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Working on app that launches too slow

Want to keep app launching quickly

Like to learn about OS
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Theory
• Everything that happens before main()
• Mach-O format
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• How Mach-O binaries are loaded and prepared

Practical
• How to measure
• Optimizing start up time



Mach-O and Virtual Memory

Crash Course:
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Mach-O Terminology

File Types:
• Executable—Main binary for application
• Dylib—Dynamic library (aka DSO or DLL)
• Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins

Image—An executable, dylib, or bundle
Framework—Dylib with directory for resources and headers
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Mach-O Image File

Sections are a subrange of a segment 
• Lowercase names

Common segments:
• __TEXT has header, code, and  

read-only constants
• __DATA has all read-write content:  

globals, static variables, etc
• __LINKEDIT has "meta data” about  

how to load the program

__TEXT

__DATA

__LINKEDIT
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__TEXT
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__LINKEDIT

arm64
__TEXT

__DATA

__LINKEDIT

armv7s



Mach-O Universal Files

Fat Header
• One page in size
• Lists architectures and offsets

Tools and runtimes support fat mach-o files

__TEXT

__DATA

__LINKEDIT

arm64

__TEXT

__DATA

__LINKEDIT

armv7s

Fat Header
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Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages 

- mmap()

- lazy reading
• Copy-On-Write (COW)
• Dirty vs. clean pages
• Permissions:  rwx
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Security 

ASLR
• Address Space Layout Randomization
• Images load at random address

Code Signing
• Content of each page is hashed
• Hash is verified on page-in



exec() to main()



Your App

exec()

Kernel maps your application into  
new address space
Start of your app is random
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PAGEZERO

Your App

exec()

Kernel maps your application into  
new address space
Start of your app is random
Low memory is marked inaccessible
• 4KB+ for 32-bit process
• 4GB+ for 64-bit processes
• Catches NULL pointer usage
• Catches pointer truncation errors

0x000000

0x???000
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What About Dylibs?

Kernel loads helper program
• Dyld (dynamic loader)
• Executions starts in dyld

Dyld runs in-process
• Loads dependent dylibs
• Has same permissions as app

PAGEZERO

Your App

0x000000

Dyld

0x???000

0x???000
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Load dylibs Rebase Bind ObjC Initializers

Dyld Steps

Map all dependent dylibs, recurse
Rebase all images
Bind all images
ObjC prepare images
Run initializers

Load dylibs Rebase Bind ObjC Initializers



Loading Dylibs
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Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)



Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)



Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)



Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file
Validate mach-o

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)



Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file
Validate mach-o
Register code signature
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Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file
Validate mach-o
Register code signature
Call mmap() for each segment

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)
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D.dylib
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Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat
Apps typically load 100 to 400 dylibs!
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Recursive Loading

All your app's direct dependents are loaded
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Your App

dyld
A.dylib
B.dylib
C.dylib
D.dylib
E.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat
Apps typically load 100 to 400 dylibs!
• Most are OS dylibs
• We’ve optimized loading of OS dylibs

Load dylibs Rebase Bind ObjC Initializers

0x000000
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Fix-ups

Code signing means instructions cannot be altered
Modern code-gen is dynamic PIC (Position Independent Code)
• Code can run loaded at any address and is never altered
• Instead, all fix ups are in __DATA

Load dylibs Rebase Bind ObjC Initializers



__DATA

Rebasing and Binding

Rebasing:  Adjusting pointers to within an image
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__DATA

Rebasing and Binding

Rebasing:  Adjusting pointers to within an image
Binding:  Setting pointers to outside image

