
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

Security and Your Apps

Ivan Krstic Security and Privacy Strategy
Pierre-Olivier Martel Sandbox Engineering Manager
Andrew Whalley Core OS Security Engineering

System Frameworks

Session 706

Device Security

iOS: Secure enclave, touch ID, secure boot chain, data protection
OS X: FileVault, app sandbox, system integrity protection, …
Keychain, MDM

Network Security

HTTPS, TLS, “lock icon”
In 2015, TLS is a minimum baseline

TLS Is Not Enough

Many servers still default to TLSv1.0, from 1999
Newest version is TLSv1.2 from 2008, with a number of cryptographic improvements to
the protocol

TLSv1.2 Is Not Enough

Compromise of a server key lets you decrypt all TLS traffic that was encrypted in the past
With forward secrecy, a server key compromise only lets an attacker decrypt future traffic
• Mitigates bulk recording of encrypted network data

TLS supports forward secrecy through specific cipher suites

“People have entrusted us with their most
personal information. We owe them nothing
less than the best protections that we can
possibly provide by harnessing the technology
at our disposal. We must get this right. History
has shown us that sacrificing our right to
privacy can have dire consequences.”
–Tim Cook, February 2015

App Transport Security

By default, apps linked against iOS 9 and OS X 10.11 cannot make  
unprotected HTTP connections
TLS connections require compliance with best practices
• TLSv1.2 with forward secrecy, no known-insecure cryptographic primitives (RC4 encryption,

SHA-1 certificate signatures), and key size requirements (2048 bits for RSA, 256 bits for EC)

Exceptions can be declared in your Info.plist on a case-by-case basis, or as a complete
override if necessary

System Integrity Protection

Pierre-Olivier Martel
Sandbox Engineering Manager

Defense In Depth

Defense In Depth

Security is about layers

Defense In Depth

Security is about layers
One layer failing shouldn’t defeat all security

Defense In Depth

Security is about layers
One layer failing shouldn’t defeat all security

Defense In Depth

Security is about layers
One layer failing shouldn’t defeat all security
Rely on multiple layers of protection with
different properties
• Delay the advance of an attacker
• Reduce the attack surface

Defense In Depth
The origins

Sebastien de Vauban (1633–1707)
Military Expert for the King of France

Defense In Depth
The origins

Defense In Depth
The OS X model

Defense In Depth
The OS X model

Developer ID and Gatekeeper

Sandbox

POSIX

Keychain

Defense In Depth
The OS X model

Developer ID and Gatekeeper

Sandbox

POSIX

Keychain

Defense In Depth
The OS X model

Developer ID and Gatekeeper

Sandbox

POSIX

Keychain

Defense In Depth
The OS X model

Developer ID and Gatekeeper

Sandbox

POSIX

Keychain

Defense In Depth
The OS X model

Developer ID and Gatekeeper

Sandbox

POSIX

Keychain

Defense In Depth
The OS X model

Developer ID and Gatekeeper

Sandbox

POSIX

Keychain

OS X Security Model
The power of root

OS X Security Model
The power of root

Most Macs are single-user systems, where the user has administrative 
privileges by default

OS X Security Model
The power of root

Most Macs are single-user systems, where the user has administrative 
privileges by default
Root hidden behind a single—often weak—password

OS X Security Model
The power of root

Most Macs are single-user systems, where the user has administrative 
privileges by default
Root hidden behind a single—often weak—password

OS X Security Model
The power of root

Most Macs are single-user systems, where the user has administrative 
privileges by default
Root hidden behind a single—often weak—password

OS X Security Model
The power of root

Most Macs are single-user systems, where the user has administrative 
privileges by default
Root hidden behind a single—often weak—password
Root can disable all security measures on the device

OS X Security Model
The power of root

Most Macs are single-user systems, where the user has administrative 
privileges by default
Root hidden behind a single—often weak—password
Root can disable all security measures on the device
Any piece of malware is one password or vulnerability away from taking  
full control of the device

OS X Security Model
The missing layer

Limit the power of root
Protect the system by default, on disk and at runtime
Provide a configuration mechanism that can’t be automatically compromised by root

System Integrity Protection

Security policy applying to every process, including privileged code running
unsandboxed
Extends additional protections to system components on disk and at runtime
System binaries can only be modified by Apple Installer and Software Update, and no
longer permit runtime attachment or code injection

System Integrity Protection
Developer impact

No impact on Mac AppStore applications
Potential impact for non-AppStore applications
• Modifying system binaries or framework
• Installing content in system locations
• Inspecting memory state of system processes
• Injecting libraries into system processes

