
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Introduction to GameplayKit

Bruno Sommer
Ross Dexter
Joshua Boggs

Graphics and Games #WWDC15

Session 608

GameplayKit

GameplayKit
Mission

Provide gameplay solutions
• Common design patterns and architecture
• Standard gameplay algorithms
• Applicable to many genres

Graphics- and engine-agnostic
• SpriteKit, SceneKit, Metal, and more

GameplayKit
Bringing game ideas to life

Entities &
Components

Pathfinding

Agents

MinMax AI Rule SystemsRandom
Sources

State Machines

Entities and Components

Entities and Components
Background—Classic problem

GameObject

Tower ArcherProjectile

Where does [shoot:] go?

Where does [move:] go?

Where does [isTargetable] go?

Entities and Components
Background—Modern solution

Projectile Tower Archer

MoveComponent MoveComponent

ShootComponent

ShootComponent

TargetComponent

TargetComponent

Entity

Entities and Components
Background

Great way to organize game logic
Easy-to-maintain
Easy-to-collaborate
Scales with complexity
Dynamic behavior

Entities and Components
GKEntity

Collection of components
Dynamically add/remove components
Access components by class type
Update all components

GKEntity

components
[updateWithDeltaTime:]

Projectile Tower Archer

Entities and Components
GKComponent

Subclass to add functionality
Store component data as properties
Custom selectors extend functionality
Updated by their entity’s update
Implement logic in [updateWithDeltaTime:]

GKComponent

entity
[updateWithDeltaTime:]

MoveComponent ShootComponent

TargetComponent

GKComponentSystem

Entities and Components
GKComponentSystem

Collection of components from different entities
• All components are of the same class

Use when update order is important
• Update AI before movement, etc

Components in a system do not update with
their entity’s update

components
[updateWithDeltaTime:]

MoveComponent MoveComponent

MoveComponent

MoveSystem

Entities and Components
Example

/* Make our archer */
GKEntity *archer = [GKEntity entity];

/* Archers can move, shoot, be targeted */
[archer addComponent: [MoveComponent component]];
[archer addComponent: [ShootComponent component]];
[archer addComponent: [TargetComponent component]];

/* Create MoveComponentSystem */
GKComponentSystem *moveSystem =
 [GKComponentSystem systemWithComponentClass:MoveComponent.class];

/* Add archer’s MoveComponent to the system */
[moveSystem addComponent: [archer componentForClass:MoveComponent.class]];

State Machines

State Machines
Example

Chase Flee

DefeatedRespawn

State Machines
Background

Backbone of many gameplay elements
Games are a collection of state machines
• Animation, AI, UI, levels, etc.

Common implementation removes boilerplate
States reused throughout your game

IdleAnimation MoveAnimation

AttackAnimation

State Machines
GKStateMachine

General purpose finite state machine
• Single current state
• All possible states

[enterState] causes state transition
• Checks if transition is valid
• Calls [exit] on previous,  
[enter]on next state

Updates currentState

GKStateMachine

currentState
[enterState]

[updateWithDeltaTime:]

GhostStateMachine

Chase

Flee

Defeated

Respawn

State Machines
GKState

Abstract class
Implement logic in Enter/Exit/Update
• These are called by the state machine

Override [isValidNextState:]  
to control edges
• By default, all edges are valid
• Can be dynamic, based on internal state

stateMachine
[isValidNextState:]

[didEnterWithPreviousState:]

[willExitWithNextState:]

[updateWithDeltaTime:]

Chase

Flee

Defeated

Respawn

GKState

State Machine
Example

/* Make some states - Chase, Flee, Defeated, Respawn */
ChaseState *chase = [ChaseState state];
FleeState *flee = [FleeState state];
DefeatedState *defeated = [DefeatedState state];
RespawnState *respawn = [RespawnState state];

/* Create a state machine */
GKStateMachine *stateMachine = [GKStateMachine stateMachineWithStates:

