#FWWDC16

Developer Tools

—)

Introducing Swift Playgrounds

Fxploring with Swift on iPad
Session 408

Matt Patenaude Playgrounds Engineer
Maxwell Swadling Playgrounds Engineer
Jonathan Penn Playgrounds Engineer
lzzy Fraimow Playgrounds Engineer

© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

9:41 AM

WL
2N

- g
Phetq,s;.,i‘ \{‘_.;

;{’.‘.

(o
L&
. Playgrounds

o, |

9:41 AM

WL
2N

- g
Phetq,s;.,i‘ \{‘_.;

;{’.‘.

(o
L&
. Playgrounds

o, |

9:41 AM

Featured

LEARN TO CODE 1 LEARN TO CODE 2

Challenges

Running Maze Drawing Sounds Lunar Voyager

9:41 AM

Featured

LEARN TO CODE 1 LEARN TO CODE 2

Challenges

Running Maze Drawing Sounds Lunar Voyager

Issuing Commands

Goal: Use Swift commands to tell Byte to move and
collect a gem.

Your character, Byte, loves to collect gems but can't do it
alone. In this first puzzle, you'll need to write Swift

; to move Byte across the puzzle world to
collect a gem.

1 Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

©

3 Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

collectGem() moveForward()

Issuing Commands

Goal: Use Swift commands to tell Byte to move and
collect a gem.

Your character, Byte, loves to collect gems but can't do it
alone. In this first puzzle, you'll need to write Swift

; to move Byte across the puzzle world to
collect a gem.

1 Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

©

3 Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

collectGem() moveForward()

Touch

// create a circle and make 1t

draggable.
let circle = Circle(radius: 7.90)
circle.color = Color.[g

circle.draggable = true

// when the circle 1s touched, make
darker and give 1t a shadow.
circle.onTouchDown {
circle.color =
circle.color.darker()

circle.dropShadow = Shadow()

// when the touch ends on the circle,
change 1ts color to a random color.
circle.onTouchUp A

circle.color = Color.random()

circle.dropShadow = nil

2 LG black blue clear darker(self: Color) gray green init(colorLiteralRed: Float, green: F (&) J A

Touch

// create a circle and make 1t

draggable.
let circle = Circle(radius: 7.90)
circle.color = Color.[g

circle.draggable = true

// when the circle 1s touched, make
darker and give 1t a shadow.
circle.onTouchDown {
circle.color =
circle.color.darker()

circle.dropShadow = Shadow()

// when the touch ends on the circle,
change 1ts color to a random color.
circle.onTouchUp A

circle.color = Color.random()

circle.dropShadow = nil

2 LG black blue clear darker(self: Color) gray green init(colorLiteralRed: Float, green: F (&) J A

Drawing Spirals

Spirals

This playground draws a type of animated spiral called a

The initializer for the Spiral class takes several
parameters that determine the shape and size of the
hypotrochoid:

« R = the first circle's radius (usually the larger
circle)

e radius = the second circle's radius

« d = distance from center of second circle, where
to place the pen

e scale =zoom factor

Try changing each of these values to see what happens

= Spiral(R:
radius:
s ¥

c.circleColor

c.lineColor

There are many options you can set to modify how the

Drawing Spirals

Spirals

This playground draws a type of animated spiral called a

The initializer for the Spiral class takes several
parameters that determine the shape and size of the
hypotrochoid:

« R = the first circle's radius (usually the larger
circle)

e radius = the second circle's radius

« d = distance from center of second circle, where
to place the pen

e scale =zoom factor

Try changing each of these values to see what happens

= Spiral(R:
radius:
s ¥

c.circleColor

c.lineColor

There are many options you can set to modify how the

Using Swift Playgrounds

Using Swift Playgrounds
Authoring for Swift Playgrounds

Using Swift Playgrounds
Authoring for Swift Playgrounds

Growing and Exploring

Using Swift Playgrounds

Maxwell Swadling
Playgrounds Engineer

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

nands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

|

collectGem() moveForward()

R ¢ Issuing Commands > -+

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
gem.

Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

| Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

P Run My Code

collectGem() moveForward()

oo = ¢ Issuing Commands > ..

Your character, Byte, loves to collect gems, but can't do

Playg rou nd it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
Markup gem.

| Look for the gem in the puzzle world.

>\ Enter the correct combination of the
—/ moveForward() and collectGem() commands.

| Tap Run My Code.

S moveForward()
moveForward()
moveForward()

collectGem()

P> Run My Code

collectGem() moveForward()

{ Issuing Commands -

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

collectGem()

moveForward()

N\ o,

P> Run My Code

4
" _,
o~ 4
r i 4

y

)

Source Code

{ Issuing Commands -

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

collectGem()

moveForward()

N\ o,

P> Run My Code

4
" _,
o~ 4
r i 4

y

)

< lIssuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

% P> Run My Code Hint

collectGem() moveForward() <] <_J 7\

< lIssuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

3 moveForward ()
moveForward ()
moveForward ()

collectGem()

% P> Run My Code Hint

Code
Completion

collectGem() moveForward() <] <_J 7\

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem()

moveForward()

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

o moveForward ()
moveForward ()
moveForward ()

collectGem()

U ndO/RedO collectGem() moveForward()

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem()

moveForward()

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem()

moveForward()

Shortcuts

{ Issuing Commands —+

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

collectGem() moveForward()

{ Issuing Commands —+

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward() | : |_IV€ VleW

moveForward()
moveForward()

collectGem()

collectGem() moveForward()

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem()

moveForward()

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem()

moveForward()

&3

I

-

7\

Run Button

:— < Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
nmands to move Byte across the world and collect the

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

|

collectGem()

moveForward()

DOCU ments > — ¢ lssuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

o moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem() moveForward()

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
nmands to move Byte across the world and collect the

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

|

collectGem()

moveForward()

Table of |
Contents

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

o moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem() moveForward()

= Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
nmands to move Byte across the world and collect the

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

|

collectGem()

moveForward()

Page
Navigation

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

o moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem() moveForward()

:— < Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
nmands to move Byte across the world and collect the

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

|

collectGem()

moveForward()

L b 'a ry : —_— e

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

o moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem() moveForward()

:— < Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
nmands to move Byte across the world and collect the

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

|

collectGem()

moveForward()

TOOlS Menu : — e

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

o moveForward ()
moveForward ()
moveForward ()

collectGem()

collectGem() moveForward()

Issuing Commands

Your character, Byte, lov
it alone. In this first pt

nmands to move Byte
gem.

@ Look for the gem in

@ Enter the corr
moveForward() at

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

switch

collectGem()

moveForward()

{ lIssuing Commands > —+

Your character, Byte, lov
it alone. In this first pt
commands to move Byte
gem.

@ Look for the gem in

Enter the corr
moveForward() al

@ Tap Run My Code.

moveForward() ‘f; ._ 5 \\\"‘{ ﬂ\‘)
moveForward()
moveForward()

collectGem()

switch

P> Run My Code

collectGem() moveForward()

Snippets

< Issuing Com

Your character, Byte, lov
it alone. In this first pt
commands to move Byte
gem.

@ Look for the gem in

Enter the corr
moveForward() al

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

switch

P> Run My Code

collectGem() moveForward()

{ lIssuing Commands > —+

Your character, Byte, lov
it alone. In this first pt
commands to move Byte
gem.

@ Look for the gem in

Enter the corr
moveForward() al

@ Tap Run My Code.

moveForward() ‘f; ._ 5 \\\"‘{ ﬂ\‘)
moveForward()
moveForward()

collectGem()

switch

P> Run My Code

collectGem() moveForward()

Images

< Issuing Commar

Your character, Byte, lov
it alone. In this first pt
commands to move Byte
gem.

@ Look for the gem in

Enter the corr
moveForward() al

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

switch

P> Run My Code

collectGem() moveForward()

{ lIssuing Commands > —+

Your character, Byte, lov
it alone. In this first pt
commands to move Byte
gem.

