
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

There's a lot we want to share

App Frameworks #WWDC16

Session 226

What’s New in CloudKit

Paul Seligman CloudKit Engineer
Jacob Farkas CloudKit Engineer
Vanessa Hong CloudKit Engineer

What are we talking about?
Table of Contents

What are we talking about?
Table of Contents

CloudKit Overview

What are we talking about?
Table of Contents

CloudKit Overview
Telemetry

What are we talking about?
Table of Contents

CloudKit Overview
Telemetry
API Improvements

What are we talking about?
Table of Contents

CloudKit Overview
Telemetry
API Improvements
Sharing

What is CloudKit?
CloudKit Overview

Data everywhere!
CloudKit Overview

Data everywhere!
CloudKit Overview

iCloud Database

Data everywhere!
CloudKit Overview

iCloud Database
Extensive use inside Apple

Data everywhere!
CloudKit Overview

iCloud Database
Extensive use inside Apple
Ubiquitous

Prior talks
CloudKit Overview

Introducing CloudKit WWDC 2014

Introducing CloudKit WWDC 2014

Advanced CloudKit WWDC 2014

CloudKit JS and Web Services WWDC 2015

What's New in CloudKit WWDC 2015

CloudKit Tips and Tricks WWDC 2015

Prior talks
CloudKit Overview

Introducing CloudKit WWDC 2014

Advanced CloudKit WWDC 2014

CloudKit JS and Web Services WWDC 2015

What's New in CloudKit WWDC 2015

CloudKit Tips and Tricks WWDC 2015

https://developer.apple.com/cloudkit

Prior talks
CloudKit Overview

Core objects
CloudKit Overview

Container
Database
Record
Record Zone

Core objects
CloudKit Overview

Container
Database
Record
Record Zone

Core objects
CloudKit Overview

Container
Database
Record
Record Zone

CloudKit Overview

Container
Database
Record
Record Zone

CloudKit Container

Core objects

CloudKit Overview

Container
Database
Record
Record Zone

CloudKit Container

Public Database Private Database

Core objects

CloudKit Overview

CloudKit Container

Public Database Private Database Shared Database

NEW

Container
Database
Record
Record Zone

Core objects

Core objects
CloudKit Overview

Container
Database
Record
Record Zone

Key Value
Title String

Body String

CreationDate Date

Folder Reference

Note

Core objects

Record Zone

CloudKit Overview

Container
Database
Record
Record Zone

Database

Core objects

Record Zone

CloudKit Overview

Container
Database
Record
Record Zone

Database

Record

Container
Database
Record
Record Zone

RecordRecord

Database

CloudKit Overview

RecordRecordRecordRecordRecordRecordRecordRecord

Record Zone

RecordRecord

Core objects

Core objects

Database

CloudKit Overview

Default Zone Custom Zone

Container
Database
Record
Record Zone

Record
Record

Record
Record

Record Record

Record Record

Record
RecordRecordRecord

Container
Database
Record
Record Zone

Core objects

Private Database

CloudKit Overview

Public Database Shared Database

Default Zone Default Zone

Custom Zone

Custom Zone

Shared Zone

Shared Zone

Core objects
CloudKit Overview

Container
Database
Record
Record Zone

Core objects
CloudKit Overview

Container
Database
Record
Record Zone
Share

NEW

Core objects

Private Database

CloudKit Overview

Container
Database
Record
Record Zone
Share

NEW

Database

Custom Zone

Record
RecordRecord

Record
Record

Record

Record
Record

Record
Record

Share

Share

Apple usage

CloudKit Container

CloudKit Overview

Public Database Shared DatabasePrivate Database

Apple usage

CloudKit Container

CloudKit Overview

Public Database Shared DatabasePrivate Database

Apple usage

CloudKit Container

CloudKit Overview

Public Database Shared DatabasePrivate Database

Apple usage

CloudKit Container

CloudKit Overview

Public Database Shared DatabasePrivate Database

CloudKit Is Now Available Everywhere

CloudKit Is Now Available Everywhere

CloudKit Is Now Available Everywhere

CloudKit Is Now Available Everywhere

CloudKit JS Web Services

CloudKit Is Now Available Everywhere NEW

CloudKit JS Web Services

macOS

macOS

No Mac App Store requirement

macOS

No Mac App Store requirement
• Add iCloud Capabilities via your provisioning profile

Web

Server to server

Web

Server to server
• Acts as admin user

Web

Server to server
• Acts as admin user
• Uses public/private key pair registered on CloudKit Dashboard

Web

Server to server
• Acts as admin user
• Uses public/private key pair registered on CloudKit Dashboard
• Access to public database

watchOS 3

watchOS 3

Alternative to watch connectivity code

watchOS 3

Alternative to watch connectivity code
Standalone functionality

watchOS 3

Alternative to watch connectivity code
Standalone functionality
• Can work without phone present (via wifi)

watchOS 3

Alternative to watch connectivity code
Standalone functionality
• Can work without phone present (via wifi)

