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What You Will Learn

Theory

- Everything that happens before main()

+ Mach-O format

- Virtual Memory basics

- How Mach-O binaries are loaded and prepared
Practical

» How tO measure

» Optimizing start up time



Crasn Course:

Mach-O and Virtual Memory
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Macn-O Terminology

File Types:

- Executable—Main binary for application

+ Dylib—Dynamic library (aka DSO or DLL)

- Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins
Image—An executable, dylib, or bundle

Framework—Dylib with directory for resources and headers



Mach-O Image File

File divided into segments

- Uppercase names




Mach-O Image File

File divided into segments

- Uppercase names

All segments are multiples of page size
+ 16KB on armo64

- 4KB elsewhere




Mach-O Image File

File divided into segments

- Uppercase names

All segments are multiples of page size
+ 16KB on armo4

- 4KB elsewhere




Mach-O Image File

Sections are a subrange of a segment

- Lowercase names




Mach-O Image File

Sections are a subrange of a segment

- Lowercase names




Mach-O Image File

Sections are a subrange of a segment
+ Lowercase names

Common segments:




Mach-O Image File

Sections are a subrange of a segment
+ Lowercase names
Common segments:

- TEXT has header, code, and
read-only constants

__ DATA

__LINKEDIT



Mach-O Image File

Sections are a subrange of a segment
+ Lowercase names

Common segments:

- [EXT has header, code, and
read-only constants

~ DATA has all read-write content:
globals, static variables, etc




Mach-O Image File

Sections are a subrange of a segment

- Lowercase names

Common segments:

- [EXT has header, code, and
read-only constants

DATA has all read-write content:

globa

s, static variables, etc

- [LINKEDIT has "meta data”about
how to load the program
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Mach-O Universal Files

Fat Header

- One page in size

- Lists architectures and offsets

Tools and runtimes support fat mach-o files

armvy/s




Virtual Memory

Virtual Memory is a level of indirection



Virtual Memory

Virtual Memory is a level of indirection

Maps per-process addresses to physical RAM (page granularity)



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Features:



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Features:

- Page fault



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Features:
- Page fault

- Same RAM page appears in multiple processes



Virtual Memory

Virtual Memory is a level of indirection

Maps per-process addresses to physical RAM (page granularity)
~eatures:

- Page fault

- Same RAM page appears in multiple processes

- File backed pages



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages

- mmap ()



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages
- mmap ()

- lazy reading



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages
- mmap ()
- lazy reading
» Copy-On-Write (COW)



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages
- mmap ()
- lazy reading
» Copy-On-Write (COW)

+ Dirty vs. clean pages



Virtual Memory

Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

-eatures:
- Page fault
- Same RAM page appears in multiple processes

- File backed pages

- mmap ()

- lazy reading
» Copy-On-Write (COW)
+ Dirty vs. clean pages

« Permissions: rwx
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Mach-O Image Loading

Address Space
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Security

ASLR

» Address Space Layout Randomization
+ Images load at random address
Code Signing

- Content of each page is hashed

+ Hash is verified on page-in
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exec()

T 0x000000
Kernel maps your application into
new address space
Start of your app is random
0x???7000

Low memory is marked inaccessible

» 4KB+ for 32-bit process
- 4GB+ for 64-bit processes
+ Catches NULL pointer usage

» (Catches pointer truncation errors
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What About Dylibs?

0x000000
Kernel loads helper program ’
+ Dyld (dynamic loader)
+ Executions starts in dyld

0Xx?77000
Dyld runs in-process
+ Loads dependent dylibs 0x??7000

* Has same permissions as app
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Dyld Steps

Map all dependent dylibs, recurse
Rebase all images

Bind all images

OpjC prepare images

Run initializers

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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mmap(r--)
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L 0oading Dylibs

Parse list of dependent dylibs
Find requested mach-o file mmap(r-x)
Open and read start of file

Validate mach-o mmap(rw-)

Register code signature mmap(r--)

Callmmap () for each segment

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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, 0x000000
All your app's direct dependents are loaded
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Recursive Loading

, 0x000000
All your app's direct dependents are loaded

Plus any dylib’'s needed by those dylibs

Rinse and repeat

Apps typically load 100 to 400 dylibs!