@ Look for the gem in

Enter the corr
moveForward() al

@ Tap Run My Code.

moveForward() ‘f; ._ 5 \\\"‘{ ﬂ\‘)
moveForward()
moveForward()

collectGem()

switch

P> Run My Code

collectGem() moveForward()

Files

—_—

S < Issuing Commands

Your character, Byte, lov
it alone. In this first pt
commands to move Byte
gem.

@ Look for the gem in

Enter the corr
moveForward() al

@ Tap Run My Code.

2 moveForward()
moveForward()
moveForward()

collectGem()

P> Run My Code

switch \ \

collectGem() moveForward()

Issuing Commands

Your character, Byte, loves to colle
it alone. In this first puzzle, you
ommands to move Byte across the
gem.

@ Look for the gem in the puzzle

@ Enter the correct con
moveForward() and collec

@ Tap Run My Code.

moveForward ()
moveForward ()
moveForward ()

collectGem()

Help

Glossary of Terms
Record Movie
Take Picture

Reset Page...

collectGem()

moveForward()

{ Issuing Commands >

Your character, Byte, loves to colle
it alone. In this first puzzle, you
commands to move Byte across the
gem.

@ Look for the gem in the puzzle

@ Enter the correct con
moveForward() and collec

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

I

Help

Glossary of Terms
Record Movie
Take Picture

Reset Page...

collectGem()

moveForward()

P Run My Code

Demo
Using Swift Playgrounds

Authoring for Swift Playgrounds

Jonathan Penn
Playgrounds Engineer

PLAYGROUND

PLAYGROUND

A
Z
D,
O
ad
G
<C
—
an

Chapters / Pages

Chapters / Pages

Chapter: Commands

Chapter: Functions

Issuing Commands

Learn to Code

Commands

Introduction

Adding a New Command
Using the Right Command
Portal Practice

Finding and Fixing Bugs
Bug Squash Practice

The Shortest Route

Functions

Introduction

Composing a New Behavior
Creating a New Function
Collect, Toggle, Repeat

Across the Board

yems, but can't do
ed to write Swift
rld and collect the

rid.

nation of the
em() commands.

Cutscenes

You'll start by writing commands to
move a character named Byte around a
puzzle world, performing tasks.

moveForward()

Cutscenes

You'll start by writing commands to
move a character named Byte around a
puzzle world, performing tasks.

moveForward()

Glossary

Finding and Fixing Bugs

Goal: Find the bugs and fix them.

When you write code, it's easy to make mistakes. A

mistake that keeps your program from running correctly
is called a bug, and finding and fixing bugs is called

The code below contains one or more bugs. To debug it,
rearrange the commands into the right order to solve the
puzzle.

Run the code to see where the mistake occurs.

Identify the command that's in the wrong place,
then tap it to select it.

Drag the command to the correct location, then run
the code again to test it.

moveForward()
turnLeft ()

moveForward()
moveForward()
collectGem()
moveForward()

toggleSwitch()

Glossary

Finding and Fixing Bugs

Goal: Find the bugs and fix them.

When you write code bug
mistake that keeps yo
is called a bug, anc

An error in code that prevents a program from

debuqgging.
gging running as expected.

The code below conta.. _
rearrange the commands into the right order to solve the
puzzle.

@ Run the code to see where the mistake occurs.

@ Identify the command that's in the wrong place,
then tap it to select it.

@ Drag the command to the correct location, then run
the code again to test it.

moveForward()
turnLeft()
moveForward()
moveForward()
collectGem()
moveForward()

toggleSwitch()
P> Run My Code
.

Glossary

Goal:

When

mistake
is calle
debugy

The co
rearran
puzzle.

@ Rt
@

Dt
th

moveFi
turnli
moveF
moveFt
colle:
moveFt

toggle

< Finding and Fixing Bugs >

algorithm

argument

arithmetic operator

assignment

assignment operator

Glossary

A step-by-step set of instructions or rules for solving a
problem. For example, a list of steps used to make a cup of
tea can be considered an algorithm.