Full* CloudKit API

*offer does not include CKSubscription

watchOS 3

Alternative to watch connectivity code
Standalone functionality
• Can work without phone present (via wifi)

Full* CloudKit API
Similar code on all Apple platforms

*offer does not include CKSubscription

watchOS 3

Alternative to watch connectivity code
Standalone functionality
• Can work without phone present (via wifi)

Full* CloudKit API
Similar code on all Apple platforms
Limited resources

*offer does not include CKSubscription

Visualize your app's behavior on the CloudKit Dashboard
Telemetry

Visualize your app's behavior on the CloudKit Dashboard
Telemetry

NEW

Visualize your app's behavior
Telemetry

CloudKit Dashboard

Visualize your app's behavior
Telemetry

CloudKit Dashboard
Public DB

Visualize your app's behavior
Telemetry

CloudKit Dashboard
Public DB
Aggregated Private DBs

Visualize your app's behavior
Telemetry

CloudKit Dashboard
Public DB
Aggregated Private DBs
Hour/day/week/month

Visualize your app's behavior
Telemetry

CloudKit Dashboard
Public DB
Aggregated Private DBs
Hour/day/week/month
Per Operation type/all Operations

Telemetry

Telemetry

Performance

Correctness

Correctness

Detect client changes with abnormally frequent errors

Correctness

Detect client changes with abnormally frequent errors
Error handling is essential

API Improvements

API Improvements

NEW

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

Don’t repeat your work
Long-Lived Operations

Don’t repeat your work
Long-Lived Operations

Operations keep running if your application exits

Don’t repeat your work
Long-Lived Operations

Operations keep running if your application exits
Callbacks saved by CloudKit

Don’t repeat your work
Long-Lived Operations

Operations keep running if your application exits
Callbacks saved by CloudKit
Operation can be replayed later

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

How long do you want to wait?
CKOperation Timeouts

QualityOfService Behavior on broken network

userInteractive

userInitiated

utility

background

default

How long do you want to wait?
CKOperation Timeouts

QualityOfService Behavior on broken network

userInteractive timeout after 60 seconds

userInitiated timeout after 60 seconds

utility

background

default

How long do you want to wait?
CKOperation Timeouts

QualityOfService Behavior on broken network

userInteractive timeout after 60 seconds

userInitiated timeout after 60 seconds

utility timeout after 7 days

background timeout after 7 days

default timeout after 7 days

How long do you want to wait?
CKOperation Timeouts

QualityOfService Behavior on broken network

userInteractive timeout after 60 seconds

userInitiated timeout after 60 seconds

utility timeout after 7 days

background timeout after 7 days

default timeout after 7 days

How long do you want to wait?
CKOperation Timeouts

QualityOfService Behavior on broken network

userInteractive timeout after 60 seconds

userInitiated timeout after 60 seconds

utility timeout after 7 days

background timeout after 7 days

default timeout after 7 days

How long do you want to wait?
CKOperation Timeouts

How long do you want to wait?
CKOperation Timeouts

Network inactivity
• Use the timeoutIntervalForRequest property on CKOperation
• Default value is 60 seconds

How long do you want to wait?
CKOperation Timeouts

Network inactivity
• Use the timeoutIntervalForRequest property on CKOperation
• Default value is 60 seconds

Start-to-finish timeout
• Use the timeoutIntervalForResource property on CKOperation
• Default value is 7 days
• CKOperation may stay around longer