 @[chase, flee, defeated, respawn]];

/* Enter our initial state - Chase */
[stateMachine enterState:chase];

Agents, Goals, and Behaviors

Agents, Goals, and Behaviors
Concepts

Agents are autonomously moving entities
• Driven by behaviors and goals
• Realistic constraints

Behaviors are made up of goals
• Goals combined via weights

Agents, Goals, and Behaviors
Background

Games need believable movements
Organic behaviors look intelligent
Realistic movement
• Has inertia
• Avoids obstacles
• Avoids other entities
• Follows paths

VS

Agents, Goals, and Behaviors
Overview

Agent

Behavior BehaviorBehaviorGoals

Seek Intercept Flee Wander

Avoid Target Speed Follow Path Separate Align

Cohere

AgentDelegate

Agents, Goals, and Behaviors
GKAgent

Simple autonomous point-mass
Is a GKComponent
Update applies behavior
• Goals change acceleration
• Velocity, position, rotation updated

Units are dimensionless
• Game-world specific

GKAgent

delegate
behavior
mass
radius
maxSpeed
maxAcceleration

GKAgent2D

position
velocity
rotation

[updateWithDeltaTime:]

GKComponent

Agents, Goals, and Behaviors
GKBehavior

Dictionary-like container of goals
Dynamically modify behavior
• Add/remove goals
• Modify weights

Set behavior on agent to use it

GKBehavior

goalCount
[setWeight:forGoal:]

[removeGoal:]

[goalAtIndex:]

FlockingBehavior

Separate AlignCohere

RacingBehavior

Follow
Path

Avoid
Agents

Agents, Goals, and Behaviors
Example

/* Make some goals, we want to seek the enemy, avoid obstacles, target speed */
GKGoal *seek = [GKGoal goalToSeekAgent:enemyAgent];
GKGoal *avoid = [GKGoal goalToAvoidObstacles:obstacles];
GKGoal *targetSpeed = [GKGoal goalToReachTargetSpeed:50.0f];

/* Combine goals into behavior
GKBehavior *behavior = [GKBehavior behaviorWithGoals:@[seek,avoid,targetSpeed]

 andWeights:@[@1.0,@5.0,@0.5]];

/* Make an agent - add the behavior to it */
GKAgent2D *agent = [[GKAgent2D* alloc] init];
agent.behavior = behavior;

Agents, Goals, and Behaviors
GKAgentDelegate

Sync graphics, animations, physics, etc.
[agentWillUpdate:] called before updates
[agentDidUpdate:] called after updates

GKAgentDelegate

[agentWillUpdate:]

[agentDidUpdate:]

SpriteKit
Node

SceneKit
Node

Render
Component

Agents, Goals, and Behaviors
SpriteKit delegate example

@implementation MyAgentSpriteNode
…
- (void)agentWillUpdate:(GKAgent2D *)agent {

/* Position the agent to match our sprite */
 agent.position = self.position;
agent.rotation = self.zRotation;

}

- (void)agentDidUpdate:(GKAgent2D *)agent {

/* Update the sprite’s position to match the agent */
 self.position = agent.position;
self.zRotation = agent.rotation;

}
…
@end

Demo
Agents and goals

Pathfinding

Pathfinding
The problem

Pathfinding
The problem

?

Pathfinding
The solution

Pathfinding
The solution

Pathfinding
Concepts

Pathfinding operates on a navigation graph
Graphs are collections of nodes
Nodes are joined by connections
Connections are directional
Optimal path exists between any two
connected nodes

A

B

C

D

Pathfinding
GKGraph

Abstract graph base class
Container of graph nodes
Dynamic add / remove nodes
Connect new nodes
Find paths between nodes
Two specializations
• Grid graphs
• Obstacle graphs

GKGraph

nodes
[addNodes:]

[removeNodes:]

[connectNode:]

[findPathFromNode:ToNode:]

