
© 2015 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC15

Building Responsive and 
Efficient Apps with GCD

Anthony J. Chivetta Darwin Runtime Engineer
Daniel A. Steffen Darwin Runtime Engineer

System Frameworks

Session 718

Quality of Service Introduction

GCD Design Patterns with QoS

Threads, Queues, and Run Loops

GCD and Crash Reports

MyAwesomeApp
Handling Events

MyAwesomeApp
Handling Events

Main Thread

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

Wait for
Events

Delegate Method Callout

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

UIApp
Delegate

Wait for
Events

Delegate Method Callout

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

UIApp
Delegate

Wait for
Events

Read from Database

Delegate Method Callout

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

UIApp
DelegateUpdate UI

Wait for
Events

Read from Database

UIKit

Delegate Method Callout

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

UIApp
DelegateUpdate UI

Wait for
Events

Wait for
Events

Read from Database

UIKit

Delegate Method Callout

MyAwesomeApp
Handling Events

Main Thread
NSRunLoop

UIKit

UIApp
DelegateUpdate UI

Wait for
Events

Wait for
Events

Read from Database

UIKit

MyAwesomeApp
Handling Events Asynchronously

Main Thread
NSRunLoop

UIKit

Wait for
Events

Delegate Method Callout

UIApp
Delegate

Wait for
Events

MyAwesomeApp
Handling Events Asynchronously

GCD Queue

Main Thread
NSRunLoop

UIKit

Wait for
Events

Delegate Method Callout

UIApp
Delegate

Wait for
Events

MyAwesomeApp
Handling Events Asynchronously

dispatch_async()

^{…}

GCD Queue

Main Thread
NSRunLoop

UIKit

Wait for
Events

Delegate Method Callout

UIApp
Delegate

Wait for
Events

MyAwesomeApp
Handling Events Asynchronously

dispatch_async()

Update UI

UIKit

^{…}

^{…}

dispatch_async()

GCD Queue

Main Thread
NSRunLoop

UIKit

Wait for
Events

Delegate Method Callout

UIApp
Delegate

Wait for
Events

MyAwesomeApp
Handling Events Asynchronously

dispatch_async()

Update UI

UIKit

^{…}

^{…}

dispatch_async()

GCD Queue

Wait for
Events

Main Thread
NSRunLoop

UIKit

Wait for
Events

Delegate Method Callout

UIApp
Delegate

Wait for
Events

MyAwesomeApp
Competing Threads

Main Thread
NSRunLoop

UIKit GCD Queue

Delegate Method Callout

UIApp
Delegate

^{…}

MyAwesomeApp
Competing Threads

Main Thread
NSRunLoop

UIKit GCD Queue

Delegate Method Callout

UIApp
Delegate

^{…}

Quality of Service Classes

User InitiatedUser Interactive Utility Background

UI IN UT BG

Quality of Service Classes
Complex resource controls

CPU scheduling priority
I/O priority
Timer coalescing
CPU throughput vs. efficiency
More…

Quality of Service Classes
Complex resource controls

CPU scheduling priority
I/O priority
Timer coalescing
CPU throughput vs. efficiency
More…
Configuration values tuned 
for each platform/device

Quality of Service Classes

Single abstract parameter
Communicate developer intent
Explicit classification of work
• Move away from dictating specific

configuration values

UI IN

UT BG

User Interactive Main thread, animations

User Initiated Immediate results

Utility Long-running tasks

Background Not user visible

Quality of Service Classes

User Interactive Main thread, animations

User Initiated Immediate results

Utility Long-running tasks

Background Not user visible

Quality of Service Classes

Is this work actively involved in updating the UI?

User Interactive Main thread, animations

User Initiated Immediate results

Utility Long-running tasks

Background Not user visible

Quality of Service Classes

Is this work actively involved in updating the UI?

Is this work required to continue user interaction?

