Developer

Optimizing App Startup Time

Linkers, loaders, and you

Session 406

© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

00Is

Nick Kledzik Dyld Architect
_ouis Gerbarg Dyld Visionary

—)

#FWWDC16

Audience

Audience

Working on app that launches too slow

Audience

Working on app that launches too slow

Want to keep app launching quickly

Audience

Like to learn about OS Working on app that launches too slow

Want to keep app launching quickly

What You Will Learn

What You Will Learn

Theory

- Everything that happens before main()
+ Mach-O format

- Virtual Memory basics

- How Mach-O binaries are loaded and prepared

What You Will Learn

Theory

- Everything that happens before main()

+ Mach-O format

- Virtual Memory basics

- How Mach-O binaries are loaded and prepared
Practical

» How tO measure

» Optimizing start up time

Crasn Course:

Mach-O and Virtual Memory

Macn-O Terminology

File Types:

Macn-O Terminology

File Types:

- Executable—Main binary for application

Macn-O Terminology

File Types:
- Executable—Main binary for application
+ Dylib—Dynamic library (aka DSO or DLL)

Macn-O Terminology

File Types:
- Executable—Main binary for application

+ Dylib—Dynamic library (aka DSO or DLL)
- Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins

Macn-O Terminology

File Types:
- Executable—Main binary for application

+ Dylib—Dynamic library (aka DSO or DLL)
- Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins

Image—An executable, dylib, or bundle

Macn-O Terminology

File Types:

- Executable—Main binary for application

+ Dylib—Dynamic library (aka DSO or DLL)

- Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins
Image—An executable, dylib, or bundle

Framework—Dylib with directory for resources and headers

Mach-O Image File

File divided into segments

- Uppercase names

Mach-O Image File

File divided into segments

- Uppercase names

All segments are multiples of page size
+ 16KB on armo64

- 4KB elsewhere

Mach-O Image File

File divided into segments

- Uppercase names

All segments are multiples of page size
+ 16KB on armo4

- 4KB elsewhere

Mach-O Image File

Sections are a subrange of a segment

- Lowercase names

Mach-O Image File

Sections are a subrange of a segment

- Lowercase names

Mach-O Image File

Sections are a subrange of a segment
+ Lowercase names

Common segments:

Mach-O Image File

Sections are a subrange of a segment
+ Lowercase names
Common segments:

- TEXT has header, code, and
read-only constants

__ DATA

__LINKEDIT

Mach-O Image File

Sections are a subrange of a segment
+ Lowercase names

Common segments:

- [EXT has header, code, and
read-only constants

~ DATA has all read-write content:
globals, static variables, etc

Mach-O Image File

Sections are a subrange of a segment

- Lowercase names

Common segments:

- [EXT has header, code, and
read-only constants

DATA has all read-write content:

globa

s, static variables, etc

- [LINKEDIT has "meta data”about
how to load the program

Mach-O Universal Files

Mach-O Universal Files

armvy/s

Mach-O Universal Files

Fat Header

- One page in size

- Lists architectures and offsets

Tools and runtimes support fat mach-o files

armvy/s

Virtual Memory

Virtual Memory is a level of indirection

Virtual Memory

Virtual Memory is a level of indirection

Maps per-process addresses to physical RAM (page granularity)

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Features:

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Features:

- Page fault

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Features:
- Page fault

- Same RAM page appears in multiple processes

Virtual Memory

Virtual Memory is a level of indirection

Maps per-process addresses to physical RAM (page granularity)
~eatures:

- Page fault

- Same RAM page appears in multiple processes

- File backed pages

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages

- mmap ()

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages
- mmap ()

- lazy reading

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages
- mmap ()
- lazy reading
» Copy-On-Write (COW)

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages
- mmap ()
- lazy reading
» Copy-On-Write (COW)

+ Dirty vs. clean pages

Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages

- mmap ()

- lazy reading
» Copy-On-Write (COW)
+ Dirty vs. clean pages

« Permissions: rwx

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Mach-O Dylib

Process 1

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Mach-O Dylib

Process 1

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Dylib

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Dylib

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 2

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Dylib

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 2

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Dylib

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 2

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Address Space

ZeroFill

ZeroFill

Mach-O Dylib

ZeroFill

Process 2

ach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Address Space

ZeroFill

ZeroFill

Mach-O Dylib

ZeroFill

Process 2

Mach-O Image Loading

Address Space

ZeroFill

ZeroFill

ZeroFill

Process 1

Mach-O Dylib

Address Space

s, -‘
o3
G N GREALNT
%@* g
e

B\ ; —
¥ b S e S
A R B 8 4 e
s g iz E
L 9 b ?
5 £ E
% g o .
| 2 S ;
P oy
- ‘ L
as SRt
: R e
A £ .

