
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Linkers, loaders, and you

Developer Tools #WWDC16

Session 406

Optimizing App Startup Time

Nick Kledzik Dyld Architect
Louis Gerbarg Dyld Visionary

Audience

Audience

Working on app that launches too slow

Audience

Working on app that launches too slow

Want to keep app launching quickly

Audience

Working on app that launches too slow

Want to keep app launching quickly

Like to learn about OS

What You Will Learn

What You Will Learn

Theory
• Everything that happens before main()
• Mach-O format
• Virtual Memory basics
• How Mach-O binaries are loaded and prepared

What You Will Learn

Theory
• Everything that happens before main()
• Mach-O format
• Virtual Memory basics
• How Mach-O binaries are loaded and prepared

Practical
• How to measure
• Optimizing start up time

Mach-O and Virtual Memory

Crash Course:

Mach-O Terminology

File Types:

Mach-O Terminology

File Types:
• Executable—Main binary for application

Mach-O Terminology

File Types:
• Executable—Main binary for application
• Dylib—Dynamic library (aka DSO or DLL)

Mach-O Terminology

File Types:
• Executable—Main binary for application
• Dylib—Dynamic library (aka DSO or DLL)
• Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins

Mach-O Terminology

File Types:
• Executable—Main binary for application
• Dylib—Dynamic library (aka DSO or DLL)
• Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins

Image—An executable, dylib, or bundle

Mach-O Terminology

File Types:
• Executable—Main binary for application
• Dylib—Dynamic library (aka DSO or DLL)
• Bundle—Dylib that cannot be linked, only dlopen(), e.g. plug-ins

Image—An executable, dylib, or bundle
Framework—Dylib with directory for resources and headers

Mach-O Image File

File divided into segments
• Uppercase names

__TEXT

__DATA

__LINKEDIT

Mach-O Image File

File divided into segments
• Uppercase names

All segments are multiples of page size
• 16KB on arm64
• 4KB elsewhere

__TEXT

__DATA

__LINKEDIT

Mach-O Image File

File divided into segments
• Uppercase names

All segments are multiples of page size
• 16KB on arm64
• 4KB elsewhere

__TEXT

__DATA

__LINKEDIT

Mach-O Image File

Sections are a subrange of a segment
• Lowercase names

__TEXT

__DATA

__LINKEDIT

__cstring

__text

__stubs __const

__data

__const

Mach-O Image File

Sections are a subrange of a segment
• Lowercase names

__TEXT

__DATA

__LINKEDIT

Mach-O Image File

Sections are a subrange of a segment
• Lowercase names

Common segments:
__TEXT

__DATA

__LINKEDIT

Mach-O Image File

Sections are a subrange of a segment
• Lowercase names

Common segments:
• __TEXT has header, code, and  

read-only constants

__TEXT

__DATA

__LINKEDIT

Mach-O Image File

Sections are a subrange of a segment
• Lowercase names

Common segments:
• __TEXT has header, code, and  

read-only constants
• __DATA has all read-write content:  

globals, static variables, etc

__TEXT

__DATA

__LINKEDIT

Mach-O Image File

Sections are a subrange of a segment
• Lowercase names

Common segments:
• __TEXT has header, code, and  

read-only constants
• __DATA has all read-write content:  

globals, static variables, etc
• __LINKEDIT has "meta data” about  

how to load the program

__TEXT

__DATA

__LINKEDIT

Mach-O Universal Files

__TEXT

__DATA

__LINKEDIT

arm64

Mach-O Universal Files

__TEXT

__DATA

__LINKEDIT

arm64
__TEXT

__DATA

__LINKEDIT

armv7s

Mach-O Universal Files

Fat Header
• One page in size
• Lists architectures and offsets

Tools and runtimes support fat mach-o files

__TEXT

__DATA

__LINKEDIT

arm64

__TEXT

__DATA

__LINKEDIT

armv7s

Fat Header

Virtual Memory
Virtual Memory is a level of indirection

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages

- mmap()

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages

- mmap()

- lazy reading

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages

- mmap()

- lazy reading
• Copy-On-Write (COW)

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages

- mmap()

- lazy reading
• Copy-On-Write (COW)
• Dirty vs. clean pages

Virtual Memory
Virtual Memory is a level of indirection
Maps per-process addresses to physical RAM (page granularity)
Features:
• Page fault
• Same RAM page appears in multiple processes
• File backed pages

- mmap()

