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• Uses public/private key pair registered on CloudKit Dashboard
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watchOS 3

Alternative to watch connectivity code
Standalone functionality
• Can work without phone present (via wifi)

Full* CloudKit API
Similar code on all Apple platforms
Limited resources

*offer does not include CKSubscription
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Detect client changes with abnormally frequent errors
Error handling is essential
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Don’t repeat your work
Long-Lived Operations

Operations keep running if your application exits
Callbacks saved by CloudKit
Operation can be replayed later
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How long do you want to wait?
CKOperation Timeouts

Network inactivity
• Use the timeoutIntervalForRequest property on CKOperation
• Default value is 60 seconds

Start-to-finish timeout
• Use the timeoutIntervalForResource property on CKOperation
• Default value is 7 days
• CKOperation may stay around longer
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Reduce payloads and roundtrips
Handling Many Record Zones

CKFetchRecordZoneChangesOperation 
• Fetch record changes over multiple record  

zones in a single operation

CKDatabaseSubscription
• Receive a push for each change in a database

CKFetchDatabaseChangesOperation
• Fetch ids of record zones with changes

CKFetchRecordZonesOperation 
• Poll for all record zones in a database

CKFetchRecordChangesOperation  
• Track and fetch record changes on a 

per-record-zone basis
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Fetch Multiple Change Sets

public class CKFetchRecordChangesOperation : CKDatabaseOperation { 

   public var moreComing: Bool { get } 

}

Remember this?

Client code responsible for fetching next batch
CloudKit idle
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Fetch Multiple Change Sets
Use this instead

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation { 

   public var fetchAllChanges: Bool 

}

// fetchAllChanges is true by default

CloudKit keeps pipeline full
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Fetch Multiple Change Sets
New callback

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation { 

   public var recordZoneChangeTokensUpdatedBlock: ((CKRecordZoneID, CKServerChangeToken?,  

      Data?) -> Void)? 

}

Earlier record changes are safe to commit
New server change token can be used on a new CKFetchRecordZoneChangesOperation
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Sharing Overview
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What is shared?

Note

Sharing Records

Private Database

Share

public class CKShare : CKRecord { 

   public init(rootRecord : CKRecord) 

}

public class CKRecord { 

   public var share: CKReference? { get } 

}
Note
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CKRecord 

CKShare 

CKModifyRecordsOperation 

…

CloudKit

NSSharingService 

NSItemProvider

AppKit

UICloudSharingController
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UICloudSharingController
iOS Sharing API
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// Save the share 

let sharingController = UICloudSharingController(share: share) {  

      (controller: UICloudSharingController,  

       prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in 

   let modifyOp = CKModifyRecordsOperation(recordsToSave: [rootRecord, share],  

      recordIDsToDelete: nil) 

   modifyOp.modifyRecordsCompletionBlock = { (_, _, error) in 

      prepareCompletionHandler(share, ckContainer, error) 

   } 

   self.container.privateCloudDatabase.add(modifyOp) 

}
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// Save the share 

let sharingController = UICloudSharingController(share: share) {  
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       prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in 
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// Set sharing options 

sharingController.availablePermissions = [.publicOnly, .readWrite] 

sharingController.popoverPresentationController?.sourceView = myShareButton 

sharingController.delegate = self 

self.present(sharingController, animated:true, completion:nil)
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itemProvider.registerCloudKitShare { (prepareCompletionHandler :  

      (CKShare?, CKContainer?, NSError?) -> Void) in 

   // Save the share and root record 

} 

let sharingService = NSSharingService(named: NSSharingServiceNameCloudSharing)! 

sharingService.delegate = self 

sharingService.perform(withItems: [itemProvider])



// Define sharing options 

func options(for: NSSharingService, share: NSItemProvider)-> NSCloudKitSharingServiceOptions 
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   return [.allowPublic, .allowReadWrite] 

} 



// Define sharing options 

func options(for: NSSharingService, share: NSItemProvider)-> NSCloudKitSharingServiceOptions 

{ 

   return [.allowPublic, .allowReadWrite] 

} 







// User clicked a share 

public class NSApplication { 

   public func application(application: NSApplication,  

         userAcceptedCloudKitShareWith: CKShareMetadata) 

}



// User clicked a share 

public class NSApplication { 

   public func application(application: NSApplication,  

         userAcceptedCloudKitShareWith: CKShareMetadata) 

} 

public class UIApplication { 

   public func application(application: UIApplication,  

         userAcceptedCloudKitShareWith: CKShareMetadata) 

