App Frameworks FWWDC16

What's New in Core Data

Session 242

Melissa Turner Software Engineer
Scott Perry Software Engineer

© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Roadmap

Query Generations
Concurrency

Core Data Stack Configuration
New AP

Swift

Xcode Integration

Query Generations

Some problems are challenging

Faults in Core Data
Faults are tricksy things

Managed objects

Relationships

Batch fetching result array

Faults in Pictures

Faults in Pictures

Faults in Pictures

Faults in Pictures

Faults in Pictures

And so on

Faults in Pictures

Faults in Pictures

Faults in Pictures

Faults
A rose by any other name

Futures
Promises

Lazy loading

Why Faults?

/Zero work is optimally efficient in some cases

Avoid |/O
Avoid CPU usage

Avoid memory consumption

Faults in Pictures

Faults in Pictures

Why Faults?

/Zero work is optimally efficient in some cases

Avoid |/O
Avoid CPU usage

Avoid memory consumption

Why Faults?

/Zero work is optimally efficient in some cases

Avoid /0
Avoid CPU usage
Avoid memory consumption

What happens when row data is deleted?

Why Faults?

/Zero work is optimally efficient in some cases

Avoid /0
Avoid CPU usage
Avoid memory consumption

What happens when row data is deleted?

- (Oops, did | need that after all?)

Handling Deletions
Current state of affairs

managedObjectContext.shouldDeletelInaccessibleFaults
Prefetch everything
- Extra I/0O, CPU, memory

Write lots of code

Stepping Back

User viewing Ul doesn't care
+ Stability over immediacy

- Deferred/batched Ul updates

Stepping Back

User viewing Ul doesn't care

+ Stability over immediacy
- Deferred/batched Ul updates

User saving data doesn't care

+ This is why we have merge policies

Whatif ... ?

Whatif ... ?

Provide Ul with stable data?

Whatif ... ?

Provide Ul with stable data?

andle changes deterministically?

Whatif ... ?

CoreData could not fulfill a fault for <x-coredata://
855894(C5-1826-4344-9B1C-95190FF77733/Emp loyee/pl>

AKA: The problem

Query Generations
We can be tricksier

All reads from a context see a single generation of data

Advance at predictable times

Never see“could not fulfill a fault”

Query Generations
We can be tricksier

All reads from a context see a single generation of data

Advance at predictable times

Never see“could not fulfill a fault”

Efhciently

For Visual Learners

Your App

id : 1
name :‘fred’

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

Your App

For Visual Learners

. . .

For Visual Learners

. . .

For Visual Learners

Your App

For Visual Learners

. . .

For Visual Learners

. . .

For Visual Learners

. . .

For Visual Learners

Your App

For Visual Learners

. . .

For Visual Learners

. . .

For Visual Learners

o . .

Benefits

Transactionality at context level
[solation of work in peer contexts

Minimize speculative/preventative prefetching

Benefits

Transactionality at context level
[solation of work in peer contexts

Minimize speculative/preventative prefetching

* Everyone wins!

Query Generations
The pasics

Context chooses behavior
- Unpinned (current, default)
- Pin when data first loaded

+ Pin to specific generation

Query Generations
The pasics

Context chooses behavior

- Unpinned (current, default)

- Pin when data first loaded

+ Pin to specific generation

Nested contexts always unpinnea

- Inherit data from parent

Changing Generations
The pasics

When explicitly updated

On save

- Linear stream of changes
During managedObjectContext.mergeChanges()

As a result of managedObjectContext. reset()

ANswers
To questions you haven't thought to ask yet

Registered objects not refreshed on generation update

managedObjectContext. fetch()
managedObjectContext.refreshAll10bjects()

You have control

Requirements

SQL store
WAL mode

Fails gracefully

+ Non-5QL stores have a single“TOT" generation

Query Generations
Nuts and pbolts: AP

Opaque token to track generation

- New class NSQueryGenerationToken

- NSQueryGenerationToken.current()

Query Generations
Nuts and pbolts: AP

Opaque token to track generation

- New class NSQueryGenerationToken

- NSQueryGenerationToken.current()
Methods on NSManagedObjectContext that use it

- managedObjectContext.queryGenerationToken

- managedObjectContext.setQueryGenerationFrom()