An input value passed into a function to customize its
behavior. For example, in the function call move(3), 3 is an
argument that specifies how many spaces to move.

A symbol, such as +, -, * or /, that performs a basic
mathematical operation on one or more numbers. For
example, 42 /7 and 17 - 5 use arithmetic operators.

An action that sets the value of a variable or constant.

The = symbol used to set the value of a variable. For
example, greeting = “hello” sets the value of greeting to
"hello”,

A type that has a value of either true or false. For example, 9
< 7 returns a Boolean value of false.

An error in code that prevents a program from running as
expected.

To tell a program to run a function. For example, calling the
moveForward() function in your code tells the program to
perform the actions defined in that function.

The act of composing commands, code structures, and
algorithms to create a computer program.

P> Run My Code

Fditable Regions

— { Collect, Toggle, Repeat

\ /

Challenge: Define a function for a repeating pattern.
In this challenge, there are several gems for Byte to collect, and each gem is followed by a switch.

Instead of repeating the same pattern of commands you used in previous puzzles, you can write a new function that includes
existing commands to handle each gem-and-switch pair.

You can name your function anything you like in this challenge. After you've named and defined your function, call it by entering
its name, just like all the other functions you've been using.

P> Run My Code Hint

Fditable Regions

{ Collect, Toggle, Repeat >

Challenge: Define a function for a repeating pattern.

func /x#—editable-codex/ <#funcName#> /*x#-end-editable-codex/()
//#—-editable-code Add commands to your function

//#—-end—-editable-code

I3
//#-editable-code Tap to enter code

//#—-end—-editable-code

t P> Run My Code Hint

‘\ y
> 4

————ee——

Hidden Code

— { Collect, Toggle, Repeat

\ /

Challenge: Define a function for a repeating pattern.
In this challenge, there are several gems for Byte to collect, and each gem is followed by a switch.

Instead of repeating the same pattern of commands you used in previous puzzles, you can write a new function that includes
existing commands to handle each gem-and-switch pair.

You can name your function anything you like in this challenge. After you've named and defined your function, call it by entering
its name, just like all the other functions you've been using.

P> Run My Code Hint

idden Code

= { Collect, Toggle, Repeat

Challenge: Define a function for a repeating pattern.
In this challenge, there are several gems for Byte to collect, and each gem is followed by a switch.

Instead of repeating the same pattern of ¢

existing commands to handle each gem-an

You can name your function anything you li .
its name, just like all the other functions yo / /#_ h ld d e n = C O d e

//#—end-hidden-code

Hint

Configurable Code Completion

Treasure Hunt

NI ML M IMAIINSIIMJ Ny M AMAL N Ry 1IIANANIIN] M M IMAN ANl a s

commands and declare a function that calls them. Use
that function to start solving parts of the puzzle.

As you find more complex parts of the puzzle, define a
new function that reuses what's in your first function.
Then call your second function to solve those parts of

the puzzle.

return

Configurable Code Completion

{ Treasure Hunt » —+

TN TN L WIS I Iy W AMAL N Moy I INAII M) M MM ANl 1

commands and declare a function that calls them. Use
that function to start solving parts of the puzzle.

As you find more complex parts of the puzzle, define a
new function that reuses what's in your first function.
Then call your second function to solve those parts of

the puzzle.

//#-code-completion(everything, hide)

//#-code-completion(currentmodule, show)

//#-code-completion(identifier, show, moveForward(), turnLeft())

"Always-On” Live View

Issuing Commands

Your character, Byte, loves to collect gems, but can't do

it alone. In this first puzzle, you need to write Swift
to move Byte across the world and collect the
gem.

Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem commands.

) Tap Run My Code.

"Always-On” Live View

Issuing Commands

Your character, Byte, loves to collect gems, but can't do

it alone. In this first puzzle, you need to write Swift
to move Byte across the world and collect the
gem.

Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem commands.

) Tap Run My Code.

HINTS

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
gem.

Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectC commands.

3) Tap Run My Code.

HINTS

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the

gem.