}



// Add an Info.plist key for CloudKit Sharing 

<key>CKSharingSupported</key> 

<true/>



Web Sharing UI
CloudKit JS
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Create Share using CKShare(rootRecord:)
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readWrite Participant cannot add a dangling CKRecord
Sharing Multiple Records

Shared Database
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Owner

Error: No Parent
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Error
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Sharing Multiple Records
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Owner
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public class CKRecordZoneID { 

  public var zoneName: String 

  public var ownerName: String 

}
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Is a CKRecord containing access controls for shared data
CKShare

Every CKShare has additional properties beyond a basic CKRecord

public class CKShare : CKRecord { 

   public var participants: [CKShareParticipant] 

}

Share

public class CKShareParticipant
ParticipantParticipantParticipantParticipant
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Owner sets up the Share
CKShare Lifecycle—Invite-Only

Participant #1

acceptanceStatus: invited 

permission: readWrite
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1. Create a Share
2. publicPermission=none
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2. Owner determines each  

participant’s permission
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5. Owner gets URL

publicPermission: none
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Participant joins the Share
CKShare Lifecycle—Invite-Only
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Participant joins the Share
CKShare Lifecycle—Invite-Only

Share 1. Participants accept via URL 
acceptanceStatus=accepted

publicPermission: none

“Shopping List”
icloud.com/notes

url: 

participants:

Participant #1

acceptanceStatus: invited 

permission: readWrite

Participant #2

acceptanceStatus: invited 

permission: readOnly
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acceptanceStatus: accepted 

permission: readWrite
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acceptanceStatus: accepted 

permission: readOnly
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Participant joins the Share
CKShare Lifecycle—readOnly or readWrite

Share

Participant #1

acceptanceStatus: accepted

1. Anyone can join via URL. 
acceptanceStatus=accepted, 
permission is the same as the 
publicPermission

“Shopping List”
icloud.com/notes

url: 

publicPermission: readOnly or readWrite
participants:
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CKShare
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Lifecycle—end the share for a participant
CKShare

Private DB

Owner

Shared DB

Participant
Participant leaves the Share 
by deleting the Share from 
their Shared DB

Owner can always remove 
any Participant
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Mapped to iCloud accounts

Participant #3

userIdentity.lookupInfo: <email>

Participant #4

userIdentity.lookupInfo: <phone>

Participant #2

userIdentity.lookupInfo: <phone>

Participant #1

userIdentity.lookupInfo: <email>

CKShareParticipant

No iCloud account

Verification flow to prove email ownership

No iCloud account

Verification flow to prove phone ownership



If you want to create your own Custom UI
Sharing APIs

On behalf of the owner
• Setting up the Share

On behalf of the participant
• Accept the Share

watchOS and tvOS
• Shared records available, but no System UI
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Adding participants
Owner Sets Up the Share

CKFetchShareParticipantsOperation
• Can look up via

- Email
- Phone
- CloudKit User Record ID

• Returns CKShareParticipants

Pass CKShareParticipants to addParticipant
Call CKModifyRecordsOperation to save the share



Fetch Share Metadata, then Accept the Share
Participant Accepts a Share

CKFetchShareMetadataOperation
• Converting a URL to CKShareMetadata
Pass CKShareMetadata to CKAcceptSharesOperation



Limitations
Participant Accepts a Share

No nameComponents, for privacy reasons
public class CKUserIdentity { 

  public var nameComponents: PersonNameComponents // empty 

}

Verification flow only available via System UI:
CKErrorParticipantMayNeedVerification 

shareParticipant.userIdentity.lookupInfo.hasiCloudAccount



Invitees on older platforms
Sharing

Owner can invite anybody
• Invitee may not have installed the latest operating system
• Invitee may not have an Apple product
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Get your container ready for Sharing
Sharing

CKRecordTypeShare
• Behaves like any other Record Type in CloudKit
• Can create custom fields
• Can run queries

To trigger its creation
• Share a record in a custom zone in any private database in the development environment
• Deploy schema to production
Now, users in production can create Shares



What’s new is now old
Summary

CloudKit is available on all platforms
Telemetry available on CloudKit Dashboard
API Improvements
New Feature—Sharing
• Sharing System UI
• Sharing APIs, Objects, and Lifecycle
• Configure your fallback URL!



More Information

https://developer.apple.com/wwdc16/226



Related Sessions

CloudKit Best Practices Pacific Heights Friday 9:00AM



Labs

CloudKit and iCloud Lab Frameworks Lab D Thursday 4:00PM

CloudKit and iCloud Lab Frameworks Lab B Friday 12:00PM