Key Aspects

Filesystem protections
Runtime protections
Kernel extensions
Configuration mechanism

Platform Policy
Filesystem protections

Installer marks system locations with special flag
Kernel stops processes from
• Writing to protected files or directories
• Writing to block devices backing protected content
• Mounting over protected content

Only applies to boot and root volumes

Platform Policy
Filesystem protections

System only Available to developers

/System [~]/Library

/bin /usr /sbin /usr/local

/Applications

System Migration will move 3rd-party content out of system locations after upgrading

Platform Policy
Runtime protections

Injecting code into a process is equivalent to modifying the binary on disk
Processes are marked restricted by the kernel
• Main executable is protected on disk
• Main executable is signed with Apple-private entitlements

Platform Policy
Restricted processes

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM
Mach special ports are reset on exec(2)

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM
Mach special ports are reset on exec(2)
dyld environment variables are ignored

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM
Mach special ports are reset on exec(2)
dyld environment variables are ignored
dtrace probes unavailable

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM
Mach special ports are reset on exec(2)
dyld environment variables are ignored
dtrace probes unavailable

$> sudo lldb -n Finder
(lldb) process attach --name "Finder"
error: attach failed: attach failed: lost connection

Platform Policy
Restricted processes

task_for_pid() / processor_set_tasks() fail with EPERM
Mach special ports are reset on exec(2)
dyld environment variables are ignored
dtrace probes unavailable

$> sudo lldb -n Finder
(lldb) process attach --name "Finder"
error: attach failed: attach failed: lost connection

Platform Policy
Kext signing

Extensions have to be signed with a Developer ID for Kexts certificate
Install into /Library/Extensions

kext-dev-mode boot-arg is now obsolete

Platform Policy
Kext signing

Extensions have to be signed with a Developer ID for Kexts certificate
Install into /Library/Extensions

kext-dev-mode boot-arg is now obsolete

$> sudo nvram boot-args=‘kext-dev-mode=1’

Platform Policy
Kext signing

Extensions have to be signed with a Developer ID for Kexts certificate
Install into /Library/Extensions

kext-dev-mode boot-arg is now obsolete

$> sudo nvram boot-args=‘kext-dev-mode=1’

Configuration Mechanism

Disable System Integrity Protection (subject to change)
• Boot to Recovery OS (Command+R on boot)
• Launch “Security Configuration” from the “Utilities” menu
• Change configuration and apply

Configuration is stored in NVRAM
• Applies to the entire machine
• Persists across OS install

Summary

Summary

New security policy applying to every process

Summary

New security policy applying to every process
Protect the system by default, on disk and at runtime

Summary

New security policy applying to every process
Protect the system by default, on disk and at runtime
• Restrict write access to system location

Summary

New security policy applying to every process
Protect the system by default, on disk and at runtime
• Restrict write access to system location
• Prevent runtime attachment and code injection into system binaries

Summary

New security policy applying to every process
Protect the system by default, on disk and at runtime
• Restrict write access to system location
• Prevent runtime attachment and code injection into system binaries

3rd-party content must be migrated out of system locations

Summary

New security policy applying to every process
Protect the system by default, on disk and at runtime
• Restrict write access to system location
• Prevent runtime attachment and code injection into system binaries

3rd-party content must be migrated out of system locations
Configuration mechanism in the Recovery OS

The Keychain and Touch ID

Andrew R. Whalley
Core OS Security Engineering

Protecting Data

Protecting Data

Protecting Data

Protecting Data

Keychain

Keychain

A very specialized database

Keychain

A very specialized database
Efficiently searched by attributes

Keychain

A very specialized database
Efficiently searched by attributes
Optimized for small payloads

The Keychain in a Nutshell
Item creation in Swift

The Keychain in a Nutshell
Item creation in Swift

let secret = "top secret"
let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)!

The Keychain in a Nutshell
Item creation in Swift

let secret = "top secret"
let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)!
let status = SecItemAdd(attributes, nil)

let status = SecItemAdd(attributes, nil)

The Keychain in a Nutshell
Item creation in Swift

let secret = "top secret"
let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)!

let attributes = [
 kSecClass as String : kSecClassGenericPassword as String,
 kSecAttrService as String : "myservice",
 kSecAttrAccount as String : "account name here",
 kSecValueData as String : secretData!
]

let status = SecItemAdd(attributes, nil)

The Keychain in a Nutshell
Other SecItem calls

The Keychain in a Nutshell
Other SecItem calls

let status = SecItemCopyMatching(query, &data)
 
let status = SecItemDelete(query)
 
let status = SecItemUpdate(query, attributes)