@ Look for the gem in the puzzle world.

Enter the correct combination of the
%, moveForward() and collectGem() commands.

@ Tap Run My Code.

lap to enter code

You need to enter some commands. First tap
the area that says "Tap to enter code" then use
moveForward() and collectGem() to solve

the puzzle.

Assessment

— < Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

ds to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

@ Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

Congratulations!
You've written your first lines of Swift code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Assessment

{ lIssuing Commands > -+

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift
commands to move Byte across the world and collect the
gem.

@ Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

@ Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

You've written your first lines of code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Assessment

Issuing Commands

Learn to Code

Commands

Introduction

Adding a New Command
Using the Right Command
Portal Practice

Finding and Fixing Bugs
Bug Squash Practice

The Shortest Route

Functions

Introduction

Composing a New Behavior
Creating a New Function
Collect, Toggle, Repeat

Across the Board

yems, but can't do
ed to write Swift
rld and collect the

rid.

nation of the
em() commands.

Congratulations!

You've written your first lines of Swift code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Assessment

Learn to Code

Commands

Introduction

Adding a New Command
Using the Right Command
Portal Practice

Finding and Fixing Bugs
Bug Squash Practice

The Shortest Route

Functions

Introduction

Composing a New Behavior

Creating a New Function

Collect, Toggle, Repeat

Across the Board

|.

;an't do
e Swift
lect the

Congratulations!
You've written your first lines of Swift code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Next Page

// Key/Value Store

import PlaygroundSupport

let store PlaygroundPage.current.keyValueStore

store["Greeting"] = .string("Hello, WwDC!")

if case let .string(greeting)? = store["Greeting"] {

print(greeting) // "Hello, WwDC!'™

Resettable

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
gem.

1) Look for the gem in the puzzle world.

>\ Enter the correct combination of the
moveForward() and collectGer commands.

) Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

Congratulations!
You've written your first lines of ' code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Resettable

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
gem.

1) Look for the gem in the puzzle world.

>\ Enter the correct combination of the
moveForward() and collectGer commands.

) Tap Run My Code.

moveForward()
moveForward()
moveForward()

collectGem()

Congratulations!
You've written your first lines of ' code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Resettable

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
gem.

(* Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

‘ Tap Run My Code.

Reset Page

Resetting this page will remove all
moveForward() changes that you've made.

moveForward()
moveForward()

collectGem()

Congratulations!
You've written your first lines of Swift code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Resettable

Issuing Commands

Your character, Byte, loves to collect gems, but can't do
it alone. In this first puzzle, you need to write Swift

to move Byte across the world and collect the
gem.

(* Look for the gem in the puzzle world.

Enter the correct combination of the
moveForward() and collectGem() commands.

‘ Tap Run My Code.

Reset Page

Resetting this page will remove all
moveForward() changes that you've made.

moveForward()
moveForward()

collectGem()

Congratulations!
You've written your first lines of Swift code.

Byte performed the commands you wrote and
did exactly what you asked, in exactly the order
that you specified.

Resettable

9:41 AM

Playgrounds

Learn to Code

100% (-

Resettable

9:41 AM

Playgrounds

Learn to Code

100% (-

Documented

apple.com

Guides and Sample Code & Developer

Swift Playgrounds Document Format

On This Page

Playground Book
Package Format Playground Book Package Format

Playground Book Package
Format

This documentation contains preliminary information about an API or technology in development. This information is
Revision History subject to change, and software implemented according to this documentation should be tested with final operating
system software.

With the Swift Playgrounds book format, you can create a document including features such as enhanced
playground pages, live views containing iOS view controllers or views, and animated cutscenes. Figure 1-1
shows a screenshot from Learn to Code, a Swift Playgrounds book.

Figure 1-1 Learn to Code

Issuing Commands

Goal: Use Swift commands to tell Byte to move and
collect a gem.

Your character, Byte, loves to collect gems but can't do it
alone. In this first puzzle, you'll need to write Swift
commands to move Byte across the puzzle world to
collect a gem.

l’,l\) Look for the gem in the puzzle world.