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__TEXT

_malloc

_free



[~]> xcrun dyldinfo -rebase -bind -lazy_bind myapp.app/myapp 
rebase information: 
segment section          address     type 
__DATA  __const          0x10000C1A0  pointer 
__DATA  __const          0x10000C1C0  pointer 
__DATA  __const          0x10000C1E0  pointer 
__DATA  __const          0x10000C210  pointer 
… 
bind information: 
segment section          address      type   add dylib           symbol 
__DATA  __objc_classrefs 0x10000D1E8  pointer  0 CoreFoundation  _OBJC_CLASS_$_NSObject 
__DATA  __data           0x10000D4D0  pointer  0 CoreFoundation  _OBJC_METACLASS_$_NSObject 
__DATA  __data           0x10000D558  pointer  0 CoreFoundation  _OBJC_METACLASS_$_NSObject 
__DATA  __got            0x10000C018  pointer  0 libswiftCore    __TMSS 
… 
lazy binding information: 
segment section          address     index  dylib            symbol 
__DATA  __la_symbol_ptr  0x10000C0A8 0x0000 libSystem        __Block_copy 
__DATA  __la_symbol_ptr  0x10000C0B0 0x0014 libSystem        __Block_release 
__DATA  __la_symbol_ptr  0x10000C0B8 0x002B libSystem        _memcpy 
… 
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Rebasing

Rebasing is adding a "slide" value to each internal pointer 
Slide = actual_address - preferred_address
Location of rebase locations is encoded in LINKEDIT
Pages-in and COW page
Rebasing is done in address order, so kernel starts prefetching

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT
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Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name
More computational than rebasing
Rarely page faults

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

_malloc
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Most ObjC set up done via rebasing and binding
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Notify ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered
Non-fragile ivars offsets updated
Categories are inserted into method lists
Selectors are uniqued

Load dylibs Rebase Bind ObjC Initializers
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C++ generates initializer for statically allocated objects
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Initializers

C++ generates initializer for statically allocated objects
ObjC +load methods
Run "bottom up" so each initializer can call dylibs below it
Lastly, Dyld calls main() in executable

Load dylibs Rebase Bind ObjC Initializers
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Pre-main() Summary

Dyld is a helper program 
• Loads all dependent dylibs
• Fixes up all pointers in DATA pages
• Runs all initializers



Putting Theory into Practice

Louis Gerbarg
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Overview
Improving Launch Times

How fast?
How to measure?
Why is launch slow?
What can you do?
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Do Less Stuff

Spoiler
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Goals
Improving Launch Times

Launch faster than animation
• Duration varies on devices
• 400ms is a good target

Don’t ever take longer than 20 seconds
• App will be killed

Test on the slowest supported  device
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Launch recap
Improving Launch Times

Parse images
Map images
Rebase images
Bind images
Run image initializers
Call main()
Call UIApplicationMain()
Call applicationWillFinishLaunching
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Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Cold launch
• App is not in kernel buffer cache

Warm and cold launch times will be different
• Cold launch times are important
• Measure cold launch by rebooting
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Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

Debugger pauses every dylib load
• Dyld subtracts out debugger time
• Console times less than wall clock

NEW
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DYLD_PRINT_STATISTICS
Improving Launch Times



Total pre-main time: 10.6 seconds (100.0%)
         dylib loading time:  240.09 milliseconds (2.2%)
        rebase/binding time:  351.29 milliseconds (3.3%)
            ObjC setup time:  11.83 milliseconds (0.1%)
           initializer time:  10 seconds (94.3%)

           slowest intializers :
                  MyAwesomeApp :  10.0 seconds (94.2%)

App Launch Time
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Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

Reduce C++ virtual
Use Swift structs
Examine machine generated code
• Use offsets instead of pointers
• Mark read only
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Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

C/C++ __attribute__((constructor))
Replace with call site initializers
• dispatch_once()
• pthread_once()
• std::once()

App Launch Time
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TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs
• Consolidating Objective-C classes 
• Eliminating static initializers

Use more Swift
dlopen() is discouraged
• Subtle performance and deadlock issues



More Information

https://developer.apple.com/wwdc16/406

https://developer.apple.com/wwdc16/102


Related Sessions

Optimizing I/O for Performance and Battery Life Nob Hill Friday 11:00AM

Using Time Profiler in Instruments Nob Hill Friday 3:00PM

iOS App Performance Responsiveness WWDC 2012



Labs

Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 12:00PM

Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 1:30PM

Compiler, Optimizing App Startup Time Lab Developer Tools Lab B Thursday 1:30PM