¢

A)
SR £ 3 : e ;
L e (0 g

ZerofFill

ZeroFill

ZeroFill

Process 2

Security

ASLR

» Address Space Layout Randomization

+ Images load at random address

Security

ASLR

» Address Space Layout Randomization
+ Images load at random address
Code Signing

- Content of each page is hashed

+ Hash is verified on page-in

exec() to main()

exec()

Kernel maps your application into
new address space

Start of your app is random

0x000000

0x?77000

exec()

T 0x000000
Kernel maps your application into
new address space
Start of your app is random
0x???7000

Low memory is marked inaccessible

» 4KB+ for 32-bit process
- 4GB+ for 64-bit processes
+ Catches NULL pointer usage

» (Catches pointer truncation errors

What About Dylibs?

0x000000

0x?77000

0x?7?7000

What About Dylibs?

0x000000
Kernel loads helper program
+ Dyld (dynamic loader)
+ Executions starts in dyld
0x?77000

0x?7?7000

What About Dylibs?

0x000000
Kernel loads helper program ’
+ Dyld (dynamic loader)
+ Executions starts in dyld

0Xx?77000
Dyld runs in-process
+ Loads dependent dylibs 0x??7000

* Has same permissions as app

Dyld Steps

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Dyld Steps

Map all dependent dylibs, recurse
Rebase all images

Bind all images

OpjC prepare images

Run initializers

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

L 0oading Dylibs

Parse list of dependent dylibs

mmap(r-x)

mmap(rw-)

mmap(r--)

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

L 0oading Dylibs

Parse list of dependent dylibs

Find requested mach-o file mmap(r-x)

mmap(rw-)

mmap(r--)

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

L 0oading Dylibs

Parse list of dependent dylibs
Find requested mach-o file mmap(r-x)

Open and read start of file

mmap(rw-)

mmap(r--)

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

L 0oading Dylibs

Parse list of dependent dylibs
Find requested mach-o file mmap(r-x)
Open and read start of file

Validate mach-o mmap(rw-)

mmap(r--)

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

L 0oading Dylibs

Parse list of dependent dylibs
Find requested mach-o file mmap(r-x)
Open and read start of file

Validate mach-o mmap(rw-)

Register code signature mmap(r--)

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

L 0oading Dylibs

Parse list of dependent dylibs
Find requested mach-o file mmap(r-x)
Open and read start of file

Validate mach-o mmap(rw-)

Register code signature mmap(r--)

Callmmap () for each segment

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

Apps typically load 100 to 400 dylibs!

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

Apps typically load 100 to 400 dylibs!
+ Most are OS dylibs

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

Apps typically load 100 to 400 dylibs!

+ Most are OS dylibs
- We've optimized loading of OS dylibs

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

FIX-UPS

Code signing means instructions cannot be altered

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

FIX-UPS

Code signing means instructions cannot be altered

Modern code-gen is dynamic PIC (Position Independent Code)

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

FIX-UPS

Code signing means instructions cannot be altered

Modern code-gen is dynamic PIC (Position Independent Code)

+ Code can run loaded at any address and is never altered

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

FIX-UPS

Code signing means instructions cannot be altered

Modern code-gen is dynamic PIC (Position Independent Code)
+ Code can run loaded at any address and is never altered

- Instead, all fix ups are in __DATA

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Rebasing and Binding

Rebasing: Adjusting pointers to within an image

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Rebasing and Binding

Rebasing: Adjusting pointers to within an image

Binding: Setting pointers to outside image

_malloc

_free

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

[~]> xcrun dyldinfo -rebase -bind -lazy_bind myapp.app/myapp

rebase information:

segment section address type

__DATA __ const 0x10000C1A0 pointer
__DATA __ _const 0x10000C1CO pointer
__DATA __ _const 0x10000C1EQO pointer
__DATA __ _const 0x10000C210 pointer

bind i1nformation:

segment section address type add dylib symbo L

__DATA __ _objc_classrefs 0x10000D1E8 pointer 0 CoreFoundation _OBJC_CLASS_$ NSObject
__DATA _ data 0x10000D4DO pointer O CoreFoundation _OBJC_METACLASS $ NSObject
~_DATA _ data 0x10000D558 pointer O CoreFoundation _OBJC _METACLASS $ NSObject
__DATA __got 0x10000C018 pointer © libswiftCore ___TMSS

lazy binding information:

segment section address index dylib symbol
__DATA _ _la_symbol ptr 0x10000CQOA8 0x0000 1ibSystem __Block_copy
__DATA _ _la_symbol ptr 0x10000C0B0O 0x0014 1ibSystem __Block _release