Query Generations
Nuts and pbolts: Corners

Generation will not include stores added after token creation
+ No results from stores not in generation
Does not prevent you from removing stores from coordinator

- Error it no stores from generation remain

concurrency

Something is always new

Concurrency in Core Data
Current stuff

Actor model for NSManagedObjectContext

» Use perform() , performAndWait()

- confinementConcurrencyType is deprecated
Actor model for NSPersistentStoreCoordinator

+ Use perform(), performAndWait()

Coordinator serializes contexts' requests

And Now an Important Message
Why did stuff start breaking after | recompiled?

—performBlockAndWait: now has an autorelease pool
» Watch your NSError **
Affects MRR

Link time check

Current State of Affairs

- e e
=

Current State of Affairs

- =
=

Current State of Affairs

- =
=

Current State of Affairs

. >‘4 .
\4

Current State of Affairs

- ey =
=

Current State of Affairs

- ey =
=

Current State of Affairs

- e e
=

New Stuff

| thought concurrency was hard, then | refactorec

SQL store can now handle multiple concurrent requests
- Multiple readers
+ Single writer

Connection pool

Moving the Lock Down

- e e
= 8

Moving the Lock Down

- e e
= 8

Moving the Lock Down

- e e
= 8

Moving the Lock Down

. > ‘ 4 .
v v

Moving the Lock Down

. > ‘ 4 .
v v
<
<

Moving the Lock Down

. ‘ 4 .
\4
l4 .

Moving the Lock Down

- e e
= 8

What does this mean?

More responsive Ul
- Fault/fetch while background work occurs
Simpler application architecture

- Less need for multiple stacks

- Fewer complicated handoffs

+ Bonus: shared row cache means lower memory footprint

Connection Pool
Nuts and polts: AP]

On by default

+ SQL stores only

+ All coordinated stores must be SQL stores

New store option: NSPersistentStoreConnectionPoolMaxSizeKey
- Specify max pool size

+ Set to 1 if you want serialized request handling

We reserve the right to adjust pool size

Considerations
How does it affect your code?

Should* be transparent
Better performance overall under contention

Code simplification

“Timing changed. If you depended on it, you may notice.

Next Up, Scott

Setting Up Core Data

Scott Perry Chordate

// Add a Persistent Store

persistentStoreCoordinator.addPersistentStore(ofType: type
configurationName: configuration,

at: url
options: options

type configuration

url options

NSPersistentStoreDescription

NSPersistentStoreDescription

Fasy customization of common options
+ Read-only

+ [imeout

» Automatic lightweight migration

+ Automatic mapping model inference

NSPersistentStoreDescription

Fasy customization of common options
+ Read-only

+ [imeout

+ Automatic lightweight migration

+ Automatic mapping model inference

+ Add store asynchronously

// Adding a Store to a Coordinator

persistentStoreCoordinator.addPersistentStore(with: storeDescription,
completionHandler: { (storeDescription, error) in
if let error = error A
// Handle the error appropriately.
}

+)

// Adding a Store to a Coordinator, Asynchronously

storeDescription.shouldAddStoreAsynchronously = true

persistentStoreCoordinator.addPersistentStore(with: storeDescription,

completionHandler: { (storeDescription, error) in
if let error = error {

// Handle the error appropriately.
} else {

// Handle success appropriately.
}

F)

Representing a Core Data Stack

Representing a Core Data Stack

Representing a Core Data Stack

Representing a Core Data Stack

Fncapsulates model configuration
Name
Store descriptions

| 0ads stores

lazy var applicationDocumentsDirectory: NSURL = {
let urls = NSFileManager.defaultManager().urlsForDirectory(.documentDirectory,
inDomains: .userDomainMask)

return urls[urls.count-1]

+()

lazy var managedObjectModel: NSManagedObjectModel = {
Llet modelURL = NSBundle.main().urlForResource('"AppName', withExtension: "momd")!
return NSManagedObjectModel(contentsOf: modelURL)!