('rz\“} Enter the correct combination of the

Introduction >

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

Demo
Authoring for Swift Playgrounds

Introduction

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run

My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

MyFirst.playgroundbook

----------------~

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» Bl HowDoesltWork.playgroundpage

v BB Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents

BB Sources

B Resources

v B Chapters

v Bl Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter
v B Pages
v B Introduction.playgroundpage
Manifest.plist

N Contents.swift
LiveView.swift
» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

Page Manifest

Key Type Value

¥ Root Dictionary
Name String Introduction
LiveViewMode String VisibleByDefault
PosterReference String LiveViewPoster.png
LiveViewEdgeToEdge Boolean YES

PlaygroundLoggingMode String Off

Introduction

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the

joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

Name ="“Introduction”

Introduction

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the

joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

Introduction > +

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (. ..) function works.

say("Knock, knock! ")

Introduction > +

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (. ..) function works.

say("Knock, knock! ")

_J

LiveViewMode ="VisibleByDefault”

Introduction > +

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (. ..) function works.

say("Knock, knock! ")

Introduction > +

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (. ..) function works.

say("Knock, knock! ")

PosterReference ="LiveViewPoster.png”

~

Introduction

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the

joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

Introduction > -

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say(...) function works.

say ("[Knock, knock!|")

J

Introduction > -

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say(...) function works.

say ("[Knock, knock!|")

J

LiveViewEdgeToEdge = YES

Introduction > +

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (. ..) function works.

say ("[Knock, knock! |")

Introduction > +

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (. ..) function works.

say ("[Knock, knock! |")

LiveViewEdgeToEdge = NO

Introduction >

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

say ("/Knock, knock! [*)

Introduction >

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

say ("/Knock, knock! [*)

PlaygroundLoggingMode = “Oft”

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

Introduction >

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

say ("/Knock, knock! [*)

Contents.swift

Introduction >

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

say ("/Knock, knock! [*)

// Contents.swift

[k
Instructions about the page...
x/
//#-h1dden-code
import PlaygroundSupport
func say(_message: String) {
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A

proxy.send(.string(message))

s
//#-end-hi1idden-code

say (/x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

// Contents.swift

/*:
Instructions about the page...
x/
//#-h1dden-code
import PlaygroundSupport
func say(_message: String) {
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A

proxy.send(.string(message))

s
//#-end-hi1idden-code

say (/x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

// Contents.swift

[k
Instructions about the page...
x/
//#-h1dden-code
import PlaygroundSupport
func say(_ message: String) A
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A1

proxy.send(.string(message))

s
//#-end-hi1idden—-code

say (/x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

// Contents.swift

[k
Instructions about the page...
x/
//#-hidden-code
import PlaygroundSupport
func say(_message: String) {
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A

proxy.send(.string(message))

s
//#—-end-hidden-code

say (/x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

// Contents.swift

[k
Instructions about the page...
x/
//#-h1dden-code
import PlaygroundSupport
func say(_message: String) {
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A

proxy.send(.string(message))

s
//#-end-hi1idden-code

say(/x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

// Contents.swift

[k
Instructions about the page...
x/
//#-h1dden-code
import PlaygroundSupport
func say(_message: String) {
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A

proxy.send(.string(message))

s
//#-end-hi1idden-code

say (/*x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

// Contents.swift

[k
Instructions about the page...
x/
//#-h1dden-code
import PlaygroundSupport
func say(_message: String) {
let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A

proxy.send(.string(message))

s
//#-end-hi1idden-code

say (/x#—-editable-codex/"<#Knock, knock!#>"/x#-end-editable-codex/)

Introduction

Meet Em, a Swift program that loves knock, knock jokes.
Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the

joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v [Introduction.playgroundpage

Contents.swift

LiveView.swift

» [l HowDoesltWork.playgroundpage

// LiveView.swift

import PlaygroundSupport
let page = PlaygroundPage.current

page.liveView = FaceViewController()