__DATA _ _la_symbol ptr 0x10000C0B8 0x002B 1libSystem memcpy

Rebasing

Rebasing is adding a "slide" value to each internal pointer

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Rebasing

Rebasing is adding a "slide" value to each internal pointer

Slide = actual_address - preferred_address

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address

L ocation of rebase locations is encoded in LINKEDIT

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address
Location of rebase locations is encoded in LINKEDIT

Pages-in and COW page

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address

Location of rebase locations is encoded in LINKEDIT
Pages-in and COW page

Rebasing is done in address order, so kernel starts prefetching

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Binding
All references to something in another dylib are symbolic

“malloc

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Binding

All references to something in another dylib are symbolic

Dyld needs to find symbol name

“malloc

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name

More computational than rebasing

“malloc

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name
More computational than rebasing

Rarely page faults _malloc

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Notity ObjC Runtime

Most ObjC set up done via rebasing and binding

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Notity ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Notity ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered

Non-fragile ivars offsets updated

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Notity ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered

Non-fragile ivars offsets updated

Categories are inserted into method lists

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

Notity ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered

Non-fragile ivars offsets updated
Categories are inserted into method lists

Selectors are unigued

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

INitializers

C++ generates initializer for statically allocated objects

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

INitializers

C++ generates initializer for statically allocated objects
ObjC +load methods

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

INnitializers

C++ generates initializer for statically allocated objects
ObjC +load methods

Run "bottom up" so each initializer can call dylibs below it

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >

INnitializers

C++ generates initializer for statically allocated objects
ObjC +load methods

Run "bottom up" so each initializer can call dylibs below it

Lastly, Dyld calls main() in executable

Y iotes) er) sma) o) il)

Pre-main() Summary

Dyld is a helper program

Pre-main() Summary

Dyld is a helper program
+ Loads all dependent dylibs

Pre-main() Summary

Dyld is a helper program
+ Loads all dependent dylibs
+ Fixes up all pointers in DATA pages

Pre-main() Summary

Dyld is a helper program
+ Loads all dependent dylibs
+ Fixes up all pointers in DATA pages

- Runs all initializers

Putting Theory into Practice

Louis Gerbarg

Improving Launch Times
Overview

How fast?

Improving Launch Times
Overview

How fast?

oW tO measure?

Improving Launch Times
Overview

How fast?

oW tO measure?

Why is launch slow?

Improving Launch Times
Overview

How fast?

oW tO measure?

Why is launch slow?

What can you do?

Spoiler

Spoiler

Do Less Stuff

Improving Launch Times
Goals

L aunch faster than animation

Improving Launch Times
Goals

L aunch faster than animation

- Duration varies on devices

Improving Launch Times
Goals

L aunch faster than animation
- Duration varies on devices

+ 400ms is a good target

Improving Launch Times
Goals

L aunch faster than animation
- Duration varies on devices
+ 400ms is a good target

Don't ever take longer than 20 seconds

Improving Launch Times
Goals

Launch faster than animation

- Duration varies on devices

+ 400ms is a good target

Don't ever take longer than 20 seconds

+ App will be killed

Improving Launch Times
Goals

Launch faster than animation

- Duration varies on devices

+ 400ms is a good target

Don't ever take longer than 20 seconds
+ App will be killed

Test on the slowest supported device

Improving Launch Times
Launch recap

Improving Launch Times
Launch recap

Parse images

Map images

Rebase images

Bind images

Run image initializers

Callmain()

Improving Launch Times
Launch recap

Parse images

Map images

Rebase images

Bind images

Run image initializers
Callmain()

CallUIApplicationMain()

Improving Launch Times
Launch recap

Parse images

Map images

Rebase images

Bind images

Run image initializers
Callmain()
CallUIApplicationMain()