GKGridGraph GKObstacleGraph

Pathfinding
Overview

Find paths in navigation graphs
Generate navigation graphs from
• Obstacles
• Grids
• SpriteKit scenes

Dynamically modify graphs

GKGridGraph

Pathfinding
GKGridGraph

Specialized for a 2D Grid
Creates nodes on the grid
• Cardinal connections
• Optional diagonal connections

Easy add/remove of grid nodes

gridOrigin
gridWidth
gridHeight
diagonalsAllowed
[nodeAtGridPosition:]

[connectNodeToAdjacentNodes:]

GKGridGraphNode

gridPosition

GKObstacleGraph

Pathfinding
GKObstacleGraph

Specialized for pathing around obstacles
• Obstacles are arbitrary polygons

Dynamically add/remove obstacles
Dynamically connect nodes
Buffer radius
• “Safety zone” around obstacles
• Game-dependent size

obstacles
bufferRadius
[addObstacles:]

[removeObstacles:]

[connectNodeUsingObstacles:]

[lockConnectionFromNode:]

[unlockConnectionFromNode:]

GKGraphNode2D

position

GKObstacleGraph Generation

GKObstacleGraph Generation

GKObstacleGraph Generation

GKObstacleGraph Generation

GKObstacleGraph Generation

GKObstacleGraph Generation

GKObstacleGraph Generation

GKObstacleGraph Generation

Pathfinding
GKObstacleGraph example

/* Make an obstacle - a simple square */
vector_float2 points[] = {{400,400}, {500,400}, {500,500}, {400,500}};
GKPolygonObstacle *obstacle = [[GKPolygonObstacle alloc] initWithPoints:points count:4];

/* Make an obstacle graph */
GKObstacleGraph *graph = [GKObstacleGraph graphWithObstacles:@[obstacle] bufferRadius:10.0f];

/* Make nodes for hero position and destination */
GKGraphNode2D *startNode = [GKGraphNode2D nodeWithPoint:hero.position];
GKGraphNode2D *endNode = [GKGraphNode2D nodeWithPoint:goalPosition];

/* Connect start and end node to graph */
[graph connectNodeUsingObstacles:startNode];
[graph connectNodeUsingObstacles:endNode];

/* Find path from start to end */
NSArray *path = [graph findPathFromNode:startNode toNode:endNode];

Pathfinding
Advanced: GKGraphNode

Graph node base class
Subclass for
• Advanced or non-spatial costs
• Control over pathfinding

Create your own graphs
• Manually manage connections
• Good for abstract or non-spatial graphs

GKGraphNode

connectedNodes
[addConnections:]

[removeConnections:]

[costToNode:]

[findPathToNode:]

GKGridGraphNode GKGraphNode2D

Pathfinding
SpriteKit integration

Easily generate obstacles from SKNode bounds, physics bodies, or textures

/* Makes obstacles from sprite textures */
(NSArray*)obstaclesFromSpriteTextures:(NSArray*)sprites accuracy:(float)accuracy;

/* Makes obstacles from node bounds */
(NSArray*)obstaclesFromNodeBounds:(NSArray*)nodes;

/* Makes obstacles from node physics bodies */
(NSArray*)obstaclesFromNodePhysicsBodies:(NSArray*)nodes;

Demo
SpriteKit integration

MinMax AI
Ross Dexter

MinMax AI
Example

Many games need equal AI opponents
• Can play the entire game
• Play by the same rules as human players

Chess, Checkers, Tic-Tac-Toe, etc.

o
x

o o
x x

o
x

o o
x x o

x

o o
x xo

x

o o
x x

o
x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x

o
x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x

x x

x

o

o

x x

x

x

o

x xo

o

xo

x

x x

o o

x

x

o x

x

o

MinMax AI
Example

MinMax AI
• Looks at player moves
• Builds decision tree
• Maximizes potential gain
• Minimizes potential loss

