
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Help with finding bugs in your code

Developer Tools #WWDC16

Session 412

Thread Sanitizer and Static Analysis

Anna Zaks Manager, Program Analysis Team
Devin Coughlin Engineer, Program Analysis Team

What Is This Talk About?

Runtime Sanitizers
Static Analyzer

Runtime Sanitizers

Find bugs at run time
Similar to Valgrind
Low overhead
Work with Swift 3 and C/C++/Objective-C
Integrated into Xcode IDE

Sanitizers

Address Sanitizer (ASan)

Introduced last year
Finds memory corruption issues
Effective at finding critical bugs
Now has full support for Swift

Threading Issues

Hard to consistently reproduce
Difficult to debug
Lead to unpredictable results

Thread Sanitizer (TSan) NEW

Thread Sanitizer (TSan) NEW

Use of uninitialized mutexes
Thread leaks (missing pthread_join)
Unsafe calls in signal handlers (ex: malloc)
Unlock from wrong thread
Data races

Demo
Thread Sanitizer in Xcode

Thread Sanitizer (TSan) in Xcode

1. Edit Scheme – Diagnostics tab
2. “Enable Thread Sanitizer” checkbox
3. Build and Run
4. View all of the generated runtime issues
5. Can choose to break on every issue

TSan Build Flow

clang

swift

TSan dylib

Usage from Command-Line

Compile and link with TSan
$ clang -fsanitize=thread source.c -o executable

$ swiftc -sanitize=thread source.swift -o executable

$ xcodebuild -enableThreadSanitizer YES

Stop after the first error
$ TSAN_OPTIONS=halt_on_error=1 ./executable

Platform Support for TSan

64-bit macOS
64-bit iOS and tvOS simulators

No device support
No watchOS support

Fixing Data Races

Data Race

Multiple threads access the same memory without synchronization
At least one access is a write
May end up with any value or even memory corruption!

Reasons for Data Races

Can indicate a problem with the structure of your program
Often means that synchronization is missing

Data Race Example

var data: Int? = nil

func producer() {
 // More code here.
 data = 42
}

func consumer() {
 // More code here.
 print(data)
}

Data Race Example

var data: Int? = nil

func producer() {
 // More code here.
 data = 42
 dataIsAvailable = true
}

func consumer() {
 // More code here.
 while !dataIsAvailable {
 usleep(1000)
 }
 print(data)
}

Order is not guaranteed

Data Race Example

var data: Int? = nil

func producer() {
 // More code here.
 serialDispatchQueue.async {
 data = 42
 }
}

func consumer() {
 // More code here.
 serialDispatchQueue.sync {
 print(data)
 }
}

Data Race in Lazy Initialization Code

Both threads could be setting the value at the same time

Singleton *getSingleton() {
 static Singleton *sharedInstance = nil;

 if (sharedInstance == nil) {
 sharedInstance = [[Singleton alloc] init];
 }

 return sharedInstance;
}

Data Race in Lazy Initialization Code

Use-after-free in ARC and object is leaked on a race in MRR
Unsynchronized read

Singleton *getSingleton() {
 static Singleton *sharedInstance = nil;

 if (sharedInstance == nil) {
 Singleton *localObject = [[Singleton alloc] init];

 // Only assign if sharedInstance is still nil.
 atomic_compare_and_set(&sharedInstance, nil, localObject);
 }

 return sharedInstance;
}

Data Race in Lazy Initialization Code
Singleton *getSingleton() {
 static dispatch_once_t predicate;
 static Singleton *sharedInstance = nil;

 dispatch_once(&predicate, ^{
 sharedInstance = [[self alloc] init];
 });

 return sharedInstance;
}

Lazy Initialization in Swift

Global variables
 var sharedInstance = Singleton()

 func getSingleton() -> Singleton {

 return sharedInstance

 }

Class constants
 class Singleton {

 static let sharedInstance = Singleton()

 }

Choosing the Right Synchronization API

Concurrent Programming With GCD in Swift 3 Pacific Heights Friday 4:00PM

1. Use GCD
Dispatch racy accesses to the same serial queue

2. Use pthread API, NSLock
pthread_mutex_lock() to synchronize accesses

3. New os_unfair_lock (use instead of OSSpinLock)
4. Atomic operations

There is No Such Thing as a “Benign” Race

On some architectures (ex., x86) reads and writes are atomic
But even a “benign” race is undefined behavior in C
May cause issues with new compilers or architectures

Behind the Scenes

For every access:
• Records the information about that access
• Checks if that access participates in a race

Compiler Instruments Memory Accesses

 *p = ‘a’;
 RecordAndCheckWrite(p);

 *p = ‘a’;

