
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Developer Tools #WWDC16

Session 410

Visual Debugging with Xcode

Chris Miles Xcode Debugger UI
Tyler Casella Game Technologies
Daniel Delwood Software Radiologist

Not too long ago…
Debugging

Later…
Debugging

Now…
Debugging

Overview

Runtime issues
View debugging
State machine Quick Looks
SpriteKit/SceneKit FPS gauge
Memory graph debugging

Runtime Issues

Runtime Issues

Runtime Issues NEW

Runtime Issues NEW

Runtime Issues NEW

Runtime Issues NEW

Runtime Issues NEW

Participating tools
Runtime Issues NEW

Participating tools
Runtime Issues NEW

Threads

Participating tools
Runtime Issues NEW

UI Threads

Participating tools
Runtime Issues NEW

MemoryUI Threads

Thread Sanitizer
Runtime Issues

Data races
Use of uninitialized mutexes
Unlock from wrong thread
Thread leaks
Unsafe calls in signal handlers

Thread Sanitizer and Static Analysis Nob Hill Thursday 10:00AM

NEW

View Debugging

View Debugging

View Debugging

View Debugging

View Debugging

View Debugging

View Debugging

Better than ever
View Debugging NEW

Up to 70% faster snapshots

Better than ever
View Debugging NEW

70%

Up to 70% faster snapshots
Layout and transform accuracy

Better than ever
View Debugging NEW

Up to 70% faster snapshots
Layout and transform accuracy
Blur rendering

Better than ever
View Debugging NEW

Up to 70% faster snapshots
Layout and transform accuracy
Blur rendering
Jump to class

Better than ever
View Debugging NEW

Up to 70% faster snapshots
Layout and transform accuracy
Blur rendering
Jump to class
Navigator filtering

Better than ever
View Debugging NEW

Up to 70% faster snapshots
Layout and transform accuracy
Blur rendering
Jump to class
Navigator filtering
Auto Layout debugging

Better than ever
View Debugging NEW

Ambiguous layout issues
View Debugging

Ambiguous layouts are reported as
runtime issues
• Highlighted in the activity viewer
• Listed in the issue navigator

NEW

Ambiguous layout issues
View Debugging

Ambiguous layout issues are badged in
the view hierarchy outline

NEW

Ambiguous layout issues
View Debugging

Ambiguous layout issues are explained
in the view’s size inspector

NEW

Ambiguous layout issues
View Debugging

Ambiguous layout issues are explained
in the view’s size inspector

NEW

Demo
Xcode view debugging

Recap

Runtime issues
View debugging enhancements
• Ambiguous layout issue reporting
• macOS, iOS, tvOS

State Machine Quick Look

Tyler Casella Game Technologies

Xcode 7
Quick Look

Images Geometry Colors

SpriteKit SceneKit Custom

Views

…and more!

Xcode 8
Quick Look

State Machine

NEW

Available via GameplayKit
• macOS, iOS, tvOS

GKStateMachine
State Machine Quick Look NEW

Crouch

Idle Run

Available via GameplayKit
• macOS, iOS, tvOS

Directed graph defining complex behavior

GKStateMachine
State Machine Quick Look NEW

Crouch

Idle Run

Available via GameplayKit
• macOS, iOS, tvOS

Directed graph defining complex behavior
Provide discrete behavior per-state

GKStateMachine
State Machine Quick Look NEW

Crouch

Idle Run

Available via GameplayKit
• macOS, iOS, tvOS

Directed graph defining complex behavior
Provide discrete behavior per-state
Define transitions between states

GKStateMachine
State Machine Quick Look NEW

Crouch

Idle Run

Available via GameplayKit
• macOS, iOS, tvOS

Directed graph defining complex behavior
Provide discrete behavior per-state
Define transitions between states
Difficult to visualize from code

GKStateMachine
State Machine Quick Look NEW

Crouch

Idle Run

Available via GameplayKit
• macOS, iOS, tvOS

Directed graph defining complex behavior
Provide discrete behavior per-state
Define transitions between states
Difficult to visualize from code