Call applicationWillFinishLaunching

Improving Launch Times
Warm vs. cold launch

Warm launch

Improving Launch Times
Warm vs. cold launch

Warm launch

+ App and data already in memory

Improving Launch Times
Warm vs. cold launch

Warm launch

+ App and data already in memory
Cold launch

Improving Launch Times
Warm vs. cold launch

Warm launch
+ App and data already in memory

Cold launch

- App is not in kernel buffer cache

Improving Launch Times
Warm vs. cold launch

Warm launch

+ App and data already in memory
Cold launch

- App is not in kernel buffer cache

Warm and cold launch times will be different

Improving Launch Times
Warm vs. cold launch

Warm launch

+ App and data already in memory
Cold launch

- App is not in kernel buffer cache

Warm and cold launch times will be different

- Cold launch times are important

Improving Launch Times
Warm vs. cold launch

Warm launch

+ App and data already in memory
Cold launch

- App is not in kernel buffer cache

Warm and cold launch times will be different
- Cold launch times are important

+ Measure cold launch by rebooting

Improving Launch Times
Measurements

Measuring before main() is difficult

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes

- Significantly enhanced in new OSes

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes

- Significantly enhanced in new OSes

- Available in seed 2

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes

- Significantly enhanced in new OSes

- Available in seed 2

Debugger pauses every dylib load

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes

- Significantly enhanced in new OSes

- Available in seed 2
Debugger pauses every dylib load
+ Dyld subtracts out debugger time

Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

Debugger pauses every dylib load

+ Dyld subtracts out debugger time

- Console times less than wall clock

Improving Launch Times
DYLD_PRINT_STATISTICS

/A MyAwesomeApp) Bl iPhone 6s (10.0)

7’ Bmld : Info Arguments Options Diagnostics

1 L

Run
Debug
Test

Arguments Passed On Launch

e

Profile

Release

a Analyze +

< _va,\'Ch"’e ¥ Environment Variables

Y A~
iease

Install
"' Debug =
® DYLD_PRINT_STATISTICS 1

Expand Variables Based On

Duplicate Scheme Manage Schemes... Shared

Improving Launch Times
DYLD_PRINT_STATISTICS

/A MyAwesomeApp) ll iPhone 6s (10.0)

>]~ Build Info Arguments Options Diagnostics

v 1 4 g
I target

b } Run ¥ Arguments Passed On Launch
Debug

> , Test
g Debug

> 'ﬁ Profile

Release

- B Analyze +

Debug

: _pArCh'Ve ¥ Environment Variables

Release

> Install

* Debug DYLD_PRINT_STATISTICS 1

Expand Variables Based On MyAwesomeApp

Duplicate Scheme Manage Schemes... Shared

Total pre-main time: 10.6 seconds (100.0%)
dylib loading time: 240.09 milliseconds (2.2%)
rebase/binding time: 351.29 milliseconds (3.3%)

ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest i1ntializers :
MyAwesomeApp : 10.0 seconds (94.2%)

Total pre-main time: 10.6 seconds (100.0%)
dylib loading time: 240.09 milliseconds (2.2%)
rebase/binding time: 351.29 milliseconds (3.3%)

ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest i1ntializers :
MyAwesomeApp : 10.0 seconds (94.2%)

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive

Use fewer dylibs

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive

Use fewer dylibs
+ Merge existing aylibs

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive
Use fewer dylibs
+ Merge existing adylibs

- Use static archives

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive
Use fewer dylibs

+ Merge existing adylibs

+ Use static archives

Lazy load, but. ..

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive
Use fewer dylibs

- Merge existing dylibs

+ Use static archives

Lazy load, but. ..

- dlopen() can cause issues

+ Actually more work overall

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

EFmbedded dy“bS are expensive Link Binary With Libraries (26 items)

Use fewer dylibs

oL

& A.framework

) |

+ Merge existing dylibs &35 B.framework

J

& C.framework

* US@ Statlc arChlveS &+ D.framework

||

Y|

Lazy load, but. ..
dlopen() can cause issues

+ Actually more work overall

dylib loading time: 240.09 milliseconds (2.2%)

Dylib Loading

Embedded dylibs are expensive Link Binary With Libraries (2 items)

Use fewer dylibs

B

++ ABCDEFGHIJKLM.framework

oL

. I\/\erge existing dyhbs &« NOPQRSTUVWXYZ.framework

Use static archives n

Lazy load, but. ..

dlopen() can cause issues

+ Actually more work overall

dylib loading time: 21.75 milliseconds (0.2%)

Total pre-main time: 10.4 seconds (100.0%)
dylib loading time: 21.75 milliseconds (0.2%)
rebase/binding time: 351.29 milliseconds (3.3%)

ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (96.1%)