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

CKFetchRecordZonesOperation
• Poll for all record zones in a database

Reduce payloads and roundtrips
Handling Many Record Zones

CKFetchRecordZonesOperation
• Poll for all record zones in a database

Reduce payloads and roundtrips
Handling Many Record Zones

CKFetchRecordZonesOperation
• Poll for all record zones in a database

Reduce payloads and roundtrips
Handling Many Record Zones

CKFetchRecordZonesOperation
• Poll for all record zones in a database

Reduce payloads and roundtrips
Handling Many Record Zones

CKDatabaseSubscription
• Receive a push for each change in a database

CKFetchDatabaseChangesOperation
• Fetch ids of record zones with changes

CKFetchRecordChangesOperation
• Track and fetch record changes on a

per-record-zone basis

Reduce payloads and roundtrips
Handling Many Record Zones

CKDatabaseSubscription
• Receive a push for each change in a database

CKFetchDatabaseChangesOperation
• Fetch ids of record zones with changes

CKFetchRecordZonesOperation
• Poll for all record zones in a database

CKFetchRecordChangesOperation
• Track and fetch record changes on a

per-record-zone basis

Reduce payloads and roundtrips
Handling Many Record Zones

CKDatabaseSubscription
• Receive a push for each change in a database

CKFetchDatabaseChangesOperation
• Fetch ids of record zones with changes

CKFetchRecordZonesOperation
• Poll for all record zones in a database

Reduce payloads and roundtrips
Handling Many Record Zones

CKDatabaseSubscription
• Receive a push for each change in a database

CKFetchDatabaseChangesOperation
• Fetch ids of record zones with changes

CKFetchRecordZonesOperation
• Poll for all record zones in a database

CKFetchRecordChangesOperation
• Track and fetch record changes on a

per-record-zone basis

Reduce payloads and roundtrips
Handling Many Record Zones

CKFetchRecordZoneChangesOperation
• Fetch record changes over multiple record  

zones in a single operation

CKDatabaseSubscription
• Receive a push for each change in a database

CKFetchDatabaseChangesOperation
• Fetch ids of record zones with changes

CKFetchRecordZonesOperation
• Poll for all record zones in a database

CKFetchRecordChangesOperation
• Track and fetch record changes on a

per-record-zone basis

CKDatabaseSubscription
Handling Many Record Zones

Record Zone

Record Zone

Record Zone

Record Zone

Record

Record

Record

Record

Database

CKDatabaseSubscription
Handling Many Record Zones

Record Zone

Record Zone

Record Zone

Record Zone

Record

Record

Record

Record

Database

Record

Record

CKDatabaseSubscription
Handling Many Record Zones

Record Zone

Record Zone

Record Zone

Record Zone

Push

Record

Record

Record

Record

Database

Record

Record

CKDatabaseSubscription
Handling Many Record Zones

Record Zone

Record Zone

Record Zone

Record Zone

Push

Record

Record

Record

Record

Database

Record

Record

CKFetchDatabaseChangesOperation
Handling Many Record Zones

Record Zone

Record Zone

Record Zone

Record Zone

Record

Record

Record

Record

Database

Record

Record

CKFetchDatabaseChangesOperation
Handling Many Record Zones

Record Zone

Record Zone

Record Zone

Record Zone

Record

Record

Record

Record

Database

Record

Record

CKFetchRecordZoneChangesOperation
Handling Many Record Zones

Database

Record Zone

Record Zone

Record Zone

Record Zone

Record

Record

Record

Record

Record

Record

CKFetchRecordZoneChangesOperation
Handling Many Record Zones

Database

Record Zone

Record Zone

Record Zone

Record Zone

Record

Record

Record

Record

Record

Record

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

Fetch Multiple Change Sets

public class CKFetchRecordChangesOperation : CKDatabaseOperation {

 public var moreComing: Bool { get }

}

Remember this?

Fetch Multiple Change Sets

public class CKFetchRecordChangesOperation : CKDatabaseOperation {

 public var moreComing: Bool { get }

}

Remember this?

Client code responsible for fetching next batch

Fetch Multiple Change Sets

public class CKFetchRecordChangesOperation : CKDatabaseOperation {

 public var moreComing: Bool { get }

}

Remember this?

Client code responsible for fetching next batch
CloudKit idle

Fetch Multiple Change Sets
Use this instead

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation {

 public var fetchAllChanges: Bool

}

Fetch Multiple Change Sets
Use this instead

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation {

 public var fetchAllChanges: Bool

}

CloudKit keeps pipeline full

Fetch Multiple Change Sets
Use this instead

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation {

 public var fetchAllChanges: Bool

}

// fetchAllChanges is true by default

CloudKit keeps pipeline full

Fetch Multiple Change Sets
New callback

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation {

 public var recordZoneChangeTokensUpdatedBlock: ((CKRecordZoneID, CKServerChangeToken?,

 Data?) -> Void)?

}

Fetch Multiple Change Sets
New callback

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation {

 public var recordZoneChangeTokensUpdatedBlock: ((CKRecordZoneID, CKServerChangeToken?,

 Data?) -> Void)?

}

Earlier record changes are safe to commit

Fetch Multiple Change Sets
New callback

public class CKFetchRecordZoneChangesOperation : CKDatabaseOperation {

 public var recordZoneChangeTokensUpdatedBlock: ((CKRecordZoneID, CKServerChangeToken?,

 Data?) -> Void)?

}

Earlier record changes are safe to commit
New server change token can be used on a new CKFetchRecordZoneChangesOperation

API Improvements

Long Lived Operations
CKOperation Timeouts
Handling Many Record Zones
Fetching Multiple Change Sets

You and I are going to share some records
Sharing UI

Jacob Farkas

Sharing Records

public class CKShare : CKRecord

Sharing Records

What is shared? public class CKShare : CKRecord

Sharing Records

What is shared?
Who is it shared with?

public class CKShare : CKRecord

Shared database
Sharing Overview

CloudKit Container

Public Database Shared DatabasePrivate Database

What is shared?
Sharing Records

Private Database

What is shared?
Sharing Records

Note

Private Database

What is shared?