The Keychain in a Nutshell
Some considerations

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit
• Wrapper class

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit
• Wrapper class

Use the highest data protection level you can

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit
• Wrapper class

Use the highest data protection level you can
• kSecAttrAccessibleWhenUnlocked default and best

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit
• Wrapper class

Use the highest data protection level you can
• kSecAttrAccessibleWhenUnlocked default and best
• kSecAttrAccessibleAfterFirstUnlock for background apps

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit
• Wrapper class

Use the highest data protection level you can
• kSecAttrAccessibleWhenUnlocked default and best
• kSecAttrAccessibleAfterFirstUnlock for background apps
• kSecAttrAccessibleAlways will be deprecated in iOS 9

The Keychain in a Nutshell
Some considerations

Factor keychain code into a simple, testable unit
• Wrapper class

Use the highest data protection level you can
• kSecAttrAccessibleWhenUnlocked default and best
• kSecAttrAccessibleAfterFirstUnlock for background apps

Apple Watch

Reducing Password Prompts

Reducing Password Prompts

Reducing Password Prompts
Shared web credentials

Safari Saved Passwords

Safari Saved Passwords

Websites and Apps

Shared Web Credentials
Save to Safari

Shared Web Credentials
Save to Safari

let username = "j.appleseed@icloud.com"
let password = SecCreateSharedWebCredentialPassword().takeRetainedValue()

SecAddSharedWebCredential("www.macosforge.org", username, password){ error in
 // handle error
}

Shared Web Credentials
Retrieve from Safari

SecRequestSharedWebCredential("www.macosforge.org", .None)
{ credentials, error in
 if CFArrayGetCount(credentials) > 0 {
 let dict = unsafeBitCast(CFArrayGetValueAtIndex(credentials, 0),  
 CFDictionaryRef.self) as Dictionary
 let username = dict[kSecAttrAccount as String]
 let password = dict[kSecSharedPassword as String]
 login(username, password)
 }
}

Shared Web Credentials
Retrieve from Safari

SecRequestSharedWebCredential("www.macosforge.org", .None)
{ credentials, error in
 if CFArrayGetCount(credentials) > 0 {
 let dict = unsafeBitCast(CFArrayGetValueAtIndex(credentials, 0),  
 CFDictionaryRef.self) as Dictionary
 let username = dict[kSecAttrAccount as String]
 let password = dict[kSecSharedPassword as String]
 login(username, password)
 }
}

Associated Domains
App entitlement

{
 "webcredentials":
 {
 "apps": [
 "YWBN8XTPBJ.com.example.app",
 "YWBN8XTPBJ.com.example.app-dev"
]
 }
}

Associated Domains
Server JSON

https://example.com/apple-app-site-association

{
 "webcredentials":
 {
 "apps": [
 "YWBN8XTPBJ.com.example.app",
 "YWBN8XTPBJ.com.example.app-dev"
]
 },

 "activitycontinuation":
 {
 "apps" : [
 "YWBN8XTPBJ.com.example.app"
]
 },

Associated Domains
Server JSON

https://example.com/apple-app-site-association

{
 "webcredentials":
 {
 "apps": [
 "YWBN8XTPBJ.com.example.app",
 "YWBN8XTPBJ.com.example.app-dev"
]
 },

 "activitycontinuation":
 {
 "apps" : [
 "YWBN8XTPBJ.com.example.app"
]
 },

 "applinks":

Associated Domains
Server JSON

https://example.com/apple-app-site-association

]
 },

 "applinks":
 {
 "apps" : [],
 "details" :
 {
 "YWBN8XTPBJ.com.example.app" :
 [
 "/example/content/*"
]
 }
 }
}

Associated Domains
Server JSON

https://example.com/apple-app-site-association

Associated Domains
Server JSON

https://example.com/apple-app-site-association

Associated Domains
Server JSON

For iOS 9: No need to sign JSON

https://example.com/apple-app-site-association

Avoiding Asking for Passwords
iCloud Keychain

Avoiding Asking for Passwords
iCloud Keychain

iCloud Keychain

iCloud Keychain

For all passwords that can be used on multiple devices
• Add kSecAttrSynchronizable to all SecItem calls

iCloud Keychain

For all passwords that can be used on multiple devices
• Add kSecAttrSynchronizable to all SecItem calls

 
A few caveats
• Updating or deleting items affects item on all devices
• See SecItem.h