GKStateMachine
State Machine Quick Look NEW

CrouchIdle

Run

CrouchIdle

Run

Dodge

Hurt

Dead

Then and now
State Machine Quick Look

Xcode 7.3

(lldb) po machine.currentState
▿ Optional<GKState>
 ▿ some : <DemoBots.BeamIdleState: 0x174026c00>

(lldb) po machine.canEnterState(BeamIdleState)
false

(lldb) po machine.canEnterState(BeamFiringState)
true

(lldb) po machine.canEnterState(BeamCoolingState)
false

(lldb) po machine.canEnterState(BeamDisabledState)
false

(lldb) po machine.canEnterState(BeamChargingState)
false

Then and now
State Machine Quick Look

Xcode 7.3 Xcode 8.0

NEW

(lldb) po machine.currentState
▿ Optional<GKState>
 ▿ some : <DemoBots.BeamIdleState: 0x174026c00>

(lldb) po machine.canEnterState(BeamIdleState)
false

(lldb) po machine.canEnterState(BeamFiringState)
true

(lldb) po machine.canEnterState(BeamCoolingState)
false

(lldb) po machine.canEnterState(BeamDisabledState)
false

(lldb) po machine.canEnterState(BeamChargingState)
false

Examples
State Machine Quick Look NEW

Examples
State Machine Quick Look NEW

FPS Performance Gauge

FPS Performance Gauge
Real-time performance

38

FPS Performance Gauge
Real-time performance

39

FPS Performance Gauge
Real-time performance

39

Frame rate
GPU utilization
CPU / GPU frame time

FPS Performance Gauge
Real-time performance

40

Frame rate

FPS Performance Gauge
Real-time performance

40

Frame rate
GPU utilization

FPS Performance Gauge
Real-time performance

41

Frame rate
GPU utilization

FPS Performance Gauge
Real-time performance

41

Frame rate
GPU utilization
CPU / GPU frame time

FPS Performance Gauge
Real-time performance

42

Frame rate
GPU utilization
CPU / GPU frame time

FPS Performance Gauge
Real-time performance

43

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

FPS Performance Gauge
Real-time performance

43

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

FPS Performance Gauge
Real-time performance

44

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

FPS Performance Gauge
Real-time performance

44

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

FPS Performance Gauge
Real-time performance

44

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

FPS Performance Gauge
Real-time performance

45

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

FPS Performance Gauge
Real-time performance

45

Breakdown of update loop
• Render
• Client update
• Actions
• Physics

Easy to identify bottlenecks
Available on iOS and watchOS

NEW

Demo
State machine Quick Look and FPS performance gauge

Recap

State machine Quick Look
FPS performance gauge

Memory Graph Debugging

Daniel Delwood Software Radiologist

"Why does this object exist?"

Zone DefaultMallocZone_0x121016000: 61176 nodes (68571200 bytes)

 COUNT BYTES AVG CLASS_NAME TYPE BINARY
 ===== ===== === ========== ==== ======
 22875 63015952 2754.8 non-object
 8898 429360 48.3 __NSCFString ObjC CoreFoundation
 2402 576480 240.0 SKTexture ObjC SpriteKit
 2183 209568 96.0 CUIRenditionKey ObjC CoreUI
 1124 71936 64.0 NSConcreteData ObjC Foundation
 1085 260400 240.0 CGImage CFType CoreGraphics
 1080 171504 158.8 CGImageProvider CFType CoreGraphics
 1075 172000 160.0 SKTextureCache ObjC SpriteKit
 1070 256800 240.0 CGDataProvider CFType CoreGraphics
 1065 187440 176.0 CUIRenditionMetrics ObjC CoreUI
 1059 84720 80.0 CUIRenditionLayerReference ObjC CoreUI
 1053 1027728 976.0 _CUIInternalLinkRendition ObjC CoreUI
 1052 70160 66.7 NSPathStore2 ObjC Foundation
 814 39072 48.0 NSMutableArray ObjC CoreFoundation
 582 64240 110.4 NSArray (Object Storage) C CoreFoundation
 470 22560 48.0 NSMutableDictionary ObjC CoreFoundation
 451 7216 16.0 NSArray ObjC CoreFoundation
 444 21312 48.0 Swift._NSContiguousString Swift libswiftCore.dylib
 411 22048 53.6 __NSMallocBlock__ ObjC CoreFoundation