// LiveView.swift

import PlaygroundSupport
let page = PlaygroundPage.current

page.liveView = FaceViewController()

// LiveView.swift

import PlaygroundSupport
let page = PlaygroundPage.current

page. liveView = FaceViewController()

// LiveView.swift

import PlaygroundSupport
let page = PlaygroundPage.current

page. liveView = FaceViewController()

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v B Introduction.playgroundpage

Contents.swift

LiveView.swift

» Bl HowDoesltWork.playgroundpage

I[N main process

I[N main process

Only active while running

import PlaygroundSupport
let page = PlaygroundPage.current

FaceViewController()

page. liveView

I[N main process

Only active while running

import PlaygroundSupport

let page = PlaygroundPage.current

page.liveView = FaceViewController()

[N main process

Only active while running

import PlaygroundSupport

let page = PlaygroundPage.current

page. liveView

FaceViewController()

import PlaygroundSupport import PlaygroundSupport

let page = PlaygroundPage.current let page = PlaygroundPage.current
page. liveView = FaceViewController() page. liveView = FaceViewController()
In Main process >eparate process

Only active while running

import PlaygroundSupport
let page = PlaygroundPage.current

FaceViewController()

page. liveView

[N main process

Only active while running

import PlaygroundSupport
let page = PlaygroundPage.current

FaceViewController()

page. liveView

Separate process

Running all the time

import PlaygroundSupport

Llet page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A
let message: PlaygroundValue = .string("Knock, knock!")

proxy.send(message)

import PlaygroundSupport

Llet page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A
let message: PlaygroundValue = .string("Knock, knock!")

proxy.send(message)

import PlaygroundSupport

Llet page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A
let message: PlaygroundValue = .string("Knock, knock!")

proxy.send(message)

import PlaygroundSupport

let page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A
let message: PlaygroundValue = .string("Knock, knock!")

proxy.send(message)

import PlaygroundSupport

Llet page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A
let message: PlaygroundValue = .string("Knock, knock!")

proxy.send(message)

import PlaygroundSupport

Llet page = PlaygroundPage.current
if let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy A
let message: PlaygroundValue = .string("Knock, knock!")

proxy.send(message)

Sending to the Live View Process

Sending to the Live View Process

- | -

Sending to the Live View Process

- | >-

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func receive(message: PlaygroundValue) {
if case let .string(text) = message {

processConversationLine(text)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func receive(message: PlaygroundValue) {
if case let .string(text) = message {

processConversationLine(text)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func receive(_ message: PlaygroundValue) A
if case let .string(text) = message {

processConversationLine(text)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func receive(message: PlaygroundValue) {
if case let .string(text) = message {

processConversationLine(text)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func receive(message: PlaygroundValue) {
if case let .string(text) = message {

processConversationLine(text)

Sending from the Live View Process

Sending from the Live View Process

I

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func tapped() {
let message: PlaygroundValue = .string("Hello!")

send (message)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func tapped() {
let message: PlaygroundValue = .string("Hello!")

send (message)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func tapped() {
let message: PlaygroundValue = .string("Hello!")

send(message)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func tapped() {
let message: PlaygroundValue = .string("Hello!")

send(message)

extension FaceViewController: PlaygroundLiveViewMessageHandler {

public func tapped() {
let message: PlaygroundValue = .string("Hello!")

send(message)

Sending from the Live View Process

Sending from the Live View Process

- | -

Sending from the Live View Process

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remoteLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}
let listener = MyClassThatListens()

proxy?.delegate = listener

let page = PlaygroundPage.current
page.needsIndefiniteExecution = true
let proxy = page.liveView as? PlaygroundRemotelLiveViewProxy
class MyClassThatListens: PlaygroundRemotelLiveViewProxyDelegate {
func remotelLiveViewProxy(remotelLiveViewProxy: PlaygroundRemotelLiveViewProxy,
received message: PlaygroundValue) {
if case let .string(text) = message {

doSomethingWithString(text)