- lazy reading
• Copy-On-Write (COW)
• Dirty vs. clean pages
• Permissions: rwx

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

RAM 3

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

RAM 3

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

Address Space

Process 2

RAM 3

ZeroFill

ZeroFill

ZeroFill

RAM 1

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

Address Space

Process 2

RAM 3

ZeroFill

ZeroFill

ZeroFill

RAM 2

RAM 1

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

Address Space

Process 2

RAM 3

ZeroFill

ZeroFill

ZeroFill

RAM 2

RAM 1

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

Address Space

Process 2

RAM 3 RAM 4

ZeroFill

ZeroFill

ZeroFill

RAM 2

RAM 1

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

RAM 2

Address Space

Process 2

RAM 3 RAM 4

ZeroFill

ZeroFill

ZeroFill

RAM 1

__LINKEDIT (r—)

Mach-O Image Loading

__DATA (rw-)

Mach-O Dylib

Address Space

Process 1

ZeroFill

ZeroFill

ZeroFill

__TEXT (r-x)

RAM 1

Address Space

Process 2

RAM 3 RAM 4

ZeroFill

ZeroFill

ZeroFill

Security

ASLR
• Address Space Layout Randomization
• Images load at random address

Security

ASLR
• Address Space Layout Randomization
• Images load at random address

Code Signing
• Content of each page is hashed
• Hash is verified on page-in

exec() to main()

Your App

exec()

Kernel maps your application into  
new address space
Start of your app is random

0x000000

0x???000

PAGEZERO

Your App

exec()

Kernel maps your application into  
new address space
Start of your app is random
Low memory is marked inaccessible
• 4KB+ for 32-bit process
• 4GB+ for 64-bit processes
• Catches NULL pointer usage
• Catches pointer truncation errors

0x000000

0x???000

What About Dylibs?

PAGEZERO

Your App

0x000000

0x???000

0x???000

What About Dylibs?

Kernel loads helper program
• Dyld (dynamic loader)
• Executions starts in dyld

PAGEZERO

Your App

0x000000

Dyld

0x???000

0x???000

What About Dylibs?

Kernel loads helper program
• Dyld (dynamic loader)
• Executions starts in dyld

Dyld runs in-process
• Loads dependent dylibs
• Has same permissions as app

PAGEZERO

Your App

0x000000

Dyld

0x???000

0x???000

Load dylibs Rebase Bind ObjC Initializers

Dyld Steps

Load dylibs Rebase Bind ObjC Initializers

Load dylibs Rebase Bind ObjC Initializers

Dyld Steps

Map all dependent dylibs, recurse
Rebase all images
Bind all images
ObjC prepare images
Run initializers

Load dylibs Rebase Bind ObjC Initializers

Loading Dylibs

Parse list of dependent dylibs

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)

Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)

Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)

Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file
Validate mach-o

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)

Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file
Validate mach-o
Register code signature

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)

Loading Dylibs

Parse list of dependent dylibs
Find requested mach-o file
Open and read start of file
Validate mach-o
Register code signature
Call mmap() for each segment

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT (r—)

__DATA (rw-)

__TEXT (r-x)mmap(r-x)

mmap(rw-)

mmap(r--)

PAGEZERO

Your App

dyld
A.dylib
B.dylib

Recursive Loading

All your app's direct dependents are loaded

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib
D.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib
D.dylib
E.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib
D.dylib
E.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat
Apps typically load 100 to 400 dylibs!

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib
D.dylib
E.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat
Apps typically load 100 to 400 dylibs!
• Most are OS dylibs

Load dylibs Rebase Bind ObjC Initializers

0x000000

PAGEZERO

Your App

dyld
A.dylib
B.dylib
C.dylib
D.dylib
E.dylib

Recursive Loading

All your app's direct dependents are loaded
Plus any dylib's needed by those dylibs
Rinse and repeat
Apps typically load 100 to 400 dylibs!
• Most are OS dylibs
• We’ve optimized loading of OS dylibs

Load dylibs Rebase Bind ObjC Initializers

0x000000

Fix-ups

Code signing means instructions cannot be altered

Load dylibs Rebase Bind ObjC Initializers

Fix-ups

Code signing means instructions cannot be altered
Modern code-gen is dynamic PIC (Position Independent Code)

Load dylibs Rebase Bind ObjC Initializers

Fix-ups

Code signing means instructions cannot be altered
Modern code-gen is dynamic PIC (Position Independent Code)
• Code can run loaded at any address and is never altered