+ Most are OS dylibs
- We've optimized loading of OS dylibs

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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FIX-UPS

Code signing means instructions cannot be altered

Modern code-gen is dynamic PIC (Position Independent Code)
+ Code can run loaded at any address and is never altered

- Instead, all fix ups are in __DATA

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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Rebasing: Adjusting pointers to within an image
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Rebasing and Binding

Rebasing: Adjusting pointers to within an image

Binding: Setting pointers to outside image

_malloc

_free

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >




[~]> xcrun dyldinfo -rebase -bind -lazy_bind myapp.app/myapp

rebase information:

segment section address type

__DATA __ const 0x10000C1A0 pointer
__DATA __ _const 0x10000C1CO pointer
__DATA __ _const 0x10000C1EQO pointer
__DATA __ _const 0x10000C210 pointer

bind i1nformation:

segment section address type add dylib symbo L

__DATA __ _objc_classrefs 0x10000D1E8 pointer 0 CoreFoundation _OBJC_CLASS_$ NSObject
__DATA _ data 0x10000D4DO pointer O CoreFoundation _OBJC_METACLASS $ NSObject
~_DATA _ data 0x10000D558 pointer O CoreFoundation _OBJC _METACLASS $ NSObject
__DATA __got 0x10000C018 pointer © libswiftCore ___TMSS

lazy binding information:

segment section address index dylib symbol
__DATA _ _la_symbol ptr 0x10000CQOA8 0x0000 1ibSystem __Block_copy
__DATA _ _la_symbol ptr 0x10000C0B0O 0x0014 1ibSystem __Block _release

__DATA _ _la_symbol ptr 0x10000C0B8 0x002B 1libSystem memcpy
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Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address

Location of rebase locations is encoded in LINKEDIT
Pages-in and COW page

Rebasing is done in address order, so kernel starts prefetching

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name
More computational than rebasing

Rarely page faults _malloc

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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Notity ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered

Non-fragile ivars offsets updated
Categories are inserted into method lists

Selectors are unigued

> Load dylibs >> Rebase >> Bind >> ObjC >> Initializers >
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INnitializers

C++ generates initializer for statically allocated objects
ObjC +load methods

Run "bottom up" so each initializer can call dylibs below it

Lastly, Dyld calls main() in executable

Y iotes ) er ) sma ) o ) il )
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Pre-main() Summary

Dyld is a helper program
+ Loads all dependent dylibs
+ Fixes up all pointers in DATA pages

- Runs all initializers



Putting Theory into Practice

Louis Gerbarg
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Improving Launch Times
Overview

How fast?

oW tO measure?

Why is launch slow?

What can you do?
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Improving Launch Times
Goals

Launch faster than animation

- Duration varies on devices

+ 400ms is a good target

Don't ever take longer than 20 seconds
+ App will be killed

Test on the slowest supported device
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Improving Launch Times
Launch recap

Parse images

Map images

Rebase images

Bind images

Run image initializers
Callmain()
CallUIApplicationMain()

Call applicationWillFinishLaunching
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Improving Launch Times
Warm vs. cold launch

Warm launch

+ App and data already in memory
Cold launch

- App is not in kernel buffer cache

Warm and cold launch times will be different
- Cold launch times are important

+ Measure cold launch by rebooting
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Improving Launch Times
Measurements

Measuring before main() is difficult

Dyld has built in measurements

- DYLD_PRINT STATISTICS environment variable
- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

Debugger pauses every dylib load

+ Dyld subtracts out debugger time

- Console times less than wall clock
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Improving Launch Times
DYLD_PRINT_STATISTICS