Note

Sharing Records

Private Database

What is shared?

Note

Sharing Records

Private Database

Share public class CKShare : CKRecord {

 public init(rootRecord : CKRecord)

}

What is shared?

Note

Sharing Records

Private Database

Share

public class CKShare : CKRecord {

 public init(rootRecord : CKRecord)

}

Note

What is shared?

Note

Sharing Records

Private Database

Share

public class CKShare : CKRecord {

 public init(rootRecord : CKRecord)

}

public class CKRecord {

 public var share: CKReference? { get }

}
Note

Who is it shared with?

Note

Sharing Records

Private Database

Share

Note

Who is it shared with?
Sharing Records

Share

Note

Private Database

Who is it shared with?
Sharing Records

Share

Note

Private Database

user@icloud.com

Who is it shared with?
Sharing Records

Share

Note

Private Database

Share

Note

Private Database

Who is it shared with?
Sharing Records

Share

Note

Private Database

Who is it shared with?
Sharing Records

Who is it shared with?
Sharing Records

Share

Note

Private Database

Share

Note

Private Database

Sharing Records
Share URLs

Share

Note

Private Database

Sharing Records

https://www.icloud.com/notes/000Y4qow0owP6NOxDzs4qgi8Q

Share URLs

Share

Note

Private Database

Sharing Records

Family Grocery list”
icloud.com/notes

Share URLs

Sharing Records

Owner Other User

Share

Note

Private Database

Accepting a share

Sharing Records

Owner Other User

Share

Note

Private Database

Accepting a share

Sharing Records

Share

Note

Private Database

Owner Other User

Accepting a share

Share

Note

Shared Database

Sharing Records

Share

Note

Private Database

Owner Other User

Accepting a share

Share

Note

Private Database

Share

Note

Shared Database

Sharing Records

Owner Other User

Share

Note

Private Database

Share

Note

Shared Database

Sharing Records

Share

Note

Private Database

Owner Other User

Demo
System Sharing UI

Where does it live?
CloudKit Sharing UI NEW

CloudKit

Where does it live?
CloudKit Sharing UI NEW

CKRecord

CKShare

CKModifyRecordsOperation

…

CloudKit

Where does it live?
CloudKit Sharing UI NEW

CKRecord

CKShare

CKModifyRecordsOperation

…

CloudKit

NSSharingService

NSItemProvider

AppKit

UICloudSharingController

UIKit

UICloudSharingController
iOS Sharing API

// Create a CloudKit share record

let share = CKShare(rootRecord: rootRecord)

share[CKShareTitleKey] = "Shopping List”

share[CKShareThumbnailImageDataKey] = shoppingListThumbnail

// Create a CloudKit share record

let share = CKShare(rootRecord: rootRecord)

share[CKShareTitleKey] = "Shopping List”

share[CKShareThumbnailImageDataKey] = shoppingListThumbnail

// Create a CloudKit share record

let share = CKShare(rootRecord: rootRecord)

share[CKShareTitleKey] = "Shopping List”

share[CKShareThumbnailImageDataKey] = shoppingListThumbnail

// Create a CloudKit share record

let share = CKShare(rootRecord: rootRecord)

share[CKShareTitleKey] = "Shopping List”

share[CKShareThumbnailImageDataKey] = shoppingListThumbnail

// Create a cloud sharing controller

let sharingController = UICloudSharingController(share: share) {

 (controller: UICloudSharingController,

 prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in

// Create a cloud sharing controller

let sharingController = UICloudSharingController(share: share) {

 (controller: UICloudSharingController,

 prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in

// Save the share

let sharingController = UICloudSharingController(share: share) {

 (controller: UICloudSharingController,

 prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in

 let modifyOp = CKModifyRecordsOperation(recordsToSave: [rootRecord, share],

 recordIDsToDelete: nil)

 modifyOp.modifyRecordsCompletionBlock = { (_, _, error) in

 prepareCompletionHandler(share, ckContainer, error)

 }

 self.container.privateCloudDatabase.add(modifyOp)

}

// Save the share

let sharingController = UICloudSharingController(share: share) {

 (controller: UICloudSharingController,

 prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in

 let modifyOp = CKModifyRecordsOperation(recordsToSave: [rootRecord, share],

 recordIDsToDelete: nil)

 modifyOp.modifyRecordsCompletionBlock = { (_, _, error) in

 prepareCompletionHandler(share, ckContainer, error)

 }

 self.container.privateCloudDatabase.add(modifyOp)