Keychain

Keychain

Store all secrets in the keychain

Keychain

Store all secrets in the keychain
Protect them at the highest level possible

Keychain

Store all secrets in the keychain
Protect them at the highest level possible
Use SharedWebCredentials and iCloud Keychain

Device Specific Credentials

Device Specific Credentials

Examples
• Limited use tokens and cookies
• Encrypted messaging keys
• Keys with specific protection requirements 

Device Specific Credentials

Examples
• Limited use tokens and cookies
• Encrypted messaging keys
• Keys with specific protection requirements 

kSecAttrAccessibleWhenUnlockedThisDeviceOnly

Device Specific Credentials

Examples
• Limited use tokens and cookies
• Encrypted messaging keys
• Keys with specific protection requirements 

kSecAttrAccessibleWhenUnlockedThisDeviceOnly

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

Device Specific Credentials

Examples
• Limited use tokens and cookies
• Encrypted messaging keys
• Keys with specific protection requirements 

kSecAttrAccessibleWhenUnlockedThisDeviceOnly

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

kSecAttrAccessControl

Architecture
iOS security domains

Application

KeyStore

KernelUser Space

Process Separation

Security Framework

Architecture
iOS security domains

Application

KeyStore

KernelUser Space

Process Separation

Security Framework

Touch ID

Secure Enclave

Architecture
iOS security domains

Touch ID

Secure Enclave

Application Process Separation

KernelUser Space

KeyStoreSecurity Framework

Architecture
iOS security domains

Touch ID

Secure Enclave

Application Process Separation

KernelUser Space

KeyStoreSecurity Framework

Touch ID

Touch ID

Convenience
• Don’t need to enter your 

passcode all the time

Touch ID

Convenience
• Don’t need to enter your 

passcode all the time

Security
• Stronger passcode
• Lock immediately

Touch ID

APIs
• LocalAuthentication
• Keychain Access Control Lists

Touch ID
Pseudocode

Touch ID
Pseudocode

if PresentedFingerprintMatchesEnrolled() 
then
 DoSomething()

LocalAuthentication

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

Application

KernelUser Space

Process Separation Touch ID

Secure Enclave

LocalAuthentication

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

LocalAuthentication

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

LocalAuthentication

Application

KernelUser Space

Process Separation

Secure Enclave

DoSomething()

Touch ID

LocalAuthentication

Application

KernelUser Space

Process Separation

Secure Enclave

DoSomething()

Touch ID

LocalAuthentication

LocalAuthentication
Use cases

LocalAuthentication
Use cases

Replace existing security barrier

LocalAuthentication
Use cases

Replace existing security barrier
Adding one when it would have been too inconvenient before

LocalAuthentication
Use cases

Replace existing security barrier
Adding one when it would have been too inconvenient before
Examples

LocalAuthentication
Use cases

Replace existing security barrier
Adding one when it would have been too inconvenient before
Examples
• Viewing especially sensitive data

LocalAuthentication
Use cases

Replace existing security barrier
Adding one when it would have been too inconvenient before
Examples
• Viewing especially sensitive data
• Confirming an operation

LocalAuthentication
Prompt at app startup

LocalAuthentication
Prompt at app startup

LocalAuthentication
Allowing a previous match

let context = LAContext()
context.touchIDAuthenticationAllowableReuseDuration = 30
let reasonString = "Authentication is needed for access.”

context.evaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics,
 localizedReason: reasonString) { success, authenticationError in
 if success {
 showMainUI()
 }
}

Touch ID Enrollment Change

Touch ID Enrollment Change

LocalAuthentication
Touch ID enrollment change

let context = LAContext()
do {
 try context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics)
 if let domainState = context.evaluatedPolicyDomainState
 where domainState == lastState {
 // Enrollment state the same
 }
 else {
 // Enrollment state changed
 }
}
catch { // Handle error }

LocalAuthentication
Touch ID enrollment change

let context = LAContext()
do {
 try context.canEvaluatePolicy(.DeviceOwnerAuthenticationWithBiometrics)
 if let domainState = context.evaluatedPolicyDomainState
 where domainState == lastState {
 // Enrollment state the same
 }
 else {
 // Enrollment state changed
 }
}
catch { // Handle error }

LocalAuthentication
Recap of what’s new in iOS 9

LocalAuthentication
Recap of what’s new in iOS 9

touchIDAuthenticationAllowableReuseDuration

• Accept a previous match
evaluatedPolicyDomainState

• Get a representation of the current set of enrolled fingers
invalidate()

• Cancel a user prompt from code
evaluateAccessControl()