Load dylibs Rebase Bind ObjC Initializers

Fix-ups

Code signing means instructions cannot be altered
Modern code-gen is dynamic PIC (Position Independent Code)
• Code can run loaded at any address and is never altered
• Instead, all fix ups are in __DATA

Load dylibs Rebase Bind ObjC Initializers

__DATA

Rebasing and Binding

Rebasing: Adjusting pointers to within an image

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__TEXT

__DATA

Rebasing and Binding

Rebasing: Adjusting pointers to within an image
Binding: Setting pointers to outside image

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__TEXT

_malloc

_free

[~]> xcrun dyldinfo -rebase -bind -lazy_bind myapp.app/myapp
rebase information:
segment section address type
__DATA __const 0x10000C1A0 pointer
__DATA __const 0x10000C1C0 pointer
__DATA __const 0x10000C1E0 pointer
__DATA __const 0x10000C210 pointer
…
bind information:
segment section address type add dylib symbol
__DATA __objc_classrefs 0x10000D1E8 pointer 0 CoreFoundation _OBJC_CLASS_$_NSObject
__DATA __data 0x10000D4D0 pointer 0 CoreFoundation _OBJC_METACLASS_$_NSObject
__DATA __data 0x10000D558 pointer 0 CoreFoundation _OBJC_METACLASS_$_NSObject
__DATA __got 0x10000C018 pointer 0 libswiftCore __TMSS
…
lazy binding information:
segment section address index dylib symbol
__DATA __la_symbol_ptr 0x10000C0A8 0x0000 libSystem __Block_copy
__DATA __la_symbol_ptr 0x10000C0B0 0x0014 libSystem __Block_release
__DATA __la_symbol_ptr 0x10000C0B8 0x002B libSystem _memcpy
…

Rebasing

Rebasing is adding a "slide" value to each internal pointer

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address
Location of rebase locations is encoded in LINKEDIT

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address
Location of rebase locations is encoded in LINKEDIT
Pages-in and COW page

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

Rebasing

Rebasing is adding a "slide" value to each internal pointer
Slide = actual_address - preferred_address
Location of rebase locations is encoded in LINKEDIT
Pages-in and COW page
Rebasing is done in address order, so kernel starts prefetching

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

Binding

All references to something in another dylib are symbolic

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

_malloc

Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

_malloc

Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name
More computational than rebasing

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

_malloc

Binding

All references to something in another dylib are symbolic
Dyld needs to find symbol name
More computational than rebasing
Rarely page faults

Load dylibs Rebase Bind ObjC Initializers

__LINKEDIT

__DATA

__TEXT

_malloc

Notify ObjC Runtime

Most ObjC set up done via rebasing and binding

Load dylibs Rebase Bind ObjC Initializers

Notify ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered

Load dylibs Rebase Bind ObjC Initializers

Notify ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered
Non-fragile ivars offsets updated

Load dylibs Rebase Bind ObjC Initializers

Notify ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered
Non-fragile ivars offsets updated
Categories are inserted into method lists

Load dylibs Rebase Bind ObjC Initializers

Notify ObjC Runtime

Most ObjC set up done via rebasing and binding
All ObjC class definitions are registered
Non-fragile ivars offsets updated
Categories are inserted into method lists
Selectors are uniqued

Load dylibs Rebase Bind ObjC Initializers

Initializers

C++ generates initializer for statically allocated objects

Load dylibs Rebase Bind ObjC Initializers

Initializers

C++ generates initializer for statically allocated objects
ObjC +load methods

Load dylibs Rebase Bind ObjC Initializers

Initializers

C++ generates initializer for statically allocated objects
ObjC +load methods
Run "bottom up" so each initializer can call dylibs below it

Load dylibs Rebase Bind ObjC Initializers

Initializers

C++ generates initializer for statically allocated objects
ObjC +load methods
Run "bottom up" so each initializer can call dylibs below it
Lastly, Dyld calls main() in executable

Load dylibs Rebase Bind ObjC Initializers

Pre-main() Summary

Dyld is a helper program

Pre-main() Summary

Dyld is a helper program
• Loads all dependent dylibs

Pre-main() Summary

Dyld is a helper program
• Loads all dependent dylibs
• Fixes up all pointers in DATA pages

Pre-main() Summary

Dyld is a helper program
• Loads all dependent dylibs
• Fixes up all pointers in DATA pages
• Runs all initializers

Putting Theory into Practice

Louis Gerbarg

Overview
Improving Launch Times

How fast?

Overview
Improving Launch Times

How fast?
How to measure?

Overview
Improving Launch Times

How fast?
How to measure?
Why is launch slow?