Total pre-main time: 10.4 seconds (100.0%)
dylib loading time: 21.75 milliseconds (0.2%)
rebase/binding time: 351.29 milliseconds (3.3%)
ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (96.1%)

Total pre-main time: 10.4 seconds (100.0%)
dylib loading time: 21.75 milliseconds (0.2%)
rebase/binding time: 351.29 milliseconds (3.3%)
ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (96.1%)

Rebase/Binding

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers

Reduce Objective C metadata

- (Classes, selectors, and categories

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers
Reduce Objective C metadata
- (Classes, selectors, and categories

Reduce C4++ virtual

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers

Reduce Objective C metadata

- (Classes, selectors, and categories
Reduce C++ virtual

Use Swift structs

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers

Reduce Objective C metadata

- (Classes, selectors, and categories
Reduce C++ virtual

Use Swift structs

Examine machine generated code

- Use offsets instead of pointers

+ Mark read only

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers & MyAwesomeApp
MyAwesomeApp
Reduce Objective C metadata m 1000-classes.m
m 2000-classes.m
- Classes, selectors, and categories i) s
m 4000-classes.m
Reduce C++ virtual m 5000-classes.m

m 6000-classes.m

Use Swift structs m 7000-classes.m

m 8000-classes.m

Examine machine generated code m 9000-classes.mm

- Use offsets instead of pointers

+ Mark read only

rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce ___DATA pointers & MyAwesomeApp
MyAwesomeApp
Reduce Objective C metadata m 1000-classes.m
h AppDelegate.h
- Classes, selectors, and categories AppDelegate.m
ViewController.h
Reduce C++ virtual ., ViewController.m

Main.storyboard

Use S\/\/lft STructs Assets.xcassets

LaunchScreen.storyboard

Examine machine generated code nfo.plist

- Use offsets instead of pointers

+ Mark read only

rebase/binding time: 19.33 milliseconds (0.2%)

Total pre-main time: 10.1 seconds (100.0%)
dylib loading time: 21.75 milliseconds (0.2%)
rebase/binding time: 19.33 milliseconds (0.2%)
ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (99.4%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (99.3%)

Total pre-main time: 10.1 seconds (100.0%)
dylib loading time: 21.75 milliseconds (0.2%)
rebase/binding time: 19.33 milliseconds (0.2%)
ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (99.4%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (99.3%)

Total pre-main time: 10.1 seconds (100.0%)
dylib loading time: 21.75 milliseconds (0.
rebase/binding time: 19.33 milliseconds (0.2%)
ObjC setup time: 11.83 milliseconds (0.
initializer time: 10 seconds (99.4%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (99.3%)

OpjC Setup

Class registration

ObjC setup time: 11.83 milliseconds (0.1%)

OpjC Setup

Class registration

Non-fragile ivars offsets updated

ObjC setup time: 11.83 milliseconds (0.1%)

OpjC Setup

Class registration

Non-fragile ivars offsets updated

Category registration

ObjC setup time: 11.83 milliseconds (0.1%)

OpjC Setup

Class registration

Non-fragile ivars offsets updated
Category registration

Selector uniquing

ObjC setup time: 11.83 milliseconds (0.1%)

OpjC Setup

Class registration

Non-fragile ivars offsets updated
Category registration

Selector uniquing

ObjC setup time: 4.60 milliseconds (0.1%)

Total pre-main time: 10.6 seconds (100.0%)
dylib loading time: 21.75 milliseconds (2.2%)
rebase/binding time: 19.33 milliseconds (3.3%)

ObjC setup time: 4.60 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (99.3%)

Total pre-main time: 10.6 seconds (100.0%)
dylib loading time: 21.75 milliseconds (2
rebase/binding time: 19.33 milliseconds (3.
0

ObjC setup time: 4.60 milliseconds (
initializer time: 10 seconds (99.3%)

slowest 1intializers :
MyAwesomeApp : 10.0 seconds (99.3%)

INnitializers
EXPIICIT

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods

- Replace with +initiailize

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods

- Replace with +initiailize

C/C++ _ attribute_ ((constructor))

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods
- Replace with +initiailize
C/C++ __attribute__ ((constructor))

Replace with call site initializers

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods
- Replace with +initiailize
C/C++ __attribute__ ((constructor))

Replace with call site initializers

- dispatch_once()

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods
- Replace with +initiailize
C/C++ __attribute__ ((constructor))

Replace with call site initializers

- dispatch_once()

- pthread_once()

initializer time: 10 seconds (99.4%)