• Use LocalAuthentication with Access Control Lists

Keychain
Access Control Lists

Keychain
Access Control Lists

Application

KernelUser Space

Process Separation

Secure Enclave

KeyStore

Touch ID

Keychain
Access Control Lists

Application

KernelUser Space

Process Separation

Secure Enclave

KeyStore

Touch ID

Access Control Lists

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

KeyStore

Keychain

Access Control Lists

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

KeyStore

Keychain

Access Control Lists

Application

User Space

Process Separation

Secure EnclaveKernel

Touch ID

KeyStore

Keychain

Access Control Lists

Application

User Space

Process Separation

Secure EnclaveKernel

Touch ID

KeyStoreSecret

Keychain

Access Control Lists

Application

User Space

Process Separation

Secure EnclaveKernel

Touch ID

KeyStoreSecret

Keychain

Keychain
Access Control Lists

Keychain
Access Control Lists

Add additional protection to a saved credential

Keychain
Access Control Lists

Add additional protection to a saved credential
Take advantage of the Secure Enclave

Keychain
Access Control Lists

Add additional protection to a saved credential
Take advantage of the Secure Enclave
Examples

Keychain
Access Control Lists

Add additional protection to a saved credential
Take advantage of the Secure Enclave
Examples
• Don’t require a username and password every launch

Keychain
Access Control Lists

Add additional protection to a saved credential
Take advantage of the Secure Enclave
Examples
• Don’t require a username and password every launch
• Protect local encryption keys

Keychain Item Access Control Lists

let secret = "top secret"

let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)

var error: Unmanaged<CFErrorRef>?

let acl = SecAccessControlCreateWithFlags(kCFAllocatorDefault,

 kSecAttrAccessibleWhenUnlocked, .UserPresence, &error).takeRetainedValue()

Keychain Item Access Control Lists

let secret = "top secret"

let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)

var error: Unmanaged<CFErrorRef>?

let acl = SecAccessControlCreateWithFlags(kCFAllocatorDefault,

 kSecAttrAccessibleWhenUnlocked, .UserPresence, &error).takeRetainedValue()

Keychain Item Access Control Lists

let secret = "top secret"

let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)

var error: Unmanaged<CFErrorRef>?

let acl = SecAccessControlCreateWithFlags(kCFAllocatorDefault,

 kSecAttrAccessibleWhenUnlocked, .UserPresence, &error).takeRetainedValue()

ACL Authentication Types

.UserPresence

ACL Authentication Types

.UserPresence

.DevicePasscode

ACL Authentication Types

.UserPresence

.DevicePasscode

.TouchIDAny

ACL Authentication Types

.UserPresence

.DevicePasscode

.TouchIDAny

.TouchIDCurrentSet

Touch ID and Multi Factor Authentication

Touch ID and Multi Factor Authentication

Something you know

Touch ID and Multi Factor Authentication

Something you know
• Password

Touch ID and Multi Factor Authentication

Something you know
• Password

Something you have

Touch ID and Multi Factor Authentication

Something you know
• Password

Something you have
• Physical token, smartcard

Touch ID and Multi Factor Authentication

Something you know
• Password

Something you have
• Physical token, smartcard
• iOS Device with Secure Enclave and Touch ID

Touch ID and Multi Factor Authentication

Something you know
• Password

Something you have
• Physical token, smartcard
• iOS Device with Secure Enclave and Touch ID
SecAccessControlCreateFlags.TouchIDCurrentSet

Access Control List Authentication Types
Beyond Touch ID

.UserPresence

.DevicePasscode

.TouchIDAny

.TouchIDCurrentSet

.ApplicationPassword

.PrivateKeyUsage

ApplicationPassword

5458bdf1cfd4cb6e662fe02d87
620b69c01802edb8c7fa0b0843
b6245dbf5ba0fa64cc1fd26085
b78620239b75e27163e4a6a88
bd8a0463525a343dad1d59e78
4462fbf9bf7f0a4bdf8b8d517e8
a3369e29dfc881a00415c3b7213
927f013b60d092c4ce434a2a7af
95f78fd106095ea7e435807998
72de834b1162de3813da2bc031
b07fa993f0338d539981fc502cb

kSecAttrAccessibleWhenUnlocked

ApplicationPassword

5458bdf1cfd4cb6e662fe02d87
620b69c01802edb8c7fa0b0843
b6245dbf5ba0fa64cc1fd26085
b78620239b75e27163e4a6a88
bd8a0463525a343dad1d59e78
4462fbf9bf7f0a4bdf8b8d517e8
a3369e29dfc881a00415c3b7213
927f013b60d092c4ce434a2a7af
95f78fd106095ea7e435807998
72de834b1162de3813da2bc031
b07fa993f0338d539981fc502cb