Overview
Improving Launch Times

How fast?
How to measure?
Why is launch slow?
What can you do?

Spoiler

Do Less Stuff

Spoiler

Goals
Improving Launch Times

Launch faster than animation

Goals
Improving Launch Times

Launch faster than animation
• Duration varies on devices

Goals
Improving Launch Times

Launch faster than animation
• Duration varies on devices
• 400ms is a good target

Goals
Improving Launch Times

Launch faster than animation
• Duration varies on devices
• 400ms is a good target

Don’t ever take longer than 20 seconds

Goals
Improving Launch Times

Launch faster than animation
• Duration varies on devices
• 400ms is a good target

Don’t ever take longer than 20 seconds
• App will be killed

Goals
Improving Launch Times

Launch faster than animation
• Duration varies on devices
• 400ms is a good target

Don’t ever take longer than 20 seconds
• App will be killed

Test on the slowest supported device

Launch recap
Improving Launch Times

Launch recap
Improving Launch Times

Parse images
Map images
Rebase images
Bind images
Run image initializers
Call main()

Launch recap
Improving Launch Times

Parse images
Map images
Rebase images
Bind images
Run image initializers
Call main()
Call UIApplicationMain()

Launch recap
Improving Launch Times

Parse images
Map images
Rebase images
Bind images
Run image initializers
Call main()
Call UIApplicationMain()
Call applicationWillFinishLaunching

Warm vs. cold launch
Improving Launch Times

Warm launch

Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Cold launch

Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Cold launch
• App is not in kernel buffer cache

Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Cold launch
• App is not in kernel buffer cache

Warm and cold launch times will be different

Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Cold launch
• App is not in kernel buffer cache

Warm and cold launch times will be different
• Cold launch times are important

Warm vs. cold launch
Improving Launch Times

Warm launch
• App and data already in memory

Cold launch
• App is not in kernel buffer cache

Warm and cold launch times will be different
• Cold launch times are important
• Measure cold launch by rebooting

Measurements
Improving Launch Times

Measuring before main() is difficult

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes
- Significantly enhanced in new OSes

NEW

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

NEW

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

Debugger pauses every dylib load

NEW

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

Debugger pauses every dylib load
• Dyld subtracts out debugger time

NEW

Measurements
Improving Launch Times

Measuring before main() is difficult
Dyld has built in measurements
• DYLD_PRINT_STATISTICS environment variable

- Available on shipping OSes
- Significantly enhanced in new OSes
- Available in seed 2

Debugger pauses every dylib load
• Dyld subtracts out debugger time
• Console times less than wall clock

NEW

DYLD_PRINT_STATISTICS
Improving Launch Times

DYLD_PRINT_STATISTICS
Improving Launch Times

Total pre-main time: 10.6 seconds (100.0%)
 dylib loading time: 240.09 milliseconds (2.2%)
 rebase/binding time: 351.29 milliseconds (3.3%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (94.2%)

App Launch Time

Total pre-main time: 10.6 seconds (100.0%)
 dylib loading time: 240.09 milliseconds (2.2%)
 rebase/binding time: 351.29 milliseconds (3.3%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (94.2%)

App Launch Time

Total pre-main time: 10.6 seconds (100.0%)
 dylib loading time: 240.09 milliseconds (2.2%)
 rebase/binding time: 351.29 milliseconds (3.3%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (94.2%)

App Launch Time

Embedded dylibs are expensive

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

Embedded dylibs are expensive
Use fewer dylibs

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

Embedded dylibs are expensive
Use fewer dylibs
• Merge existing dylibs

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

Embedded dylibs are expensive
Use fewer dylibs
• Merge existing dylibs
• Use static archives

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

Embedded dylibs are expensive
Use fewer dylibs
• Merge existing dylibs
• Use static archives

Lazy load, but…

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

ertwert

Embedded dylibs are expensive
Use fewer dylibs
• Merge existing dylibs
• Use static archives

Lazy load, but…
• dlopen() can cause issues
• Actually more work overall

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

ertwert

Embedded dylibs are expensive
Use fewer dylibs
• Merge existing dylibs
• Use static archives

Lazy load, but…
• dlopen() can cause issues
• Actually more work overall

Dylib Loading

App Launch Time

 dylib loading time: 240.09 milliseconds (2.2%)

ertwert

Embedded dylibs are expensive
Use fewer dylibs
• Merge existing dylibs
• Use static archives

Lazy load, but…
• dlopen() can cause issues
• Actually more work overall

Dylib Loading

App Launch Time

 dylib loading time: 21.75 milliseconds (0.2%)