$ heap DemoBots [--addresses='.*Action']
Memory Graph Debugging

Region __DATA 0x110d6f000-0x110d75000[24K] rw-/rwx System/Library/Frameworks/UIKit.framework/UIKit
__DATA __bss: '_UIKeyWindow' 0x110d6f730 --> <UIWindow 0x7fc2e9c2ebd0> [816]
 +584: __strong _rootViewController 0x7fc2e9c2ee18 --> <DemoBots.GameViewController 0x7fc2e9c1ddc0> [768]
 +24: __strong _view 0x7fc2e9c1ddd8 --> <SKView 0x7fc2ec049a00> [1536]
 +1144: __strong _scene 0x7fc2ec049e78 --> <DemoBots.LevelScene 0x7fc2f63daad0> [560]
 +392: playerBot 0x7fc2f63dac58 --> <DemoBots.PlayerBot 0x7fc2e9d69600> [64]
 +8: __strong _components 0x7fc2e9d69608 --> <NSMutableDictionary 0x7fc2e9d1d340> [48] item count: 10
 +40: __strong _keys 0x7fc2e9d1d368 --> <NSDictionary (Key Storage) 0x7fc2e9df0820> [208]
 +112: __strong 0x7fc2e9df0890 --> <DemoBots.RenderComponent 0x7fc2f4071120> [48]
 +40: node 0x7fc2f4071148 --> <SKNode 0x7fc2ef712970> [128]
 +40: __strong _actions 0x7fc2ef712998 --> <NSMutableArray 0x7fc2f640ec00> [48] item count: 23
 +40: __strong _list 0x7fc2f640ec28 --> <NSArray (Object Storage) 0x7fc2e9ed8150> [208]
 +120: __strong 0x7fc2e9ed81c8 --> <SKRepeat 0x7fc2e9ed0db0> [32]
 +24: __strong _repeatedAction 0x7fc2e9ed0dc8 --> <SKSequence 0x7fc2e9e9eb40> [48]
 +24: __strong _actions 0x7fc2e9e9eb58 --> <NSArray 0x7fc2f51a3ee0> [32] item count: 2
 +24: __strong 0x7fc2f51a3ef8 --> <SKRunBlock 0x7fc2e9e84760> [32]
 +8: _caction 0x7fc2e9e84768 --> <SKCAction 0x7fc2e9e83c90> [112]

Region __DATA 0x1162e0000-0x1162e6000[24K] rw-/rwx /System/Library/PrivateFrameworks/FrontBoardServices.framework/FrontBoardServices
__DATA __bss: '__instance' 0x1162e50e8 --> <FBSUIApplicationWorkspace 0x7fc2e9e0c9e0> [80]
 +16: _delegate 0x7fc2e9e0c9f0 --> <UIApplication 0x7fc2e9d12290> [576]
 +112: __strong _statusBarWindow 0x7fc2e9d12300 --> <UIStatusBarWindow 0x7fc2e9c13ec0> [912]
 +416: __strong _scene 0x7fc2e9c14060 --> <FBSSceneImpl 0x7fc2e9f12990> [144]

$ leaks DemoBots --trace=0x7fc2e9e83c90
Memory Graph Debugging

ALLOC 0x7fc2e9e83c90-0x7fc2e9e83cff [size=112]: thread_112f48000 | start | main | UIApplicationMain | GSEventRunModal |
CFRunLoopRunSpecific | __CFRunLoopRun | __CFRunLoopDoTimers | __CFRunLoopDoTimer |
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ | CA::Display::DisplayLink::dispatch_items(unsigned long long, unsigned long
long, unsigned long long) | CA::Display::DisplayLinkItem::dispatch() | -[SKDisplayLink _callbackForNextFrame:] | __29-[SKView
setUpRenderCallback]_block_invoke | -[SKView _vsyncRenderForTime:preRender:postRender:] | __51-[SKView
_vsyncRenderForTime:preRender:postRender:]_block_invoke.312 | -[SKView _update:] | -[SKScene _update:] | @objc
DemoBots.LevelScene.update (Swift.Double) -> () | DemoBots.LevelScene.update (Swift.Double) -> () | DemoBots.PlayerBot.update
(withDeltaTime : Swift.Double) -> () | -[SKNode runAction:] | -[SKRepeat copyWithZone:] | +[SKRepeat repeatActionForever:] | -
[SKSequence copyWithZone:] | +[SKSequence sequenceWithActions:] | -[SKAction copyWithZone:] | -[SKWait init] | -[SKAction init] |
operator new(unsigned long) | malloc