kSecAttrAccessibleWhenUnlocked

ApplicationPassword

Passcode

5458bdf1cfd4cb6e662fe02d87
620b69c01802edb8c7fa0b0843
b6245dbf5ba0fa64cc1fd26085
b78620239b75e27163e4a6a88
bd8a0463525a343dad1d59e78
4462fbf9bf7f0a4bdf8b8d517e8
a3369e29dfc881a00415c3b7213
927f013b60d092c4ce434a2a7af
95f78fd106095ea7e435807998
72de834b1162de3813da2bc031
b07fa993f0338d539981fc502cb

kSecAttrAccessibleWhenUnlocked

ApplicationPassword

Passcode

5458bdf1cfd4cb6e662fe02d87
620b69c01802edb8c7fa0b0843
b6245dbf5ba0fa64cc1fd26085
b78620239b75e27163e4a6a88
bd8a0463525a343dad1d59e78
4462fbf9bf7f0a4bdf8b8d517e8
a3369e29dfc881a00415c3b7213
927f013b60d092c4ce434a2a7af
95f78fd106095ea7e435807998
72de834b1162de3813da2bc031
b07fa993f0338d539981fc502cb

kSecAttrAccessibleWhenUnlocked

AES Key

ApplicationPassword

Passcode

5458bdf1cfd4cb6e662fe02d87
620b69c01802edb8c7fa0b0843
b6245dbf5ba0fa64cc1fd26085
b78620239b75e27163e4a6a88
bd8a0463525a343dad1d59e78
4462fbf9bf7f0a4bdf8b8d517e8
a3369e29dfc881a00415c3b7213
927f013b60d092c4ce434a2a7af
95f78fd106095ea7e435807998
72de834b1162de3813da2bc031
b07fa993f0338d539981fc502cb

kSecAttrAccessibleWhenUnlocked

AES Key

The secret meeting location is
row 13 of Mission right after

session 706

ApplicationPassword

b1a0d6c9b3b2726a886f0f103a
b89154ee3fbd9e85ea27c78bcd
246c6262fb29ba85ab6988b7b
7758d8aecd89306ce2421eb33
0f900aff526a9a06fcdf040cc7c6
ec5668744d792a69f9640d05a5
1d7e3e7185aee741c099257305
b882d52e7a218c8b31a51a0634
58e5b80023a7ebee35da77bee
232d82fbb734f04ba93951de2b
8f848cd1a5c96b793f739b0d29

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

ApplicationPassword

b1a0d6c9b3b2726a886f0f103a
b89154ee3fbd9e85ea27c78bcd
246c6262fb29ba85ab6988b7b
7758d8aecd89306ce2421eb33
0f900aff526a9a06fcdf040cc7c6
ec5668744d792a69f9640d05a5
1d7e3e7185aee741c099257305
b882d52e7a218c8b31a51a0634
58e5b80023a7ebee35da77bee
232d82fbb734f04ba93951de2b
8f848cd1a5c96b793f739b0d29

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

Passcode AES Key

a5d3c7df546db329ed9418b7f3
c5120ff5572aa4e5dc691dc06cf
29b156a61e1cf1ad89c4c5e2fa5
8bb149b83677fe627c688d6125
c0256ab7a22d130af74c6062b9
155c865ffa5f58708bb498b2bd
4e930ecd4c2e0a213218a98745
6739a3bc7f5044b7967da4618d
04556d769cffce249d0cec2664
5bee92d14c7d614a217eac1d38
509673350e13c1293a8864eefa

ApplicationPassword

Passcode AES Key

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

a5d3c7df546db329ed9418b7f3
c5120ff5572aa4e5dc691dc06cf
29b156a61e1cf1ad89c4c5e2fa5
8bb149b83677fe627c688d6125
c0256ab7a22d130af74c6062b9
155c865ffa5f58708bb498b2bd
4e930ecd4c2e0a213218a98745
6739a3bc7f5044b7967da4618d
04556d769cffce249d0cec2664
5bee92d14c7d614a217eac1d38
509673350e13c1293a8864eefa

ApplicationPassword

Passcode AES Key

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

a5d3c7df546db329ed9418b7f3
c5120ff5572aa4e5dc691dc06cf
29b156a61e1cf1ad89c4c5e2fa5
8bb149b83677fe627c688d6125
c0256ab7a22d130af74c6062b9
155c865ffa5f58708bb498b2bd
4e930ecd4c2e0a213218a98745
6739a3bc7f5044b7967da4618d
04556d769cffce249d0cec2664
5bee92d14c7d614a217eac1d38
509673350e13c1293a8864eefa