Tic-Tac-Toe example
• Right branch optimal
• Other branches lead to potential loss

o
x

o o
x x

o
x

o o
x x o

x

o o
x xo

x

o o
x x

o
x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x

o
x

o o
x x o

x

o o
x x o

x

o o
x x o

x

o o
x x

x x

x

o

o

x x

x

x

o

x xo

o

xo

x

x x

o o

x

x

o x

x

o

draw drawwin win

lossloss

MinMax AI
Features

AI-controlled opponents
Suggest move for human players
Best suited for turn-based games
• Any game with discrete moves

Variable difficulty
• Adjust look ahead
• Select suboptimal moves

MinMax AI
Overview

Game Model

Players

MinMax

Best Move

Possible Moves Scores

MinMax AI
GKGameModel protocol

Abstract of the current game state
• List of players
• Currently active player
• Player scores
• Possible player moves

Apply moves for players
• Changes game state

GKGameModel

players
activePlayer

[setGameModel:]

[gameModelUpdatesForPlayer:]

[scoreForPlayer:]

[applyGameModelUpdate:]

MinMax AI
GKGameModel protocols

GKGameModelUpdate
• Abstract of a game move
• Used by MinMax to build decision tree
• Apply to GKGameModel to change state

GKGameModelPlayer
• Abstract for a player of the game
• Players make moves via GKGameModelUpdate

GKGameModelUpdate

GKGameModelPlayer

playerId

MinMax AI
GKMinmaxStrategist

Operates on a GKGameModel
maxLookAheadDepth is search depth
[bestMoveForPlayer:] for optimal outcome
• Ties can be broken at random

[randomMoveForPlayer:] for N best moves
Returns a GKGameModelUpdate

GKMinmaxStrategist

gameModel
maxLookAheadDepth
[bestMoveForPlayer:]

[randomMoveForPlayer:]

MinMax AI
GKMinmaxStrategist example

/* ChessGameModel implements GKGameModel */
ChessGameModel *chessGameModel = [ChessGameModel new];
GKMinmaxStrategist *minmax = [GKMinmaxStrategist new];

minmax.gameModel = chessGameModel;
minmax.maxLookAheadDepth = 6;

/* Find the best move for the active player */
ChessGameUpdate *chessGameUpdate =
 [minmax bestMoveForPlayer:chessGameModel.activePlayer];

/* Apply update to the game model */
[chessGameModel applyGameModelUpdate:chessGameUpdate];

Demo
Stone Flipper AI

Random Sources

Random Sources
Background

Games have unique random number needs
rand() gives us random numbers, but we need more
• Platform-independent determinism
• Multiple sources
• Number distribution

This is where random sources come in

Random Sources
Features

Game quality random sources
• Deterministic
• Serializable
• Industry-standard algorithms

Random distributions
• True random
• Gaussian
• Anti-clustering

NSArray shuffling

Random Sources
GKRandomSource

Base class for random sources
Adopts NSSecureCoding, NSCopying
Guaranteed determinism with same seed
• If no seed is given, one is drawn from a system source

[sharedRandom] is system’s underlying shared random
• Not deterministic
• Desirable for card shuffling, etc.

GKRandomSource

[sharedRandom]

[nextInt:]

[nextUniform:]

[nextBool:]

Random Source
Random source algorithms

ARC4
• Low overhead, good characteristics

Linear Congruential
• Very low overhead

Mersenne Twister
• High-quality, but memory-intensive

Not suitable for cryptography

GKARC4RandomSource

NSData* seed

GKLinearCongruential…

uint64_t seed

GKMersenneTwister…

uint64_t seed

Random Sources
GKRandomDistribution

Base class for distribution
• Pure random distribution

Range between low and high value
[nextInt], [nextUniform], [nextBool]
Dice convenience constructors
• [d6]

• [d20]

• [die:]

GKRandomDistribution

source
lowestValue
highestValue
[nextInt]
[nextUniform]
[nextBool]

Random Sources
GKGaussianDistribution

“Bell curve” distribution
• Biased toward mean value
• Decreasing probability away from mean