User Interactive Main thread, animations

User Initiated Immediate results

Utility Long-running tasks

Background Not user visible

Quality of Service Classes

Is this work actively involved in updating the UI?

Is this work required to continue user interaction?

Is the user aware of the progress of this work?

User Interactive Main thread, animations

User Initiated Immediate results

Utility Long-running tasks

Background Not user visible

Quality of Service Classes

Is this work actively involved in updating the UI?

Is this work required to continue user interaction?

Is the user aware of the progress of this work?

Is the user unaware of this work?

UI IN UT BG

UI IN UT BG

Main Thread

Main Thread GCD Thread

Main Thread GCD Thread

Main Thread GCD Thread Main Thread

Main Thread GCD Thread Main Thread

Main Thread GCD Thread Main Thread

Main Thread GCD Thread Main Thread

GCD Design Patterns with QoS

Daniel A. Steffen Darwin Runtime Engineer

GCD and QoS
Fundamentals

QoS can be specified on Blocks and on queues
dispatch_async() automatically propagates QoS
Some priority inversions are resolved automatically

Power, Performance, and Diagnostics:  
What’s New in GCD and XPC WWDC14

Main Thread
NSRunLoop

UIKit

MyAwesomeApp

GCD Queue

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

Asynchronous Work

Main Thread
NSRunLoop

UIKit

MyAwesomeApp

GCD Queue

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

Asynchronous Work

UI

Main Thread
NSRunLoop

UIKit

MyAwesomeApp

GCD Queue

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

Asynchronous Work

UI

Main Thread
NSRunLoop

UIKit

MyAwesomeApp

GCD Queue

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

Asynchronous Work

UI IN

GCD Queue

Main Thread
NSRunLoop

UIKit IN

Asynchronous Work
MyAwesomeApp

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

UI

dispatch_async()

GCD Queue

Main Thread
NSRunLoop

UIKit IN

Asynchronous Work
MyAwesomeApp

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

UI

dispatch_async()

GCD Queue

Main Thread
NSRunLoop

UIKit IN

Asynchronous Work
MyAwesomeApp

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

UI

dispatch_async()

GCD Queue

Main Thread
NSRunLoop

UIKit IN

Asynchronous Work
MyAwesomeApp

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

Update UI

UIKit

^{…}

^{…}

dispatch_async()Wait for
Events

UI IN

dispatch_async()

GCD Queue

Main Thread
NSRunLoop

UIKit UI

Asynchronous Work

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

Wait for
Events

dispatch_async()

MyAwesomeApp

IN

GCD Queue

Main Thread
NSRunLoop

UIKit UI

Asynchronous Work

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

Wait for
Events

UI

dispatch_async()

MyAwesomeApp

IN

GCD Queue

Main Thread
NSRunLoop

UIKit UI

Asynchronous Work

UIApp
Delegate

Delegate Method Callout

Wait for
Events

Wait for
Events

dispatch_async()

Update UI

UIKit

^{…}

^{…}

Wait for
Events

UI

dispatch_async()

MyAwesomeApp

IN

QoS Propagation
Inferred QoS

QoS Propagation
Inferred QoS

QoS captured at the time of Block submission
• User Interactive translated to User Initiated

QoS Propagation
Inferred QoS

QoS captured at the time of Block submission
• User Interactive translated to User Initiated

Used if destination does not have QoS specified
• Does not lower QoS

Long-Running Job
MyAwesomeApp

UIApp
Delegates ^{…}

Start Calculation
dispatch_async(q, ^{…})

Main Thread
NSRunLoop

UIKit

GCD Queue

Long-Running Job
MyAwesomeApp

dispatch_async(dispatch_get_main_queue(),^{ 
 // Update Progress UI
})

UIApp
Delegates ^{…}

Start Calculation

Progress Updates

dispatch_async(q, ^{…})