ApplicationPassword

Passcode AES Key

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

Password

a5d3c7df546db329ed9418b7f3
c5120ff5572aa4e5dc691dc06cf
29b156a61e1cf1ad89c4c5e2fa5
8bb149b83677fe627c688d6125
c0256ab7a22d130af74c6062b9
155c865ffa5f58708bb498b2bd
4e930ecd4c2e0a213218a98745
6739a3bc7f5044b7967da4618d
04556d769cffce249d0cec2664
5bee92d14c7d614a217eac1d38
509673350e13c1293a8864eefa

ApplicationPassword

Passcode AES Key

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

Password AES Key

a5d3c7df546db329ed9418b7f3
c5120ff5572aa4e5dc691dc06cf
29b156a61e1cf1ad89c4c5e2fa5
8bb149b83677fe627c688d6125
c0256ab7a22d130af74c6062b9
155c865ffa5f58708bb498b2bd
4e930ecd4c2e0a213218a98745
6739a3bc7f5044b7967da4618d
04556d769cffce249d0cec2664
5bee92d14c7d614a217eac1d38
509673350e13c1293a8864eefa

The secret meeting location is
row 13 of Mission right after

session 706

ApplicationPassword

Passcode AES Key

kSecAttrAccessibleWhenUnlocked

.ApplicationPassword

Password AES Key

ApplicationPassword
Use cases

ApplicationPassword
Use cases

Server side control of local data protection

ApplicationPassword
Use cases

Server side control of local data protection
Key storage on accessories

let secret = "top secret"

let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)!

var error: Unmanaged<CFErrorRef>?

let acl = SecAccessControlCreateWithFlags(kCFAllocatorDefault, 
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly, 
 .ApplicationPassword, &error).takeRetainedValue()

let context = LAContext()

let password = "e693b64e405e9ddc578959b97665e750"
context.setCredential(password.dataUsingEncoding(NSUTF8StringEncoding), 
 type: .ApplicationPassword)

ApplicationPassword
Example

let secret = "top secret"

let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)!

var error: Unmanaged<CFErrorRef>?

let acl = SecAccessControlCreateWithFlags(kCFAllocatorDefault, 
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly, 
 .ApplicationPassword, &error).takeRetainedValue()

let context = LAContext()

let password = "e693b64e405e9ddc578959b97665e750"
context.setCredential(password.dataUsingEncoding(NSUTF8StringEncoding), 
 type: .ApplicationPassword)

ApplicationPassword
Example

let secret = "top secret"

let secretData = secret.dataUsingEncoding(NSUTF8StringEncoding)!

var error: Unmanaged<CFErrorRef>?

let acl = SecAccessControlCreateWithFlags(kCFAllocatorDefault, 
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly, 
 .ApplicationPassword, &error).takeRetainedValue()

let context = LAContext()

let password = "e693b64e405e9ddc578959b97665e750"
context.setCredential(password.dataUsingEncoding(NSUTF8StringEncoding), 
 type: .ApplicationPassword)

ApplicationPassword
Example

ApplicationPassword
Example

let attributes = [
 kSecClass as String: kSecClassGenericPassword as String,
 kSecAttrService as String : "myservice",
 kSecAttrAccount as String : "account name here",
 kSecValueData as String : secretData,
 kSecAttrAccessControl as String : acl,
 kSecUseAuthenticationContext as String : context
]

let status = SecItemAdd(attributes, nil)

Keeping Things Inside the Secure Enclave

Keeping Things Inside the Secure Enclave

Application

User Space

Process Separation

Secure EnclaveKernel

Touch ID

KeyStoreSecret

Keeping Things Inside the Secure Enclave
Asymmetric cryptography

Keeping Things Inside the Secure Enclave
Asymmetric cryptography

Asymmetric Key Pair

Keeping Things Inside the Secure Enclave
Asymmetric cryptography

Public Key Private Key

Asymmetric Key Pair

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

KeyStore

Application Process Separation Touch ID

SecKeyGeneratePair()

KernelUser Space Secure Enclave

Application Process Separation

Public Key

Keeping More Inside the Secure Enclave

KeyStore

Touch ID

Private Key

KernelUser Space Secure Enclave

Application Process Separation

Public Key

Keeping More Inside the Secure Enclave

KeyStore

Touch ID

Private Key

KernelUser Space Secure Enclave

Application Process Separation

Keeping More Inside the Secure Enclave

KeyStore

Touch ID

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

Application Process Separation

KeyStore

Touch ID

SecItemCopyMatching()