}

let listener = MyClassThatListens()

proxy?.delegate = listener

Sending from the Live View Process

Sending from the Live View Process

- | -

Sending from the Live View Process

-4 | -

// Playground Values

public enum PlaygroundValue {
case array([PlaygroundValuel)
case dictionary([String: PlaygroundValuel)
case string(String)

case data(Data)

case date(Date)
case integer(Int)
case floatingPoint(Double)

case boolean(Bool)

// Key/Value Store

import PlaygroundSupport

let store PlaygroundPage.current.keyValueStore

store["Greeting"] = .string("Hello, WwDC!")

if case let .string(greeting)? = store["Greeting"] {

print(greeting) // "Hello, WwDC!'™

Contents.swift

Introduction

Meet Em, a Swift program that loves knock, knock jokes.

Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

Contents.swift

Introduction

Meet Em, a Swift program that loves knock, knock jokes.

Em is running in the separate Live View process and will
help us demonstrate the Always-on Live View.

Notice how Em's face is blinking, yet the code in the
editor isn't running?

This say(...) function sends a message to Em as a
line of conversation. We'll unpack how say(...) does
its magic in a moment.

Tap Run My Code to send the string "Knock, knock" over
to the Em in the live view.

You'll notice Em responds, "Who's there?". Continue the
joke by replacing "Knock, knock" with "Boo!" and tap Run
My Code again.

Em responds, "Boo! who?". Now, deliver the punchline,
"Are you crying?".

When you're ready, continue to the next page to see how
this say (.. .) function works.

LiveView.swift

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter

v B Pages
v B Introduction.playgroundpage

Contents.swift

LiveView.swift

> B HowDoesltWork.playgroundpage

v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter
v B Pages
v B Introduction.playgroundpage
Manifest.plist

Contents.swift

LiveView.swift

> Bl HowDoesltWork.playgroundpage

B Edits
v B Contents
BB Sources
B Resources
v B Chapters
v B Chapterl.playgroundchapter
v B Pages
v B Introduction.playgroundpage
Manifest.plist

Contents.swift

LiveView.swift

> Bl HowDoesltWork.playgroundpage

developer.apple.com

{ Create

// 1. Create a circle
let circle = Circle(radius: 3)

circle.center.y += 28

// 2. Create a rectangle
let rectangle = Rectangle(width:
height: 5, cornerRadius: 0.75)
rectangle.color = .purple

rectangle.center.y += 18

// 3. Create a line

let 1line = Line(start: Point(x: -10,
y: 9), end: Point(x: 10, y: 9),
thickness: 0.5)

line.center.y —= 2

line.rotation = 170 *x (3.14159/180)

line.color = .yellow

// 4. Create text

let text = Text(string: "Hello
world!", fontSize: 32.0, fontName:
"Futura", color: .red)

text.center.y —= 2

Hello world!

Demo

Growing and Exploring

lzzy Fraimow
Playgrounds Engineer

Swift Playgrounds

Summary

Swift Playgrounds

Summary

Touch-focused experience for experimenting with Swift

Swift Playgrounds

Summary

Touch-focused experience for experimenting with Swift

Rich new document format for creating engaging content

Swift Playgrounds

Summary

Touch-focused experience for experimenting with Swift
Rich new document format for creating engaging content

Powerful access to iOS SDK

Playgrounds

More Information

https://developer.apple.com/wwdc16/408

Related Sessions

Keynote Bill Graham Monday 10:00AM

Platforms State of the Union Bill Graham Monday 2:30PM

What's New in Swift Presidio Tuesday 9:00AM

| abs

Swift Open Hours

Swift Open Hours

Creating Content for Swift Playgrounds
Xcode Open Hours

Xcode Open Hours

Creating Content for Swift Playgrounds

Developer Tools
Lab A

Developer Tools
Lab A

Dev Tools
Lab C

Developer Tools
Labs B

Developer Tools
Labs C

Dev Tools
Lab C

Tuesday 12:00PM

Wednesday-Friday
9:00AM

Wednesday 12:00PM

Wednesday 3:00PM

Thursday 9:00AM

Friday 12:00PM