Main Thread
NSRunLoop

UIKit

GCD Queue

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Progress Updates

Main Thread
NSRunLoop

UIKit

GCD Queue

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Progress Updates

Main Thread
NSRunLoop

UIKit

GCD Queue

UI

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Progress Updates

Main Thread
NSRunLoop

UIKit

GCD Queue

UI

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Progress Updates

Main Thread
NSRunLoop

UIKit

GCD Queue

UI UT

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Main Thread
NSRunLoop

UIKit

GCD Queue

UI UT

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Main Thread
NSRunLoop

UIKit

GCD Queue

UI UT

b = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, 0, ^{…})
dispatch_async(q, b)

UIApp
Delegates

Long-Running Job
MyAwesomeApp

^{…}
Start Calculation

Main Thread
NSRunLoop

UIKit

GCD Queue

UI UT

b = dispatch_block_create_with_qos_class(
 0, QOS_CLASS_UTILITY, 0, ^{…})
dispatch_async(q, b)

dispatch_async()
^{…}

Block QoS

Block created with explicit QoS attribute
• When work of another class is generated

^{…}

Block QoS

Block created with explicit QoS attribute
• When work of another class is generated

Captured at Block object creation
• DISPATCH_BLOCK_ASSIGN_CURRENT
• Store a callback Block for later submission

^{…}

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

dispatch_async()

^{…}

GCD Queue

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

BG
dispatch_async()

^{…}

GCD Queue

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

BG
dispatch_async()

^{…}

GCD Queue Qqos_attr =
 dispatch_queue_attr_make_with_qos_class(
 attr, QOS_CLASS_BACKGROUND, 0)
q = dispatch_queue_create(“cleanup”, qos_attr)

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()

UI

MyAwesomeApp
Maintenance Task

UIApp
Delegate

Delegate Method Callout

Main Thread
NSRunLoop

UIKit

Wait for
Events

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()

dispatch_block_create(
 DISPATCH_BLOCK_DETACHED, ^{…})

UI

MyAwesomeApp
Maintenance Task

Main Thread
NSRunLoop

UIKit

Wait for
Events

BG
^{…}

GCD Queue Q

UI

MyAwesomeApp
Maintenance Task

Main Thread
NSRunLoop

UIKit

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()
Logout

UI

MyAwesomeApp
Maintenance Task

Main Thread
NSRunLoop

UIKit

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()
Logout

UI

MyAwesomeApp
Maintenance Task

Main Thread
NSRunLoop

UIKit

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()
Logout

dispatch_block_create(
 DISPATCH_BLOCK_ENFORCE_QOS_CLASS, ^{…})

UI

MyAwesomeApp
Maintenance Task

Main Thread
NSRunLoop

UIKit

Wait for
Events

BG
^{…}

GCD Queue Q

dispatch_async()
Logout

Asynchronous Priority Inversion

High QoS Block submitted to serial queue
• Queue already contains Blocks with lower QoS

Asynchronous Priority Inversion

High QoS Block submitted to serial queue
• Queue already contains Blocks with lower QoS

QoS is raised until high QoS Block is reached
• Invisible to Blocks themselves

Queue QoS
Recap

Queues that are single purpose
• Detached Blocks may also be appropriate

Queue QoS
Recap

Queues that are single purpose
• Detached Blocks may also be appropriate

Ignore QoS in asynchronous Blocks
• Exceptional cases can enforce Block QoS

Data Structure

MyAwesomeApp
Queues as Locks

Locked Access to Data Structure

Main Thread
NSRunLoop

UIKit

UIApp
Delegates

UI

Data Structure

MyAwesomeApp
Queues as Locks

QLocked Access to Data Structure

Main Thread
NSRunLoop

UIKit

UIApp
Delegates

UI

dispatch_queue_create(“com.example.data”, 
 DISPATCH_QUEUE_SERIAL)

Data Structure

MyAwesomeApp
Queues as Locks

Q
dispatch_sync(data.q, ^{…})