}

// Save the share

let sharingController = UICloudSharingController(share: share) {

 (controller: UICloudSharingController,

 prepareCompletionHandler : (CKShare?, CKContainer?, NSError?) -> Void) in

 let modifyOp = CKModifyRecordsOperation(recordsToSave: [rootRecord, share],

 recordIDsToDelete: nil)

 modifyOp.modifyRecordsCompletionBlock = { (_, _, error) in

 prepareCompletionHandler(share, ckContainer, error)

 }

 self.container.privateCloudDatabase.add(modifyOp)

}

// Set sharing options

sharingController.availablePermissions = [.publicOnly, .readWrite]

sharingController.popoverPresentationController?.sourceView = myShareButton

sharingController.delegate = self

self.present(sharingController, animated:true, completion:nil)

// Set sharing options

sharingController.availablePermissions = [.publicOnly, .readWrite]

sharingController.popoverPresentationController?.sourceView = myShareButton

sharingController.delegate = self

self.present(sharingController, animated:true, completion:nil)

// Set sharing options

sharingController.availablePermissions = [.publicOnly, .readWrite]

sharingController.popoverPresentationController?.sourceView = myShareButton

sharingController.delegate = self

self.present(sharingController, animated:true, completion:nil)

// Set sharing options

sharingController.availablePermissions = [.publicOnly, .readWrite]

sharingController.popoverPresentationController?.sourceView = myShareButton

sharingController.delegate = self

self.present(sharingController, animated:true, completion:nil)

// Set sharing options

sharingController.availablePermissions = [.publicOnly, .readWrite]

sharingController.popoverPresentationController?.sourceView = myShareButton

sharingController.delegate = self

self.present(sharingController, animated:true, completion:nil)

NSSharingService
macOS Sharing API

// Save the share

let itemProvider = NSItemProvider()

itemProvider.registerCloudKitShare { (prepareCompletionHandler :

 (CKShare?, CKContainer?, NSError?) -> Void) in

 // Save the share and root record

}

let sharingService = NSSharingService(named: NSSharingServiceNameCloudSharing)!

sharingService.delegate = self

sharingService.perform(withItems: [itemProvider])

// Save the share

let itemProvider = NSItemProvider()

itemProvider.registerCloudKitShare { (prepareCompletionHandler :

 (CKShare?, CKContainer?, NSError?) -> Void) in

 // Save the share and root record

}

let sharingService = NSSharingService(named: NSSharingServiceNameCloudSharing)!

sharingService.delegate = self

sharingService.perform(withItems: [itemProvider])

// Save the share

let itemProvider = NSItemProvider()

itemProvider.registerCloudKitShare { (prepareCompletionHandler :

 (CKShare?, CKContainer?, NSError?) -> Void) in

 // Save the share and root record

}

let sharingService = NSSharingService(named: NSSharingServiceNameCloudSharing)!

sharingService.delegate = self

sharingService.perform(withItems: [itemProvider])

// Save the share

let itemProvider = NSItemProvider()

itemProvider.registerCloudKitShare { (prepareCompletionHandler :

 (CKShare?, CKContainer?, NSError?) -> Void) in

 // Save the share and root record

}

let sharingService = NSSharingService(named: NSSharingServiceNameCloudSharing)!

sharingService.delegate = self

sharingService.perform(withItems: [itemProvider])

// Save the share

let itemProvider = NSItemProvider()

itemProvider.registerCloudKitShare { (prepareCompletionHandler :

 (CKShare?, CKContainer?, NSError?) -> Void) in

 // Save the share and root record

}

let sharingService = NSSharingService(named: NSSharingServiceNameCloudSharing)!

sharingService.delegate = self

sharingService.perform(withItems: [itemProvider])

// Define sharing options

func options(for: NSSharingService, share: NSItemProvider)-> NSCloudKitSharingServiceOptions

{

 return [.allowPublic, .allowReadWrite]

}

// Define sharing options

func options(for: NSSharingService, share: NSItemProvider)-> NSCloudKitSharingServiceOptions

{

 return [.allowPublic, .allowReadWrite]

}

// User clicked a share

public class NSApplication {

 public func application(application: NSApplication,

 userAcceptedCloudKitShareWith: CKShareMetadata)

}

// User clicked a share

public class NSApplication {

 public func application(application: NSApplication,

 userAcceptedCloudKitShareWith: CKShareMetadata)

}

public class UIApplication {

 public func application(application: UIApplication,

 userAcceptedCloudKitShareWith: CKShareMetadata)

}

// Add an Info.plist key for CloudKit Sharing

<key>CKSharingSupported</key>

<true/>

Web Sharing UI
CloudKit JS

Sharing In Depth

Vanessa Hong

Deep dive
Common Use Cases

Sharing multiple records
Zones in shared database
CKShare internals
Sharing APIs
Special notes