/A MyAwesomeApp ) ll iPhone 6s (10.0)
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Debug
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g Debug
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Release
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Debug
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Release

> Install

* Debug DYLD_PRINT_STATISTICS 1

Expand Variables Based On MyAwesomeApp

Duplicate Scheme Manage Schemes... Shared




Total pre-main time: 10.6 seconds (100.0%)
dylib loading time: 240.09 milliseconds (2.2%)
rebase/binding time: 351.29 milliseconds (3.3%)

ObjC setup time: 11.83 milliseconds (0.1%)
initializer time: 10 seconds (94.3%)

slowest i1ntializers :
MyAwesomeApp : 10.0 seconds (94.2%)
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Dylib Loading

EFmbedded dy“bS are expensive Link Binary With Libraries (26 items)

Use fewer dylibs

oL

& A.framework

) |

+ Merge existing dylibs &35 B.framework
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& C.framework

* US@ Statlc arChlveS &+ D.framework

||

Y|

Lazy load, but. ..
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Dylib Loading

Embedded dylibs are expensive Link Binary With Libraries (2 items)

Use fewer dylibs

B

++ ABCDEFGHIJKLM.framework

oL

. I\/\erge existing dyhbs &« NOPQRSTUVWXYZ.framework

Use static archives n

Lazy load, but. ..

dlopen() can cause issues

+ Actually more work overall

dylib loading time: 21.75 milliseconds (0.2%)
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MyAwesomeApp
Reduce Objective C metadata m 1000-classes.m
m 2000-classes.m
- Classes, selectors, and categories i) s
m 4000-classes.m
Reduce C++ virtual m 5000-classes.m

m 6000-classes.m

Use Swift structs m 7000-classes.m

m 8000-classes.m

Examine machine generated code m 9000-classes.mm

- Use offsets instead of pointers

+ Mark read only
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Reduce ___DATA pointers & MyAwesomeApp
MyAwesomeApp
Reduce Objective C metadata m 1000-classes.m
h AppDelegate.h
- Classes, selectors, and categories AppDelegate.m
ViewController.h
Reduce C++ virtual ., ViewController.m

Main.storyboard

Use S\/\/lft STructs Assets.xcassets

LaunchScreen.storyboard

Examine machine generated code nfo.plist

- Use offsets instead of pointers

+ Mark read only

rebase/binding time: 19.33 milliseconds (0.2%)
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EXPIICIT

ObjC +load methods
- Replace with +initiailize
C/C++ __attribute__ ((constructor))

Replace with call site initializers

- dispatch_once()
- pthread_once()

+ std::once()

initializer time: 10 seconds (99.4%)
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C++ statics with non-trivial constructors
- Replace with call site initializers

+ Only set simple values (PODs)

+ -Wglobal-constructors

+ Rewrite in Swift
Do not calldlopen( ) in initializers

Do not create threads in initializers

initializer time: 10 seconds (99.4%)
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+ Only set simple values (PODs)

struct Pause {
- -Wglobal-constructors Pause(uint32_ t i) {

. Rewrite in Swift sleep(i);

Do not call dlopen() ininitializers ).

Do not create threads in initializers

Pause onLaunch(10):
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TL:DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by

- Embedding fewer dylibs

» Consolidating Objective-C classes

+ Eliminating static initializers

Use more Swift

dlopen() is discouraged

+ Subtle performance and deadlock issues



More Information

https://developer.apple.com/wwdc16/406


https://developer.apple.com/wwdc16/102

Related Sessions

Optimizing I/O for Performance and Battery Life Nob Hill Friday 11:00AM
Jsing Time Profiler in Instruments Nob Hill Friday 3:00PM

iOS App Performance Responsiveness WWDC 2012



| abs

Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 12:00PM
Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 1:30PM

Compiler, Optimizing App Startup Time Lab Developer Tools Lab B Thursday 1:30PM