Locked Access to Data Structure

Main Thread
NSRunLoop

UIKit

UIApp
Delegates

UI

Data Structure

MyAwesomeApp
Queues as Locks

Q
dispatch_sync(data.q, ^{…})

Locked Access to Data Structure

^{…}

Main Thread
NSRunLoop

UIKit

UIApp
Delegates

UI

dispatch_sync()

^{…}

Data Structure

MyAwesomeApp
Queues as Locks

Q

UT

dispatch_sync(data.q, ^{…})

Locked Access to Data Structure

^{…}

Main Thread
NSRunLoop

UIKit

UIApp
Delegates

UI

Synchronous Priority Inversion

High QoS thread waiting on lower QoS work
QoS of waited on work is raised for
• dispatch_sync() and dispatch_block_wait() of Blocks on serial queues
• pthread_mutex_lock()

Queues, Threads, and Run Loops

Anthony J. Chivetta Darwin Runtime Engineer

Your App
MyAwesomeApp

UIApp
Delegate

Q QQ

Main Thread
NSRunLoop

UIKit

GCD Thread Pool

Run Loop Versus Queue

dispatch_async(q, ^{
 [self performSelector:@selector(thing) withObject:nil afterDelay:1];
});

34

Main Thread
NSRunLoop

Run Loop Versus Queue

dispatch_async(q, ^{
 [self performSelector:@selector(thing) withObject:nil afterDelay:1];
});

34

Main Thread
NSRunLoop

dispatch_async()

Run Loop Versus Queue

dispatch_async(q, ^{
 [self performSelector:@selector(thing) withObject:nil afterDelay:1];
});

34

Main Thread
NSRunLoop

GCD Queue

dispatch_async()

Run Loop Versus Queue

dispatch_async(q, ^{
 [self performSelector:@selector(thing) withObject:nil afterDelay:1];
});

34

Main Thread
NSRunLoop

GCD Queue
NSRunLoop

dispatch_async()

Run Loop Versus Queue

dispatch_async(q, ^{
 [self performSelector:@selector(thing) withObject:nil afterDelay:1];
});

34

Main Thread
NSRunLoop

dispatch_async()

Run Loop Versus Queue
Properties

Run Loop
• Bound to a thread
• Gets delegate method callbacks
• Autorelease pool pops after each iteration
• Can be used reentrantly

The Main Thread’s Run Loop is also exposed as the Main Queue

Serial Queue
• Uses ephemeral threads
• Block callbacks
• Autorelease pool pops when thread idle
• Will deadlock if used reentrantly

RunLoop Versus Queue
Timer APIs

RunLoop
-[NSObject performSelector:withObject:afterDelay:]
+[NSTimer scheduledTimerWithTimeInterval:]

Queue
dispatch_after()
dispatch_source_set_timer()

Thread Creation and Pooling

GCD Thread Pool

dispatch_async()

dispatch_async()

dispatch_async()

Thread Creation and Pooling

^{…}

^{…}

^{…}

GCD Thread Pool

dispatch_async()

dispatch_async()

dispatch_async()

Thread Creation and Pooling

^{…}

^{…}

^{…}

GCD Thread Pool

dispatch_async()

dispatch_async()

dispatch_async()

Thread Creation and Pooling

^{…}

^{…}

GCD Thread Pool

Waiting

A thread waits (blocks) when it needs to wait for a resource such as I/O or locks
When a thread waits, GCD may spin up a new thread to ensure one thread per core

^{…} ^{…} ^{…} ^{…}

Thread Creation and Waiting

^{…} ^{…} ^{…} ^{…}

Thread Creation and Waiting

^{…} ^{…} ^{…} ^{…}

Thread Creation and Waiting

Thread Explosion

^{…} ^{…} ^{…} ^{…}

Thread Explosion

^{…} ^{…} ^{…} ^{…}

^{…} ^{…} ^{…} ^{…}

^{…} ^{…} ^{…} ^{…}

^{…} ^{…} ^{…} ^{…}

^{…} ^{…} ^{…} ^{…}

^{…} ^{…} ^{…} ^{…}

Thread Explosion Causing Deadlock

41

Serial Queue

GCD Thread Pool

Concurrent Queue

Main Thread
NSRunLoop

UIKit

Thread Explosion Causing Deadlock

41

for (int i = 0; i < 999; i++) dispatch_async(q,^{…})