A Note is not a single record
Sharing Multiple Records

Note

A Note consists of many records
Sharing Multiple Records

Note

Asset

Media

A Note consists of many records
Sharing Multiple Records

Note

Asset

Media Links

Data

A Note consists of many records
Sharing Multiple Records

Note

Asset

Media Links

Data

Info

Participant should only see a subset
Sharing Multiple Records

Note

Asset

Media Links

Data

Info

Tell us what should be shared
Sharing Multiple Records

Note

Asset

Media Links

Data

Info

Records have a new property
public var parent: CKReference

Parent references define the hierarchy for sharing
Sharing Multiple Records

Note

Asset

Media Links

Data

Info

Parent Field

Records have a new property
public var parent: CKReference

Descendants linked to root record via the parent field
Sharing Multiple Records

Note

Asset

Media Links

Data

Info

Parent Field

Records have a new property
public var parent: CKReference

Create Share using CKShare(rootRecord:)
Sharing Multiple Records

Note

Asset

Media Links

Data

Info

Share

Parent Field

Records have a new property
public var parent: CKReference

Shared DB is only a View into the owner’s private DB
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

After accepting, Participant sees only records with parent
Sharing Multiple Records

Shared Database

ParticipantOwner

Private Database

After accepting, Participant sees only records with parent
Sharing Multiple Records

Shared Database

ParticipantOwner

Private Database

After accepting, Participant sees only records with parent
Sharing Multiple Records

Shared Database

ParticipantOwner

Private Database

readWrite Participant cannot add a dangling CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

readWrite Participant cannot add a dangling CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

NEW

readWrite Participant cannot add a dangling CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

NEW

Error

readWrite Participant cannot add a dangling CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

NEW

Error

NEW

readWrite Participant cannot add a dangling CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

Error: No Parent

NEW

Error

NEW

readWrite Participant can add a new parented CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

readWrite Participant can add a new parented CKRecord
Sharing Multiple Records

Shared Database

Participant

Private Database

Owner

NEWNEW

Two owners, two shares
Zones in Shared Database

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

Two owners, two shares, two zones
Zones in Shared Database

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

Record Zone Record Zone

Two owners, two shares, two zones
Zones in Shared Database

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

Record Zone Record Zone

public class CKRecordZoneID {

 public var zoneName: String

 public var ownerName: String

}

Two owners, two shares, two zones
Zones in Shared Database

public class CKRecordZoneID {

 public var zoneName: String

 public var ownerName: String

}

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”

Two owners, two shares, two zones
Zones in Shared Database

public class CKRecordZoneID {

 public var zoneName: String

 public var ownerName: String

}

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”

Two owners, two shares, two zones
Zones in Shared Database

public class CKRecordZoneID {

 public var zoneName: String

 public var ownerName: String

}

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”
ownerName: “_abcxyz” ownerName: “_1234567”

Two owners, two shares, two zones
Zones in Shared Database

public class CKRecordZoneID {

 public var zoneName: String

 public var ownerName: String

}

Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”
ownerName: “_abcxyz” ownerName: “_1234567”

Two owners, three shares, three zones
Zones in Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”
ownerName: “_abcxyz” ownerName: “_1234567”

“Recipe” Share

zoneName: “OtherZone”
ownerName: “_abcxyz”

Shared Database

Two owners, three shares, three zones
Zones in Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”
ownerName: “_abcxyz” ownerName: “_1234567”

“Recipe” Share

zoneName: “OtherZone”
ownerName: “_abcxyz”

Shared Database

Two owners, four shares, three zones
Zones in Shared Database

“Shopping 
List” Share “Shopping 

List” Share

zoneName: “Notes” zoneName: “Notes”
ownerName: “_abcxyz” ownerName: “_1234567”

“Recipe” Share

zoneName: “OtherZone”
ownerName: “_abcxyz” “Great

Hiking
Trails”

Share

Shared Database

Two owners, four shares, three zones
Zones in Shared Database

“Shopping 
List” Share

zoneName: “Notes” zoneName: “Notes”
ownerName: “_abcxyz” ownerName: “_1234567”

“Recipe” Share

zoneName: “OtherZone”
ownerName: “_abcxyz”

Shared Database

“Shopping 
List” Share

“Great
Hiking
Trails”

Share

Prerequisite—Owner has existing Record(s) to share
CKShare

“Shopping List”

Prerequisite—Owner has existing Record(s) to share
CKShare

“Shopping List”

What to Share

Prerequisite—Owner has existing Record(s) to share
CKShare

“Shopping List”