F()

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator = {
let coordinator = NSPersistentStoreCoordinator(managedObjectModel: self.managedObjectModel)
let url = self.applicationDocumentsDirectory.appendingPathComponent("AppName.sglite™)
do {
try coordinator.addPersistentStore(ofType: NSSQLiteStoreType, configurationName: nil,
at: url, options: nil)
} catch {
// Replace this with code to handle the error appropriately.
fatalError("Unresolved error \(error), \(error.userInfo)")
}

return coordinator

+()

lazy var managedObjectContext: NSManagedObjectContext = {
let coordinator = self.persistentStoreCoordinator
var managedObjectContext = NSManagedObjectContext(concurrencyType: .mainQueueConcurrencyType)
managedObjectContext.persistentStoreCoordinator = coordinator
return managedObjectContext

+()

lazy var persistentContainer: NSPersistentContainer = {
let container = NSPersistentContainer(name: '"AppName")
container. loadPersistentStores(completionHandler: { (storeDescription, error) in
if let error = error A
// Replace this implementation with code to handle the error appropriately.
fatalError("Unresolved error \(error), \(error.userInfo)")

}
})

return contalner

F()

Where Did It All Go?

Default values and behavior

Where Did It All Go?

Default values and behavior

Model looked up by container name

Where Did It All Go?

Default values and behavior

Model looked up by container name

Store filename determined by container name

Where Did It All Go?

Default values and behavior

Model looked up by container name

Store filename determined by container name

Store directory provided by the container class

NSPersistentContainer
Support for common workflows

NSPersistentContainer
Support for common workflows

Main queue context property

NSPersistentContainer
Support for common workflows

Main queue context property

Private queue context factory method

NSPersistentContainer
Support for common workflows

Main queue context property
Private queue context factory method

Method for enqueuing background work

// Doing Background Work With a Container

let context = NSManagedObjectContext(concurrencyType: .privateQueueConcurrencyType)

context.persistentStoreCoordinator = persistentStoreCoordinator

context.perform({

/] .
})

// Doing Background Work With a Container

NSManagedObjectContext

Speaking of common workflows.. .

NSManagedObjectContext

Speaking of common workflows. ..

New property automaticallyMergesChangesFromParent

NSManagedOpjectContext

Speaking of common workflows. ..

New property automaticallyMergesChangesFromParent

Works with generation tokens

Generics

Generics
Better living through types

Generics
Better living through types

New protocol NSFetchRequestResult

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)

*NSManagedObjectID

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)

*NSManagedObjectID

NSDictionary

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)
*NSManagedObjectID
NSDictionary

NSNumber

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)

*NSManagedObjectID
NSDictionary
* NSNumber

NSFetchRequest<ResultType>

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)

*NSManagedObjectID
NSDictionary
* NSNumber

NSFetchRequest<ResultType>
NSManagedObjectContext.fetch(NSFetchRequest<ResultType>) throws —> [ResultTypel

Generics
Better living through types

New protocol NSFetchRequestResult
*NSManagedObject (and subclasses)

*NSManagedObjectID
NSDictionary
* NSNumber

NSFetchRequest<ResultType>

NSManagedObjectContext.fetch(NSFetchRequest<ResultType>) throws —> [ResultTypel
NSFetchedResultsController<ResultType>

NSFetchedResultsController

¥ UlCollectionViewDataSourcePrefetching

NSFetchedResultsController

¥ UlCollectionViewDataSourcePrefetching

NSFetchedResultsController
¥ UlCollectionViewDataSourcePrefetching

What's New in UlCollectionView Presidio Thursday 9:00AM

Now Available

NSFetchedResultsController on macQOS

Common Operations
Type casts and strings

Common Operations
Type casts and strings

Common Operations
Type casts and strings

Common Operations
Type casts and strings

Common Operations
Subclasses gain superpowers

// Get an entity description

NSEntityDescription.entity(forEntityName: "Entity", in: managedObjectContext)

// Create a fetch request

NSFetchRequest(entityName: "Entity") as! NSFetchRequest<Subclass>

// Create a managed object

NSEntityDescription.insertNewObjectForEntityForName("Entity", inManagedObjectContext:

managedObjectContext) as! Subclass

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Common Operations
Subclasses gain superpowers