All values within three standard deviations
Outlying values culled

GKGaussianDistribution

mean
deviation

Range

Output

Random Sources
GKGaussianDistribution

“Bell curve” distribution
• Biased toward mean value
• Decreasing probability away from mean

All values within three standard deviations
Outlying values culled

GKGaussianDistribution

mean
deviation

Range

1 2 3 4 5

Output

3 1 3 2 4
2 3 3 4 2
4 3 3 3 5

Random Sources
GKGaussianDistribution

“Bell curve” distribution
• Biased toward mean value
• Decreasing probability away from mean

All values within three standard deviations
Outlying values culled

GKGaussianDistribution

mean
deviation

Range

1 2 3 4 5

Output

1 2 3 4 5

1

3

7

3

1

Random Sources
GKShuffledDistribution

GKShuffledDistribution

uniformDistance

Range

Output

Anti-clustering distribution
• Reduces or eliminates “runs”
• Still random over time

uniformDistance defines local reduction
• 0.0 = pure random
• 1.0 = all values different

1 2 3 4 5

Random Sources
GKShuffledDistribution

GKShuffledDistribution

uniformDistance

Range

Output

1 3 4
3 4 51 2

5 2
4 2 1 5 3

Anti-clustering distribution
• Reduces or eliminates “runs”
• Still random over time

uniformDistance defines local reduction
• 0.0 = pure random
• 1.0 = all values different

1 2 3 4 5

Random Sources
GKShuffledDistribution

GKShuffledDistribution

uniformDistance

Range

Output

Anti-clustering distribution
• Reduces or eliminates “runs”
• Still random over time

uniformDistance defines local reduction
• 0.0 = pure random
• 1.0 = all values different

1 2 3 4 5

1 2 3 4 5

33333

Random Sources
Simple usage

/* Create a six-sided die with its own random source */
let d6 = GKRandomDistribution.d6()

/* Get die value between 1 and 6 */
let choice = d6.nextInt()

Random Sources
Simple usage

/* Create a twenty-sided die with its own random source */
let d20 = GKRandomDistribution.d20()

/* Get die value between 1 and 20 */
let choice = d20.nextInt()

Random Sources
Simple usage

/* Create a custom 256-sided die with its own random source */
let d256 = GKRandomDistribution.die(lowest:1, highest:256)

/* Get die value between 1 and 256 */
let choice = d256.nextInt()

Random Sources
Intermediate usage

/* Create a twenty-sided die with a bell curve bias */
let d20 = GKGaussianDistribution.d20()

/* Get die value between 1 and 20 that is most likely to be around 11 */
let choice = d20.nextInt()

Random Sources
Intermediate usage

/* Create a twenty-sided die with no clustered values — fair random */
let d20 = GKShuffledDistribution.d20()

/* Get die value between 1 and 20 */
let choice = d20.nextInt()

/* Get another die value that is not the same as ‘choice’ */
let secondChoice = d20.nextInt()

Random Sources
Intermediate usage

/* Make a deck of cards */
var deck = [Ace, King, Queen, Jack, Ten]

/* Shuffle them */
deck = GKRandomSource.sharedRandom().shuffle(deck)
/* possible result - [Jack, King, Ten, Queen, Ace] */

/* Get a random card from the deck */
let card = deck[0]

Rule Systems
Joshua Boggs

Rule Systems
Game ingredients

A game consists of three elements:

Nouns (Properties)
• Position, speed, health, equipment, etc.

Verbs (Actions)
• Run, jump, use item, accelerate, etc.

Rules
• How your nouns and verbs interact

Binary Driver AI
• Input is distance
• Output is either [slowDown] or [speedUp]

Conditional
/* Test is distance */
if (car.distance < 5) {
 [car slowDown];
}
else if (car.distance >= 5) {
 [car speedUp];
}

Rule Systems
What is a rule system?