What to Share

Share

How to Share

Is a CKRecord containing access controls for shared data
CKShare

Every CKShare has additional properties beyond a basic CKRecord

Is a CKRecord containing access controls for shared data
CKShare

Every CKShare has additional properties beyond a basic CKRecord

public class CKShare : CKRecord {

 public var participants: [CKShareParticipant]

}

Share

public class CKShareParticipant
ParticipantParticipantParticipantParticipant

Owner sets up the Share
CKShare Lifecycle—Invite-Only

Share

Owner sets up the Share
CKShare Lifecycle—Invite-Only

1. Create a Share

Share

Owner sets up the Share
CKShare Lifecycle—Invite-Only

1. Create a Share
2. publicPermission=none

publicPermission: none

Share

Owner sets up the Share
CKShare Lifecycle—Invite-Only

Participant #1

acceptanceStatus: invited

permission: readWrite

Participant #2

acceptanceStatus: invited

permission: readOnly

1. Create a Share
2. publicPermission=none
3. Add Participant

1. acceptanceStatus=invited
2. Owner determines each  

participant’s permission

publicPermission: none
participants:

Share

Owner sets up the Share
CKShare Lifecycle—Invite-Only

Participant #1

acceptanceStatus: invited

permission: readWrite

Participant #2

acceptanceStatus: invited

permission: readOnly

1. Create a Share
2. publicPermission=none
3. Add Participant

1. acceptanceStatus=invited
2. Owner determines each  

participant’s permission

4. Save the Share

publicPermission: none
participants:

Share

Owner sets up the Share
CKShare Lifecycle—Invite-Only

Participant #1

acceptanceStatus: invited

permission: readWrite

Participant #2

acceptanceStatus: invited

permission: readOnly

1. Create a Share
2. publicPermission=none
3. Add Participant

1. acceptanceStatus=invited
2. Owner determines each  

participant’s permission

4. Save the Share
5. Owner gets URL

publicPermission: none

“Shopping List”
icloud.com/notes

url:

participants:

Participant joins the Share
CKShare Lifecycle—Invite-Only

Share

publicPermission: none

“Shopping List”
icloud.com/notes

url:

participants:

Participant #1

acceptanceStatus: invited

permission: readWrite

Participant #2

acceptanceStatus: invited

permission: readOnly

Participant joins the Share
CKShare Lifecycle—Invite-Only

Share 1. Participants accept via URL 
acceptanceStatus=accepted

publicPermission: none

“Shopping List”
icloud.com/notes

url:

participants:

Participant #1

acceptanceStatus: invited

permission: readWrite

Participant #2

acceptanceStatus: invited

permission: readOnly

Participant #1

acceptanceStatus: accepted

permission: readWrite

Participant #2

acceptanceStatus: accepted

permission: readOnly

Owner sets up the Share
CKShare Lifecycle—readOnly or readWrite

Share

Owner sets up the Share
CKShare Lifecycle—readOnly or readWrite

1. Create a Share

Share

Owner sets up the Share
CKShare Lifecycle—readOnly or readWrite

1. Create a Share
2. publicPermission=readOnly  

or readWrite
publicPermission: readOnly or readWrite

Share

Owner sets up the Share
CKShare Lifecycle—readOnly or readWrite

1. Create a Share
2. publicPermission=readOnly  

or readWrite
3. Save the SharepublicPermission: readOnly or readWrite

Share

Owner sets up the Share
CKShare Lifecycle—readOnly or readWrite

1. Create a Share
2. publicPermission=readOnly  

or readWrite
3. Save the Share
4. Owner gets URL

“Shopping List”
icloud.com/notes

url:

publicPermission: readOnly or readWrite

Participant joins the Share
CKShare Lifecycle—readOnly or readWrite

Share

Participant #1

acceptanceStatus: accepted

1. Anyone can join via URL.
acceptanceStatus=accepted,
permission is the same as the
publicPermission

“Shopping List”
icloud.com/notes

url:

publicPermission: readOnly or readWrite
participants:

Lifecycle—end the share for a participant
CKShare

Private DB

Owner

Shared DB

Participant
Participant leaves the Share
by deleting the Share from
their Shared DB

Lifecycle—end the share for a participant
CKShare

Private DB

Owner

Shared DB

Participant
Participant leaves the Share
by deleting the Share from
their Shared DB

Lifecycle—end the share for a participant
CKShare

Private DB

Owner

Shared DB

Participant
Participant leaves the Share
by deleting the Share from
their Shared DB

Owner can always remove
any Participant

Lifecycle—End the share for everyone
CKShare

“Shopping List” Share

Owner deletes the Share
from his private DB

Lifecycle—End the share for everyone
CKShare

“Shopping List”