Total pre-main time: 10.4 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (0.2%)
 rebase/binding time: 351.29 milliseconds (3.3%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (96.1%)

App Launch Time

Total pre-main time: 10.4 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (0.2%)
 rebase/binding time: 351.29 milliseconds (3.3%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (96.1%)

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Total pre-main time: 10.4 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (0.2%)
 rebase/binding time: 351.29 milliseconds (3.3%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (96.1%)

 rebase/binding time: 351.29 milliseconds (3.3%)

App Launch Time

Rebase/Binding

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

Reduce C++ virtual

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

Reduce C++ virtual
Use Swift structs

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

Reduce C++ virtual
Use Swift structs
Examine machine generated code
• Use offsets instead of pointers
• Mark read only

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

Reduce C++ virtual
Use Swift structs
Examine machine generated code
• Use offsets instead of pointers
• Mark read only

App Launch Time

 rebase/binding time: 351.29 milliseconds (3.3%)

Rebase/Binding

Reduce __DATA pointers
Reduce Objective C metadata
• Classes, selectors, and categories

Reduce C++ virtual
Use Swift structs
Examine machine generated code
• Use offsets instead of pointers
• Mark read only

App Launch Time

 rebase/binding time: 19.33 milliseconds (0.2%)

Total pre-main time: 10.1 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (0.2%)
 rebase/binding time: 19.33 milliseconds (0.2%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (99.4%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (99.3%)

App Launch Time

Total pre-main time: 10.1 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (0.2%)
 rebase/binding time: 19.33 milliseconds (0.2%)
 ObjC setup time: 11.83 milliseconds (0.1%)
 initializer time: 10 seconds (99.4%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (99.3%)

 ObjC setup time: 11.83 milliseconds (0.1%)

App Launch Time

Total pre-main time: 10.1 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (0.2%)
 rebase/binding time: 19.33 milliseconds (0.2%)

 initializer time: 10 seconds (99.4%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (99.3%)

App Launch Time

 ObjC setup time: 11.83 milliseconds (0.1%)

 ObjC setup time: 11.83 milliseconds (0.1%)

ObjC Setup

Class registration

App Launch Time

 ObjC setup time: 11.83 milliseconds (0.1%)

ObjC Setup

Class registration
Non-fragile ivars offsets updated

App Launch Time

 ObjC setup time: 11.83 milliseconds (0.1%)

ObjC Setup

Class registration
Non-fragile ivars offsets updated
Category registration

App Launch Time

 ObjC setup time: 11.83 milliseconds (0.1%)

ObjC Setup

Class registration
Non-fragile ivars offsets updated
Category registration
Selector uniquing

App Launch Time

 ObjC setup time: 4.60 milliseconds (0.1%)

ObjC Setup

Class registration
Non-fragile ivars offsets updated
Category registration
Selector uniquing

App Launch Time

Total pre-main time: 10.6 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (2.2%)
 rebase/binding time: 19.33 milliseconds (3.3%)

 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (99.3%)

 ObjC setup time: 4.60 milliseconds (0.1%)

App Launch Time

Total pre-main time: 10.6 seconds (100.0%)
 dylib loading time: 21.75 milliseconds (2.2%)
 rebase/binding time: 19.33 milliseconds (3.3%)

 initializer time: 10 seconds (94.3%)

 slowest intializers :
 MyAwesomeApp : 10.0 seconds (99.3%)

 ObjC setup time: 4.60 milliseconds (0.1%)
 initializer time: 10 seconds (99.4%)

App Launch Time

Explicit
Initializers

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

Explicit
Initializers

ObjC +load methods

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

sdfgsdfg

Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

sdfgsdfg

Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

C/C++ __attribute__((constructor))

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

sdfgsdfg

Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

C/C++ __attribute__((constructor))
Replace with call site initializers

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

sdfgsdfg

dsfgsdfgsed

Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

C/C++ __attribute__((constructor))
Replace with call site initializers
• dispatch_once()

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

sdfgsdfg

dsfgsdfgsed

3452342

Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

C/C++ __attribute__((constructor))
Replace with call site initializers
• dispatch_once()
• pthread_once()

App Launch Time

 initializer time: 10 seconds (99.4%)

sdfgsd

sdfgsdfg

dsfgsdfgsed

3452342

345rwefsdfsd

Explicit
Initializers

ObjC +load methods
• Replace with +initiailize

C/C++ __attribute__((constructor))
Replace with call site initializers
• dispatch_once()
• pthread_once()
• std::once()