INnitializers
EXPIICIT

ObjC +load methods
- Replace with +initiailize
C/C++ __attribute__ ((constructor))

Replace with call site initializers

- dispatch_once()
- pthread_once()

+ std::once()

initializer time: 10 seconds (99.4%)

Initializers
mplicit

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors

+ Replace with call site initializers

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors
+ Replace with call site initializers

+ Only set simple values (PODs)

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors
+ Replace with call site initializers
+ Only set simple values (PODs)

» -Wglobal-constructors

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors
- Replace with call site initializers

+ Only set simple values (PODs)

+ -Wglobal-constructors

- Rewrite in Swift

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors
- Replace with call site initializers

+ Only set simple values (PODs)

+ -Wglobal-constructors

- Rewrite in Swift

Do not calldlopen() in initializers

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors
- Replace with call site initializers

+ Only set simple values (PODs)

+ -Wglobal-constructors

+ Rewrite in Swift
Do not calldlopen() in initializers

Do not create threads in initializers

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors #import <UIKit/UIKit.h>

y Rep\ace with call site initializers #import "AppDelegate.h"

+ Only set simple values (PODs)

struct Pause {
- -Wglobal-constructors Pause(uint32_ t i) {

. Rewrite in Swift sleep(i);

Do not call dlopen() ininitializers).

Do not create threads in initializers

Pause onLaunch(10):

initializer time: 10 seconds (99.4%)

Initializers
mplicit

C++ statics with non-trivial constructors #import <UIKit/UIKit.h>

» Replace with call site initializers #import "AppDelegate.h"

+ Only set simple values (PODs)

struct Pause {
- -Wglobal-constructors Pause(uint32 t i) {

. Rewrite in Swift sleep(i);

Do not calldlopen() ininitializers :,

Do not create threads in initializers
//Pause onLaunch(10):

initializer time: 3.96 milliseconds (7.9%)

App Launch Time

Initializers
mplicit

C++ statics with non-trivial constructors #import <UIKit/UIKit.h>

» Replace with call site initializers #import "AppDelegate.h"

+ Only set simple values (PODs)

struct Pause {
- -Wglobal-constructors Pause(uint32 t i) {

. Rewrite in Swift sleep(i);

Do not calldlopen() ininitializers :,

Do not create threads in initializers
//Pause onLaunch(10):

initializer time: 3.96 milliseconds (7.9%)

App Launch Time

Total pre-main time: 49.83 milliseconds (100.0%)
dylib loading time: 21.75 milliseconds (43.6%)
rebase/binding time: 19.33 milliseconds (38.7%)
ObjC setup time: 4.60 milliseconds (9.2%)
initializer time: 3.96 milliseconds (7.9%)

slowest 1ntializers :
libSystem.B.dylib : 2.80 milliseconds (5.6%)

App Launch Time

Total pre-main time: 49.83 milliseconds (100.0%)
dylib loading time: 21.75 milliseconds (43.6%)
rebase/binding time: 19.33 milliseconds (38.7%)
ObjC setup time: 4.60 milliseconds (9.2%)
initializer time: 3.96 milliseconds (7.9%)

slowest 1ntializers :
LibSystem.B.dylib : 2.80 milliseconds (5.6%)

App Launch Time

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS

Reduce launch times by

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS

Reduce launch times by

- Embedding fewer dylibs

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS

Reduce launch times by
- Embedding fewer dylibs

» Consolidating Objective-C classes

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by

- Embedding fewer dylibs

» Consolidating Objective-C classes

+ Eliminating static initializers

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by

- Embedding fewer dylibs

» Consolidating Objective-C classes

+ Eliminating static initializers

Use more Swift

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by

- Embedding fewer dylibs

» Consolidating Objective-C classes

+ Eliminating static initializers

Use more Swift

dlopen() is discouraged

TL:DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by

- Embedding fewer dylibs

» Consolidating Objective-C classes

+ Eliminating static initializers

Use more Swift

dlopen() is discouraged

+ Subtle performance and deadlock issues

More Information

https://developer.apple.com/wwdc16/406

https://developer.apple.com/wwdc16/102

Related Sessions

Optimizing I/O for Performance and Battery Life Nob Hill Friday 11:00AM
Jsing Time Profiler in Instruments Nob Hill Friday 3:00PM

iOS App Performance Responsiveness WWDC 2012

| abs

Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 12:00PM
Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 1:30PM

Compiler, Optimizing App Startup Time Lab Developer Tools Lab B Thursday 1:30PM