Owner deletes the Share
from his private DB

CKUserIdentity
CKShareParticipant

Participant public class CKShareParticipant {

 public var userIdentity: CKUserIdentity

 …

}

public class CKUserIdentity {

 public var lookupInfo: CKUserIdentityLookupInfo

 public var nameComponents: PersonNameComponents

}

CKUserIdentity
CKShareParticipant

Participant public class CKShareParticipant {

 public var userIdentity: CKUserIdentity

 …

}

public class CKUserIdentity {

 public var lookupInfo: CKUserIdentityLookupInfo

 public var nameComponents: PersonNameComponents

}

CKUserIdentity
CKShareParticipant

Participant public class CKShareParticipant {

 public var userIdentity: CKUserIdentity

 …

}

public class CKUserIdentity {

 public var lookupInfo: CKUserIdentityLookupInfo

 public var nameComponents: PersonNameComponents

}

CKUserIdentity
CKShareParticipant

Participant public class CKShareParticipant {

 public var userIdentity: CKUserIdentity

 …

}

public class CKUserIdentity {

 public var lookupInfo: CKUserIdentityLookupInfo

 public var nameComponents: PersonNameComponents

}

Mapped to iCloud accounts
CKShareParticipant

Mapped to iCloud accounts

Participant #3

userIdentity.lookupInfo: <email>

Participant #4

userIdentity.lookupInfo: <phone>

Participant #2

userIdentity.lookupInfo: <phone>

Participant #1

userIdentity.lookupInfo: <email>

CKShareParticipant

Mapped to iCloud accounts

Participant #3

userIdentity.lookupInfo: <email>

Participant #4

userIdentity.lookupInfo: <phone>

Participant #2

userIdentity.lookupInfo: <phone>

Participant #1

userIdentity.lookupInfo: <email>

CKShareParticipant

Mapped to iCloud accounts

Participant #3

userIdentity.lookupInfo: <email>

Participant #4

userIdentity.lookupInfo: <phone>

Participant #2

userIdentity.lookupInfo: <phone>

Participant #1

userIdentity.lookupInfo: <email>

CKShareParticipant

No iCloud account

Verification flow to prove email ownership

No iCloud account

Verification flow to prove phone ownership

If you want to create your own Custom UI
Sharing APIs

On behalf of the owner
• Setting up the Share

On behalf of the participant
• Accept the Share

watchOS and tvOS
• Shared records available, but no System UI

Adding participants
Owner Sets Up the Share

Adding participants
Owner Sets Up the Share

CKFetchShareParticipantsOperation
• Can look up via

- Email
- Phone
- CloudKit User Record ID

Adding participants
Owner Sets Up the Share

CKFetchShareParticipantsOperation
• Can look up via

- Email
- Phone
- CloudKit User Record ID

• Returns CKShareParticipants

Adding participants
Owner Sets Up the Share

CKFetchShareParticipantsOperation
• Can look up via

- Email
- Phone
- CloudKit User Record ID

• Returns CKShareParticipants

Pass CKShareParticipants to addParticipant

Adding participants
Owner Sets Up the Share

CKFetchShareParticipantsOperation
• Can look up via

- Email
- Phone
- CloudKit User Record ID

• Returns CKShareParticipants

Pass CKShareParticipants to addParticipant
Call CKModifyRecordsOperation to save the share

Fetch Share Metadata, then Accept the Share
Participant Accepts a Share

CKFetchShareMetadataOperation
• Converting a URL to CKShareMetadata
Pass CKShareMetadata to CKAcceptSharesOperation

Limitations
Participant Accepts a Share

No nameComponents, for privacy reasons
public class CKUserIdentity {

 public var nameComponents: PersonNameComponents // empty

}

Verification flow only available via System UI:
CKErrorParticipantMayNeedVerification

shareParticipant.userIdentity.lookupInfo.hasiCloudAccount

Invitees on older platforms
Sharing

Owner can invite anybody
• Invitee may not have installed the latest operating system
• Invitee may not have an Apple product

1280 x 800

1280 x 800

1280 x 800

1280 x 800

1280 x 800

Get your container ready for Sharing
Sharing

CKRecordTypeShare
• Behaves like any other Record Type in CloudKit
• Can create custom fields
• Can run queries

To trigger its creation
• Share a record in a custom zone in any private database in the development environment
• Deploy schema to production
Now, users in production can create Shares

What’s new is now old
Summary

CloudKit is available on all platforms
Telemetry available on CloudKit Dashboard
API Improvements
New Feature—Sharing
• Sharing System UI
• Sharing APIs, Objects, and Lifecycle
• Configure your fallback URL!

More Information

https://developer.apple.com/wwdc16/226

Related Sessions

CloudKit Best Practices Pacific Heights Friday 9:00AM

Labs

CloudKit and iCloud Lab Frameworks Lab D Thursday 4:00PM

CloudKit and iCloud Lab Frameworks Lab B Friday 12:00PM