Serial Queue

dispatch_sync(dispatch_get_main_queue(),^{…})

GCD Thread Pool

Concurrent Queue
LIMIT HIT

Main Thread
NSRunLoop

UIKit

Thread Explosion Causing Deadlock

41

for (int i = 0; i < 999; i++) dispatch_async(q,^{…})

Serial Queue

dispatch_sync(dispatch_get_main_queue(),^{…})

dispatch_async(q,^{…})

GCD Thread Pool

async Block

Concurrent Queue
LIMIT HIT

Main Thread
NSRunLoop

UIKit

Thread Explosion Causing Deadlock

41

for (int i = 0; i < 999; i++) dispatch_async(q,^{…})

Serial Queue

dispatch_sync(dispatch_get_main_queue(),^{…})

dispatch_async(q,^{…})
dispatch_sync(q,^{…})

GCD Thread Pool

sync Block

async Block

Concurrent Queue
LIMIT HIT

Main Thread
NSRunLoop

UIKit

Thread Explosion Causing Deadlock

41

for (int i = 0; i < 999; i++) dispatch_async(q,^{…})

Serial Queue

dispatch_sync(dispatch_get_main_queue(),^{…})

dispatch_async(q,^{…})
dispatch_sync(q,^{…})

GCD Thread Pool

sync Block

async Block

Concurrent Queue

No Threads!

LIMIT HIT

Main Thread
NSRunLoop

UIKit

Avoiding Thread Explosion

Always good advice: use asynchronous APIs, especially for I/O
Use serial queues
Use NSOperationQueues with concurrency limits

NSOperationQueue.maxConcurrentOperationCount

Don’t generate unlimited work…

Avoiding Thread Explosion
Mixing sync and async

// fast, just a lock
dispatch_sync(q, ^{…});

// fast, just an atomic enqueue
dispatch_async(q, ^{…});
// slow, has to wait far a thread to complete above Block
dispatch_sync(q, ^{…});

Be super careful about mixing these from the main thread!
Serial Queue

dispatch_async(q,^{…})
dispatch_sync(q,^{…})

sync Block

async Block

Avoiding Thread Explosion
dispatch_apply

// DANGEROUS – may cause thread explosion and deadlocks
for (int i = 0; i < 999; i++){

dispatch_async(q, ^{…});
}
dispatch_barrier_sync(q, ^{});

// GOOD – GCD will manage parallelism
dispatch_apply(999, q, ^(size_t i){…});

Avoiding Thread Explosion
dispatch_semaphore

#define CONCURRENT_TASKS 4
sema = dispatch_semaphore_create(CONCURRENT_TASKS);
for (int i = 0; i < 999; i++){

dispatch_async(q, ^{
 // do work
 dispatch_semaphore_signal(sema);
});
dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER);

}

GCD and Crash Reports

Process: Game [568]
Path: /Applications/2048 Game.app/Contents/MacOS/Game
Identifier: com.examples
Version: 1.5 (1.5)
App Item ID: 871033113
App External ID: 655842710
Code Type: X86-64 (Native)
Parent Process: ??? [1]
Responsible: 2048 Game [568]
User ID: 501

Date/Time: 2015-06-10 15:17:18.745 -0700
OS Version: Mac OS X 10.11 (15A199)
Report Version: 11
Anonymous UUID: B5CC6B16-514B-067B-E1C4-5FBFA9BEFEF8