FREE 0x7fc2e9e83c90-0x7fc2e9e83cff [size=112]: thread_112f48000 | start | main | UIApplicationMain | GSEventRunModal |
CFRunLoopRunSpecific | __CFRunLoopRun | __CFRunLoopDoTimers | __CFRunLoopDoTimer |
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ | CA::Display::DisplayLink::dispatch_items(unsigned long long, unsigned long
long, unsigned long long) | CA::Display::DisplayLinkItem::dispatch() | -[SKDisplayLink _callbackForNextFrame:] | __29-[SKView
setUpRenderCallback]_block_invoke | -[SKView _vsyncRenderForTime:preRender:postRender:] | __51-[SKView
_vsyncRenderForTime:preRender:postRender:]_block_invoke.312 | -[SKView _update:] | -[SKScene _update:] | @objc
DemoBots.LevelScene.update (Swift.Double) -> () | DemoBots.LevelScene.update (Swift.Double) -> () | DemoBots.PlayerBot.update
(withDeltaTime : Swift.Double) -> () | -[SKNode runAction:] | -[SKRepeat copyWithZone:] | +[SKRepeat repeatActionForever:] | -
[SKSequence copyWithZone:] | +[SKSequence sequenceWithActions:] | -[SKAction copyWithZone:] | -[SKWait init] | -[SKAction(Internal)
setCppAction:] | operator delete(void*)

ALLOC 0x7fc2e9e83c90-0x7fc2e9e83cff [size=112]: thread_112f48000 | start | main | UIApplicationMain | GSEventRunModal |
CFRunLoopRunSpecific | __CFRunLoopRun | __CFRunLoopDoTimers | __CFRunLoopDoTimer |
__CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__ | CA::Display::DisplayLink::dispatch_items(unsigned long long, unsigned long
long, unsigned long long) | CA::Display::DisplayLinkItem::dispatch() | -[SKDisplayLink _callbackForNextFrame:] | __29-[SKView
setUpRenderCallback]_block_invoke | -[SKView _vsyncRenderForTime:preRender:postRender:] | __51-[SKView
_vsyncRenderForTime:preRender:postRender:]_block_invoke.312 | -[SKView _update:] | -[SKScene _update:] | @objc
DemoBots.LevelScene.update (Swift.Double) -> () | DemoBots.LevelScene.update (Swift.Double) -> () | DemoBots.PlayerBot.update
(withDeltaTime : Swift.Double) -> () | -[SKNode runAction:] | -[SKRepeat copyWithZone:] | +[SKRepeat repeatActionForever:] | -
[SKSequence copyWithZone:] | +[SKSequence sequenceWithActions:] | -[SKRunBlock copyWithZone:] | +[SKRunBlock runBlock:queue:] | -
[SKRunBlock init] | -[SKAction init] | operator new(unsigned long) | malloc

$ malloc_history DemoBots 0x7fc2e9e83c90
Memory Graph Debugging

Memory Graph Debugging NEW

Memory Graph Debugging NEW

Memory Graph Debugging NEW

Memory Graph Debugging NEW

Demo
Memory graph debugging

Leaked and abandoned memory
Memory Graph Debugging

Debugger mode, pauses to inspect app
• Available on macOS, iOS 10, tvOS 10, watchOS 3

Leaked and abandoned memory
Memory Graph Debugging

Debugger mode, pauses to inspect app
• Available on macOS, iOS 10, tvOS 10, watchOS 3

Two graph styles:
• Root paths

- Referenced memory
- How is the memory held by globals/stacks?

Leaked and abandoned memory
Memory Graph Debugging

Debugger mode, pauses to inspect app
• Available on macOS, iOS 10, tvOS 10, watchOS 3

Two graph styles:
• Root paths

- Referenced memory
- How is the memory held by globals/stacks?