10

Distance

50

Brake

Accelerate

Rule Systems
What is a rule system?

Fuzzy Driver AI
• Input is distance
• Rules output facts

Facts
closeness = 1.0f - distance / 10.0f;

farness = distance / 10.0f;

Can be both close and far

Brake Accelerate

100 5

Distance

Rule Systems
Motivation

Complex reasoning with fuzzy logic
• Facts can be grades of true
• Fuzzy logic deals with approximations

Separate what we should do from how we should do it
• State facts about the world
• Take deferred actions based on those facts

Rule Systems
GKRule

A boolean predicate and an action
• Predicate matches against facts and state
• Action fires only if predicate is true

Action can be simple [assertFact:]
• Or complex block

Serializable

GKRule

salience

[performActionWithSystem:]

[evaluatePredicateWithSystem:]

[ruleWithPredicate:assertingFact:grade:]

[ruleWithBlockPredicate:action:]

Rule Systems provide approximate answers to questions
• How close am I to the car in front?

- Very far
 farGrade = 1.0f;

- Somewhere in between
 farGrade = closeGrade = 0.5;

- ‘Close-ish’
 closeGrade = 0.75f;
 farGrade = 0.25f;

Rule Systems
Approximation

GKRuleSystem

An ordered collection of rules and facts
Assert facts by calling [evaluate]
• Rules use the state dictionary as input
• Facts array holds the asserted output
• Repeat evaluation for each new fact
• [reset] and clear old facts to repeat

GKRuleSystem

state

[evaluate]

rules

[assertFact:]
[retractFact:]
[addRule:]

facts
agenda

Rule Systems

Rule Systems
Code example

/* Make a rule system */
GKRuleSystem* sys = [[GKRuleSystem alloc] init];

/* Getting distance and asserting facts */
float distance = sys.state[@“distance”];
[sys assertFact:@“close” grade:1.0f - distance / kBrakingDistance];
[sys assertFact:@“far” grade:distance / kBrakingDistance];

/* Grade our facts - farness and closeness */
float farness = [sys gradeForFact@“far”];
float closeness = [sys gradeForFact@“close”];

/* Derive Fuzzy acceleration */
float fuzzyAcceleration = farness - closeness;
[car applyAcceleration:fuzzyAcceleration withDeltaTime:seconds];

Demo
Traffic Toy

Rule Systems
Best practices

GKRuleSystem is an isolated system
• state is a snapshot of your game world
• Use many simple rules and assert facts about the game world

Facts are approximate, it’s up to you to decide how to use them
• Grade of a fact is the system’s confidence in it
• Use fuzzy logic for more complex reasoning

Wrap Up
Bruno Sommer

GameplayKit
Bringing game ideas to life

Entities &
Components

Pathfinding

Agents

MinMax AI Rule SystemsRandom
Sources

State Machines

Code Samples

DemoBots

• SpriteKit game, lots of GameplayKit coverage

FourInARow

• Covers MinMaxAI

AgentsCatalog

• Covers agents, behaviors and goals

Related Sessions

What’s New In SpriteKit Mission Wednesday 10:00 AM

Going Social with ReplayKit and Game Center Mission Wednesday 1:30 PM

Enhancements to SceneKit Nob Hill Wednesday 2:30 PM

Deeper into GameplayKit with DemoBots Mission Thursday 1:30 PM

Labs

Game Controllers Lab Graphics D Thursday 2:30 PM

Game Controllers Lab Graphics D Friday 9:00 AM

GameplayKit Lab Graphics C Thursday 2:30 PM

GameplayKit Lab Graphics C Friday 12:00 PM

SpriteKit Lab Graphics C Friday 9:00 AM

More Information

Documentation and Videos
http://developer.apple.com
Apple Developer Forums
http://developer.apple.com/forums
Developer Technical Support
http://developer.apple.com/support/technical

General Inquiries
Allan Schaffer, Game Technologies Evangelist
aschaffer@apple.com