Sleep/Wake UUID: B9324D7F-B36A-4495-A750-F2D5E0476B85

Time Awake Since Boot: 11000 seconds

Crashed Thread: 0 Dispatch queue: com.apple.main-thread

Exception Type: EXC_CRASH (SIGABRT)
Exception Codes: 0x0000000000000000, 0x0000000000000000
Exception Note: EXC_CORPSE_NOTIFY

Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 libsystem_kernel.dylib 0x00007fff896779c6 mach_msg_trap + 10
1 libsystem_kernel.dylib 0x00007fff89676e07 mach_msg + 55
2 com.apple.CoreFoundation 0x00007fff8c862004 __CFRunLoopServiceMachPort + 212
3 com.apple.CoreFoundation 0x00007fff8c8614cc __CFRunLoopRun + 1356
4 com.apple.CoreFoundation 0x00007fff8c860d18 CFRunLoopRunSpecific + 296
5 com.apple.HIToolbox 0x00007fff9081e52d RunCurrentEventLoopInMode + 235
6 com.apple.HIToolbox 0x00007fff9081e2c3 ReceiveNextEventCommon + 432
7 com.apple.HIToolbox 0x00007fff9081e103 _BlockUntilNextEventMatchingListInModeWithFilter + 71
8 com.apple.AppKit 0x00007fff8e4aa70e _DPSNextEvent + 927
9 com.apple.AppKit 0x00007fff8e87882d -[NSApplication _nextEventMatchingEventMask:untilDate:inMode:dequeue:] + 324
10 com.apple.AppKit 0x00007fff8e4a069f -[NSApplication run] + 682
11 com.apple.AppKit 0x00007fff8e422bb3 NSApplicationMain + 1176
12 libdyld.dylib 0x00007fff8c56a5ad start + 1

Thread 1:: Dispatch queue: com.apple.libdispatch-manager
0 libsystem_kernel.dylib 0x00007fff8967e08a kevent_qos + 10
1 libdispatch.dylib 0x00007fff8be05811 _dispatch_mgr_invoke + 251
2 libdispatch.dylib 0x00007fff8be05465 _dispatch_mgr_thread + 52

Thread 2:
0 libsystem_kernel.dylib 0x00007fff8967d29a __semwait_signal + 10
1 libsystem_c.dylib 0x00007fff982c2b05 nanosleep + 199
2 libc++.1.dylib 0x00007fff89f10100 std::__1::this_thread::sleep_for(std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000000000l> > const&) + 75
3 com.apple.JavaScriptCore 0x00007fff8dd1cde7 bmalloc::Heap::scavenge(std::__1::unique_lock<bmalloc::StaticMutex>&, std::__1::chrono::duration<long long, std::__1::ratio<1l, 1000l> >) + 375
4 com.apple.JavaScriptCore 0x00007fff8dd1c964 bmalloc::Heap::concurrentScavenge() + 68
5 com.apple.JavaScriptCore 0x00007fff8dd1ef0a bmalloc::AsyncTask<bmalloc::Heap, void (bmalloc::Heap::*)()>::entryPoint() + 90
6 com.apple.JavaScriptCore 0x00007fff8dd1eea9 bmalloc::AsyncTask<bmalloc::Heap, void (bmalloc::Heap::*)()>::pthreadEntryPoint(void*) + 9
7 libsystem_pthread.dylib 0x00007fff8fd31cc3 _pthread_body + 131
8 libsystem_pthread.dylib 0x00007fff8fd31c40 _pthread_start + 168
9 libsystem_pthread.dylib 0x00007fff8fd2eda5 thread_start + 13