Leaked and abandoned memory
Memory Graph Debugging

• Cycles
- Leaked memory
- How does the leak reference other leaks?

Stack logging integration
Memory Graph Debugging

Stack logging integration
Memory Graph Debugging

Opt-in via Diagnostics scheme tab
• All Allocations

- MallocStackLogging=1

Opt-in via Diagnostics scheme tab
• All Allocations

- MallocStackLogging=1
• Live Allocations Only

- Less memory/disk overhead
- MallocStackLogging=lite

Stack logging integration
Memory Graph Debugging NEW

Introducing .memgraph
Memory Graph Debugging NEW

Introducing .memgraph
Memory Graph Debugging

Within Xcode:
• Save: File → “Export Memory Graph…”
• Load: double-click or drag to Xcode

- No process in debugger — no backtraces, Quick Look, ‘po’

NEW

Introducing .memgraph
Memory Graph Debugging

Within Xcode:
• Save: File → “Export Memory Graph…”
• Load: double-click or drag to Xcode

- No process in debugger — no backtraces, Quick Look, ‘po’

From command-line:
$ leaks --outputGraph=<path> <process> # creates .memgraph file

$ {leaks|vmmap|heap} <path/to/file.memgraph> [options] # operates on .memgraph file

NEW

Usage tips
Memory Graph Debugging

Usage tips
Memory Graph Debugging

Graph is conservative

Usage tips
Memory Graph Debugging

Graph is conservative
• Avoids ‘leaks’ false-positives, but there may be extraneous references

Usage tips
Memory Graph Debugging

Graph is conservative
• Avoids ‘leaks’ false-positives, but there may be extraneous references
• Gray references are unknown, may be stale pointer or not strong

Usage tips
Memory Graph Debugging

Graph is conservative
• Avoids ‘leaks’ false-positives, but there may be extraneous references
• Gray references are unknown, may be stale pointer or not strong

- Enabling Malloc Scribble may improve accuracy

Usage tips
Memory Graph Debugging

Graph is conservative
• Avoids ‘leaks’ false-positives, but there may be extraneous references
• Gray references are unknown, may be stale pointer or not strong

- Enabling Malloc Scribble may improve accuracy
• Bold references are known to be strong

Usage tips
Memory Graph Debugging

Graph is conservative
• Avoids ‘leaks’ false-positives, but there may be extraneous references
• Gray references are unknown, may be stale pointer or not strong

- Enabling Malloc Scribble may improve accuracy
• Bold references are known to be strong

- Swift 3's reflection data more accurate

Usage tips
Memory Graph Debugging

Graph is conservative
• Avoids ‘leaks’ false-positives, but there may be extraneous references
• Gray references are unknown, may be stale pointer or not strong

- Enabling Malloc Scribble may improve accuracy
• Bold references are known to be strong

- Swift 3's reflection data more accurate

Requires turning off sanitizers

Where to start
Memory Graph Debugging

Where to start
Memory Graph Debugging

Validate your expectations
• Are there more objects of your types than you expect?
• Are objects deallocated when they're no longer necessary?

Where to start
Memory Graph Debugging

Validate your expectations
• Are there more objects of your types than you expect?
• Are objects deallocated when they're no longer necessary?

Find the path that shouldn't be holding your object
• Strong captures from blocks and closures
• Back-references that should be weak/unowned

Summary

New and improved visual tools in Xcode 8
Built right into your debugging workflow
Try them out, improve your App today!

More Information

https://developer.apple.com/wwdc16/410

Related Sessions

System Trace in Depth Nob Hill Thursday 9:00AM

Thread Sanitizer and Static Analysis Nob Hill Thursday 10:00AM

Debugging Tips and Tricks Pacific Heights Friday 1:40PM

Using Time Profiler in Instruments Nob Hill Friday 3:00PM

Labs

GameplayKit Lab Graphic, Games and Media Lab B Tuesday 10:10AM

Profiling and Debugging Lab Tools Lab C Thursday 3:00PM

SceneKit Lab Graphic, Games and Media Lab A Thursday 3:00PM

SpriteKit Lab Graphic, Games and Media Lab B Friday 12:00PM

