSystemx sys [[GKRuleSystem alloc] init];

/* Getting distance and asserting facts x/

float distance = sys.state[@“distance”];

[sys assertFact:@“close” grade:1.0f — distance / kBrakingDistancel];
[sys assertFact:@“far” grade:distance / kBrakingDistancel];

/* Grade our facts - farness and closeness x/
float farness = [sys gradeForFact@“far”];
float closeness = [sys gradeForFact@“close”];

/* Derive Fuzzy acceleration x/
float fuzzyAcceleration = farness — closeness;
[car applyAcceleration:fuzzyAcceleration withDeltaTime:seconds];

Demo
Traffic Toy

Rule Systems
Best practices

GKRuleSystem is an isolated system

+ stateis asnapshot of your game world

- Use many simple rules and assert facts about the game world

Facts are approximate, it's up to you to decide how to use them
- Grade of afact is the system’s confidence in it

- Use fuzzy logic for more complex reasoning

Wrap Up

Bruno Sommer

GameplayKit

Bringing game ideas to life

A

LI

Entities &

$—9—>
!

43

—O

State Machines

Components

¢

Lo X

Pathfi

glellgle

w63 <

MinMax Al

Random
Sources

Rule Systems

Code Samples

DemoBots

- SpriteKit game, lots of GameplayKit coverage

FourInARow
- Covers MinMaxAl

AgentsCatalog

- Covers agents, behaviors and goals

Related Sessions

What's New In SpriteKit Mission Wednesday 10:00 AM
Going Social with ReplayKit and Game Center Mission Wednesday 1:30 PM
Fnhancements to SceneKit Nob Hill Wednesday 2:30 PM

Deeper into GameplayKit with DemoBots Mission Thursday 1:30 PM

| abs

Game Controllers Lab
Game Controllers Lab
GameplayKit Lab
GameplayKit Lab
SpriteKit Lab

Graphics D
Graphics D
Graphics C
Graphics C

Graphics C

Thursday 2:30 PM
Friday 9:00 AM
Thursday 2:30 PM
Friday 12:00 PM

Friday 9:00 AM

More Information

Documentation and Videos
Nttp://developer.apple.com

Apple Developer Forums
http://developer.apple.com/forums

Developer Technical Support
Nttp://developer.apple.com/support/technical

General Inquiries

Allan Schaffer, Game Technologies Evangelist
aschaffer@apple.com

& WWDCI15