App Launch Time

 initializer time: 10 seconds (99.4%)

SDFASDFASDF

Implicit
Initializers

App Launch Time

 initializer time: 10 seconds (99.4%)

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors

App Launch Time

 initializer time: 10 seconds (99.4%)

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers

App Launch Time

 initializer time: 10 seconds (99.4%)

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)

App Launch Time

 initializer time: 10 seconds (99.4%)

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors

App Launch Time

 initializer time: 10 seconds (99.4%)

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors
• Rewrite in Swift

App Launch Time

 initializer time: 10 seconds (99.4%)

168121ASDF

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors
• Rewrite in Swift

Do not call dlopen() in initializers

App Launch Time

 initializer time: 10 seconds (99.4%)

168121ASDF

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors
• Rewrite in Swift

Do not call dlopen() in initializers
Do not create threads in initializers

App Launch Time

 initializer time: 10 seconds (99.4%)

168121ASDF

ASEFWE23

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors
• Rewrite in Swift

Do not call dlopen() in initializers
Do not create threads in initializers

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

struct Pause {

 Pause(uint32_t i) {

 sleep(i);

 }

};

Pause onLaunch(10);

App Launch Time

 initializer time: 10 seconds (99.4%)

168121ASDF

ASEFWE23

SDFASDFASDF

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors
• Rewrite in Swift

Do not call dlopen() in initializers
Do not create threads in initializers

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

struct Pause {

 Pause(uint32_t i) {

 sleep(i);

 }

};

//Pause onLaunch(10);

App Launch Time

 initializer time: 3.96 milliseconds (7.9%)

168121ASDF

ASEFWE23

Implicit
Initializers

C++ statics with non-trivial constructors
• Replace with call site initializers
• Only set simple values (PODs)
• -Wglobal-constructors
• Rewrite in Swift

Do not call dlopen() in initializers
Do not create threads in initializers

App Launch Time

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

struct Pause {

 Pause(uint32_t i) {

 sleep(i);

 }

};

//Pause onLaunch(10);

 initializer time: 3.96 milliseconds (7.9%)

App Launch Time

Total pre-main time: 49.83 milliseconds (100.0%)

 initializer time: 3.96 milliseconds (7.9%)

 dylib loading time: 21.75 milliseconds (43.6%)
 rebase/binding time: 19.33 milliseconds (38.7%)

 slowest intializers :
 libSystem.B.dylib : 2.80 milliseconds (5.6%)

 ObjC setup time: 4.60 milliseconds (9.2%)

App Launch Time

Total pre-main time: 49.83 milliseconds (100.0%)

 initializer time: 3.96 milliseconds (7.9%)

 dylib loading time: 21.75 milliseconds (43.6%)
 rebase/binding time: 19.33 milliseconds (38.7%)

 slowest intializers :
 libSystem.B.dylib : 2.80 milliseconds (5.6%)

 ObjC setup time: 4.60 milliseconds (9.2%)

 dylib loading time: 21.75 milliseconds (43.6%)
 rebase/binding time: 19.33 milliseconds (38.7%)

 slowest intializers :
 libSystem.B.dylib : 2.80 milliseconds (5.6%)

 ObjC setup time: 4.60 milliseconds (9.2%)

Total pre-main time: 49.83 milliseconds (100.0%)

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs
• Consolidating Objective-C classes

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs
• Consolidating Objective-C classes
• Eliminating static initializers

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs
• Consolidating Objective-C classes
• Eliminating static initializers

Use more Swift

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs
• Consolidating Objective-C classes
• Eliminating static initializers

Use more Swift
dlopen() is discouraged

TL;DR

Measure launch times with DYLD_PRINT_STATISTICS
Reduce launch times by
• Embedding fewer dylibs
• Consolidating Objective-C classes
• Eliminating static initializers

Use more Swift
dlopen() is discouraged
• Subtle performance and deadlock issues

More Information

https://developer.apple.com/wwdc16/406

https://developer.apple.com/wwdc16/102

Related Sessions

Optimizing I/O for Performance and Battery Life Nob Hill Friday 11:00AM

Using Time Profiler in Instruments Nob Hill Friday 3:00PM

iOS App Performance Responsiveness WWDC 2012

Labs

Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 12:00PM

Compiler, Objective-C, and C++ Lab Developer Tools Lab B Wednesday 1:30PM

Compiler, Optimizing App Startup Time Lab Developer Tools Lab B Thursday 1:30PM