Thread 3:: com.apple.NSURLConnectionLoader
0 libsystem_kernel.dylib 0x00007fff896779c6 mach_msg_trap + 10
1 libsystem_kernel.dylib 0x00007fff89676e07 mach_msg + 55
2 com.apple.CoreFoundation 0x00007fff8c862004 __CFRunLoopServiceMachPort + 212
3 com.apple.CoreFoundation 0x00007fff8c8614cc __CFRunLoopRun + 1356
4 com.apple.CoreFoundation 0x00007fff8c860d18 CFRunLoopRunSpecific + 296
5 com.apple.CFNetwork 0x00007fff8a0fa49a +[NSURLConnection(Loader) _resourceLoadLoop:] + 412
6 com.apple.Foundation 0x00007fff96a213c6 __NSThread__start__ + 1331
7 libsystem_pthread.dylib 0x00007fff8fd31cc3 _pthread_body + 131
8 libsystem_pthread.dylib 0x00007fff8fd31c40 _pthread_start + 168
9 libsystem_pthread.dylib 0x00007fff8fd2eda5 thread_start + 13

Thread 4:: com.apple.NSEventThread
0 libsystem_kernel.dylib 0x00007fff896779c6 mach_msg_trap + 10
1 libsystem_kernel.dylib 0x00007fff89676e07 mach_msg + 55
2 com.apple.CoreFoundation 0x00007fff8c862004 __CFRunLoopServiceMachPort + 212
3 com.apple.CoreFoundation 0x00007fff8c8614cc __CFRunLoopRun + 1356
4 com.apple.CoreFoundation 0x00007fff8c860d18 CFRunLoopRunSpecific + 296
5 com.apple.AppKit 0x00007fff8e56c735 _NSEventThread + 149
6 libsystem_pthread.dylib 0x00007fff8fd31cc3 _pthread_body + 131
7 libsystem_pthread.dylib 0x00007fff8fd31c40 _pthread_start + 168
8 libsystem_pthread.dylib 0x00007fff8fd2eda5 thread_start + 13

Thread 5:: com.apple.CFSocket.private
0 libsystem_kernel.dylib 0x00007fff8967d20a __select + 10
1 com.apple.CoreFoundation 0x00007fff8c8adb8a __CFSocketManager + 762
2 libsystem_pthread.dylib 0x00007fff8fd31cc3 _pthread_body + 131
3 libsystem_pthread.dylib 0x00007fff8fd31c40 _pthread_start + 168
4 libsystem_pthread.dylib 0x00007fff8fd2eda5 thread_start + 13

Reading the Tea Leaves
Manager thread

Thread 1:: Dispatch queue: com.apple.libdispatch-manager
0 libsystem_kernel.dylib 0x00007fff8967e08a kevent_qos + 10
1 libdispatch.dylib 0x00007fff8be05811 _dispatch_mgr_invoke + 251
2 libdispatch.dylib 0x00007fff8be05465 _dispatch_mgr_thread + 52

Reading the Tea Leaves
Idle GCD thread

Thread 6:
0 libsystem_kernel.dylib 0x00007fff8967d772 __workq_kernreturn + 10
1 libsystem_pthread.dylib 0x00007fff8fd317d9 _pthread_wqthread + 1283
2 libsystem_pthread.dylib 0x00007fff8fd2ed95 start_wqthread + 13

Reading the Tea Leaves
Active GCD thread

Thread 3 Crashed:: Dispatch queue: <queue name>
 <my code>
7 libdispatch.dylib 0x07fff8fcfd323 _dispatch_call_block_and_release
8 libdispatch.dylib 0x07fff8fcf8c13 _dispatch_client_callout + 8
9 libdispatch.dylib 0x07fff8fcfc365 _dispatch_queue_drain + 1100
10 libdispatch.dylib 0x07fff8fcfdecc _dispatch_queue_invoke + 202
11 libdispatch.dylib 0x07fff8fcfb6b7 _dispatch_root_queue_drain + 463
12 libdispatch.dylib 0x07fff8fd09fe4 _dispatch_worker_thread3 + 91
13 libsystem_pthread.dylib 0x07fff93c17637 _pthread_wqthread + 729
14 libsystem_pthread.dylib 0x07fff93c1540d start_wqthread + 13