Automatic Subclass Generation
Always up to date

Automatic Subclass Generation
Always up to date

Configured per entity

Automatic Subclass Generation
Always up to date

Configured per entity
DerivedData

Automatic Subclass Generation
Always up to date

Configured per entity
DerivedData

Automatically regenerated

Automatic Subclass Generation
Always up to date

Configured per entity
DerivedData
Automatically regenerated

Class or extension

Automatic Subclass Generation
Always up to date

Automatic Subclass Generation
Always up to date

- -

-

Automatic Subclass Generation
Always up to date

Automatic Subclass Generation
Class generation

Automatic Subclass Generation

Automatic Subclass Generation
Category/Extension generation

Demo
Walking tour

What's New in SQLite

Multithreading Assertions

Multithreading Assertions

Database connections are not thread-safe

Multithreading Assertions

Database connections are not thread-safe

Multithreading bugs manifest as crashes deep inside SQLite

Multithreading Assertions

Database connections are not thread-safe

Multithreading bugs manifest as crashes deep inside SQLite

SQLITE_ENABLE_THREAD_ASSERTIONS=1

Built-in Logging

Built-in Logging

SQLite allows user-defined logging functions via SQLITE_CONFIG_LOG

Built-in Logging

SQLite allows user-defined logging functions via SQLITE_CONFIG_LOG

sqlite3_config must be called before library initialization

Built-in Logging

SQLite allows user-defined logging functions via SQLITE_CONFIG_LOG

sqlite3_config must be called before library initialization

SQLITE_ENABLE_LOGGING=1

File Operations and SQLite

Or:How to corrupt your datapase

File Operations and SQLite

Or:How to corrupt your datapase

Databases are represented by multiple files

File Operations and SQLite

Or:How to corrupt your datapase

Databases are represented by multiple files

File operations cannot be atomic across multiple files

File Operations and SQLite

Or:How to corrupt your datapase

Databases are represented by multiple files
File operations cannot be atomic across multiple files

All file operations are unsafe

What's New in SQLite

The problem with file operations

What's New in SQLite

The problem with file operations

mydata.db <

mydata.db—journal

Corrupt Data

What's New in SQLite

The problem with file operations

What's New in SQLite

The problem with file operations

What's New in SQLite

The problem with file operations

What's New in SQLite

The problem with file operations

What's New in SQLite

The problem with file operations

What's New in SQLite

The problem with file operations

(O-<rT)C-
13-

What's New in SQLite

Database file tracking

What's New in SQLite

Database file tracking

SQLite now uses dispatch sources to track illegal file operations

What's New in SQLite

Database file tracking

SQLite now uses dispatch sources to track illegal file operations

API calls after illegal operations will return SQLITE_IOERR_VNODE

What's New in SQLite

Database file tracking

SQLite now uses dispatch sources to track illegal file operations

API calls after illegal operations will return SQLITE_IOERR_VNODE

SQLITE_ENABLE_FILE_ASSERTIONS=1

What's New in SQLite

Database file tracking

SQLite now uses dispatch sources to track illegal file operations

API calls after illegal operations will return SQLITE_IOERR_VNODE

SQLITE_ENABLE_FILE_ASSERTIONS=1

https://www.sglite.org/howtocorrupt.html

What |s Safe?

How to avoid datapbase corruption

What |s Safe?

How to avoid datapbase corruption

Clear database ownership

What |s Safe?

How to avoid datapbase corruption

Clear database ownership

Guarantee exclusive file access

What |s Safe?

How to avoid datapbase corruption

Clear database ownership
Guarantee exclusive file access

Use Core Datal

What |s Safe?

How to avoid datapbase corruption

Clear database ownership
Guarantee exclusive file access

Use Core Datal

*replacePersistentStore()

What |s Safe?

How to avoid datapbase corruption

Clear database ownership
Guarantee exclusive file access

Use Core Datal

*replacePersistentStore()

edestroyPersistentStore()

Summary

Query generations
Concurrency

Core Data stack configuration
New AP

Swift

Xcode integration
SQLite

More Information

https://developerapple.com/wwdc16/242

Related Sessions

What's New in Swift Presidio Tuesday 9:00AM

What's New in Cocoa Nob Hill Tuesday 11:00AM

| abs

Core Data Lab E;ameeW"rks Friday 11:00AM