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

Application Process Separation

KeyStore

Touch ID

Private KeySecItemCopyMatching()

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

Application Process Separation

KeyStore

Touch ID

Private KeySecItemCopyMatching()

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

Application Process Separation

KeyStore

Touch ID

Private KeySecItemCopyMatching()

KernelUser Space Secure Enclave

Application Process Separation

Keeping More Inside the Secure Enclave

KeyStore

Touch ID

Keeping More Inside the Secure Enclave

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

SecKeyRawSign() KeyStore

Keeping More Inside the Secure Enclave

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

SecKeyRawSign() KeyStoreData To Sign

Keeping More Inside the Secure Enclave

Application

KernelUser Space

Process Separation

Secure Enclave

KeyStore

Touch ID

SecKeyRawSign() Data To Sign

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

KeyStore

Keeping More Inside the Secure Enclave

SecKeyRawSign() Data To Sign

Application

KernelUser Space

Process Separation

Secure Enclave

Touch ID

KeyStore

Keeping More Inside the Secure Enclave

SecKeyRawSign() Data To Sign

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

Application Process Separation

KeyStore

Touch ID

SecKeyRawSign() SignaturePrivate Key

Keeping More Inside the Secure Enclave

KernelUser Space Secure Enclave

Application Process Separation

KeyStore

Touch ID

Signature Private Key

Strengthening Touch ID as a Second Factor
Example flow—enrollment

Strengthening Touch ID as a Second Factor
Example flow—enrollment

Generate keypair

Strengthening Touch ID as a Second Factor
Example flow—enrollment

Generate keypair
Send public key to server

Strengthening Touch ID as a Second Factor
Example flow—enrollment

Generate keypair
Send public key to server
Server records public key

Strengthening Touch ID as a Second Factor
Example flow—verification

Strengthening Touch ID as a Second Factor
Example flow—verification

Server sends a challenge

Strengthening Touch ID as a Second Factor
Example flow—verification

Server sends a challenge
App calls SecKeyRawSign()

Strengthening Touch ID as a Second Factor
Example flow—verification

Server sends a challenge
App calls SecKeyRawSign()
User presents finger

Strengthening Touch ID as a Second Factor
Example flow—verification

Server sends a challenge
App calls SecKeyRawSign()
User presents finger
App sends signed data back to server

Strengthening Touch ID as a Second Factor
Example flow—verification

Server sends a challenge
App calls SecKeyRawSign()
User presents finger
App sends signed data back to server
Server verifies signature against stored public key

Asymmetric Keys in the Secure Enclave

Generated private keys are
• EC P256
• Not extractable

Operations
• SecKeyRawSign()

• SecKeyRawVerify()

Summary

Summary

Overview of the keychain

Summary

Overview of the keychain
Avoiding password prompts

Summary

Overview of the keychain
Avoiding password prompts
Touch ID APIs

Summary

Overview of the keychain
Avoiding password prompts
Touch ID APIs
• LocalAuthentication

Summary

Overview of the keychain
Avoiding password prompts
Touch ID APIs
• LocalAuthentication
• Keychain ACLs

Summary

Overview of the keychain
Avoiding password prompts
Touch ID APIs
• LocalAuthentication
• Keychain ACLs

Advanced features

Summary

Overview of the keychain
Avoiding password prompts
Touch ID APIs
• LocalAuthentication
• Keychain ACLs

Advanced features
• App passwords

Summary

Overview of the keychain
Avoiding password prompts
Touch ID APIs
• LocalAuthentication
• Keychain ACLs

Advanced features
• App passwords
• Secure Enclave protected private keys

More Information

Technical Support
Apple Developer Forums
http://developer.apple.com/forums

Keychain Services Documentation
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/
keychainServConcepts

Shared Web Credentials Reference
http://developer.apple.com/library/ios/documentation/Security/Reference/
SharedWebCredentialsRef/

More Information

Documentation
iOS Security White Paper
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

iOS Security White Paper
http://developer.apple.com/support/technical

General Inquiries
Paul Danbold, Core OS Evangelist
danbold@apple.com

mailto:danbold@apple.com

Related Sessions

Privacy and your App Pacific Heights Tuesday 2:30PM

Networking with NSURLSession Pacific Heights Thursday 9:00AM

Related Labs

Security and Privacy Lab Frameworks Lab C Wednesday 9:00AM

Security and Privacy Lab Frameworks Lab B Thursday 9:00AM