Reading the Tea Leaves
Idle main thread

Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 libsystem_kernel.dylib 0x00007fff906614de mach_msg_trap + 10
1 libsystem_kernel.dylib 0x00007fff9066064f mach_msg + 55
2 com.apple.CoreFoundation 0x00007fff9a8c1eb4 __CFRunLoopServiceMachPort
3 com.apple.CoreFoundation 0x00007fff9a8c137b __CFRunLoopRun + 1371
4 com.apple.CoreFoundation 0x00007fff9a8c0bd8 CFRunLoopRunSpecific + 296
…
10 com.apple.AppKit 0x00007fff8e823c03 -[NSApplication run] + 594
11 com.apple.AppKit 0x00007fff8e7a0354 NSApplicationMain + 1832
12 com.example 0x00000001000013b4 start + 52

Reading the Tea Leaves
Main queue

Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
 <my code>
12 com.apple.Foundation 0x00007fff931157e8 __NSBLOCKOPERATION_IS_CALLING_OUT_TO_A_BLOCK__ + 7
13 com.apple.Foundation 0x00007fff931155b5 -[NSBlockOperation main] + 9
14 com.apple.Foundation 0x00007fff93114a6c -[__NSOperationInternal _start:] + 653
15 com.apple.Foundation 0x00007fff93114543 __NSOQSchedule_f + 184
16 libdispatch.dylib 0x00007fff935d6c13 _dispatch_client_callout + 8
17 libdispatch.dylib 0x00007fff935e2cbf _dispatch_main_queue_callback_4CF + 861
18 com.apple.CoreFoundation 0x00007fff8d9223f9 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__
19 com.apple.CoreFoundation 0x00007fff8d8dd68f __CFRunLoopRun + 2159
20 com.apple.CoreFoundation 0x00007fff8d8dcbd8 CFRunLoopRunSpecific + 296
…
26 com.apple.AppKit 0x00007fff999a1bd3 -[NSApplication run] + 594
27 com.apple.AppKit 0x00007fff9991e324 NSApplicationMain + 1832
28 libdyld.dylib 0x00007fff9480f5c9 start + 1

Summary

An efficient and responsive application must be able to adopt to diverse environments

Summary

An efficient and responsive application must be able to adopt to diverse environments
QoS classes enable the system to manage resources appropriately

Summary

An efficient and responsive application must be able to adopt to diverse environments
QoS classes enable the system to manage resources appropriately
Integrate QoS into your application and existing use of GCD

Summary

An efficient and responsive application must be able to adopt to diverse environments
QoS classes enable the system to manage resources appropriately
Integrate QoS into your application and existing use of GCD
Consider your app’s use of GCD and avoid thread explosion

More Information

Documentation
Concurrency Programming Guide
https://developer.apple.com/library/ios/documentation/General/Conceptual/
ConcurrencyProgrammingGuide/

Energy Efficiency Guide for Mac Apps
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/
power_efficiency_guidelines_osx/

Energy Efficiency Guide for iOS Apps
https://developer.apple.com/library/prerelease/ios/documentation/Performance/
Conceptual/EnergyGuide-iOS/

https://developer.apple.com/library/prerelease/ios/documentation/Performance/Conceptual/EnergyGuide-iOS/

More Information

Technical Support
Apple Developer Forums
http://developer.apple.com/forums

Developer Technical Support
http://developer.apple.com/support/technical

General Inquiries
Paul Danbold, Core OS Evangelist
danbold@apple.com

Related Sessions

Achieving All-Day Battery Life Nob Hill Wednesday 9:00AM

Optimizing Your App for Multitasking on iPad in iOS 9 Presidio Wednesday 3:30PM

Advanced NSOperations Presidio Friday 9:00AM

Performance on iOS and watchOS Presidio Friday 11:00AM

Related Labs

Power and Performance Lab Frameworks Lab C Friday 12:00PM