Th3 : th3_1 : ReadTh2 : th2_1 : ReadTh1 : th1_1 : WriteTh1 : th1_2 : WriteTh3 : th3_2 : Read

TSan Shadow State Tracks Up to 4 Accesses

Th4 : th4_1 : Read‘a’

Thread 1 Thread 2 Thread 3 Thread 4

Shadow state:
Up to four 8 byte objects

Application memory: 8 bytes

Another Shadow Cell is EvictedRecord Information About Memory Accesses

0xb009

Detecting a Race

Every thread stores (in thread local):
• Thread’s own timestamp
• The timestamps for other threads that

establish the points of synchronization
• Timestamps are incremented on every

memory access

Thread 1

th1_0

th2_0
th3_0

Thread 2

th2_0

th1_0
th3_0

Thread 3

th3_0

th1_0
th2_0

th2_22 th3_55th1_2

Thread 1

th2_0
th3_0

Thread 2

th1_0
th3_0

Thread 3

th1_0
th2_0

th2_22 th3_55th1_2

th2_22th2_23

Thread 1 Writes

th2_0
th3_0

th1_0
th3_0

th3_55
th1_0
th2_0

Th1 : th1_3 : Writelock

th1_3

th1_2

Th2 : th2_23 : WriteTh3 : th3_56 : Write

th1_3 th3_56

th1_3
vector clocks

Thread 2 WritesThread 3 Writes: Check for Races: Check for Races

Thread 1 Thread 2 Thread 3

‘c’‘b’‘a’0xb009

Detecting a Race

th2_23

Thread Sanitizer

Timing does not matter 
Can detect races even if they did not manifest during the particular run
The more run time coverage the better 
Run all your tests with TSan!

Thread Sanitizer

Finding Bugs with Static Analysis

Find Bugs Without Running Code

Does not require running code (unlike sanitizers)
Great at catching hard to reproduce edge-case bugs
Supported only for C, C++, and Objective-C

Localizability

NEW

Instance Cleanup

NEW

Nullability

NEW

Missing Localizability

Startling for Users

Demo
Clang Static Analyzer in Xcode

Clang Static Analyzer in Xcode

1. Product > Analyze or 
Product > Analyze “SingleFile.m”

2. View in Issue Navigator
3. Explore Issue Path

Find Missing Localizability

Find unlocalized user-facing string:

 [button setTitle:@“Cancel”];

Find missing localization context comment:

 NSString *t = NSLocalizedString(@“Cancel”, nil);

Enable Checks in Build Settings

Checking -dealloc in 
Manual Retain/Release

Do Not Release ‘assign’ Properties

Release of synthesized ivar in -dealloc is over-release:

@property(assign) id delegate;

-(void)dealloc {
 [_delegate release];

 [super dealloc];
}

Do Release ‘retain/copy’ Properties

Leak if no release of ivar for retain/copy property in -dealloc:

@property(assign) id delegate;
@property(copy) NSString *title;
-(void)dealloc {

 [super dealloc];
}

Update to Automated Reference Counting

Nullability Violations

Nullability Annotations

Indicate whether a value is expected to be nil:
@interface CLLocation : NSObject

@property(readonly, nonnull) NSDate *timestamp;

@property(readonly, nullable) CLFloor *floor;

Why Annotate Nullability?

New programming model communicates expectation to callers
Violation can cause crashes or other unexpected behavior
Swift enforces model in type system with optionals
class CLLocation : NSObject {

 public var timestamp: NSDate { get }

 public var floor: CLFloor? { get }

}

Finding Nullability Violations

Particularly useful in mixed Swift/Objective-C projects
Logical problem in code
Incorrect annotations

Violation: Branching with nil Default

- (nonnull NSString *)shortDescription {
 NSString *name = nil;

 if (self.cityName)
 name = self.cityName;
 if (self.countryName)
 name = self.countryName;

 return name;
}

Violation: Branching with nil Default

- (nonnull NSString *)shortDescription {
 NSString *name = NSLocalizedString(@“Earth”, @“The planet”);

 if (self.cityName)
 name = self.cityName;
 if (self.countryName)
 name = self.countryName;

 return name;
}

Violation: Incorrect Annotation

NS_ASSUME_NONNULL_BEGIN
@property(readonly) PressureData *pressure;
NS_ASSUME_NONNULL_END

- (PressureData *)pressure {
 if ([self hasBarometer])
 return [self measurePressure];

 return nil;
}

Violation: Incorrect Annotation

NS_ASSUME_NONNULL_BEGIN
@property(readonly, nullable) PressureData *pressure;
NS_ASSUME_NONNULL_END

- (PressureData *)pressure {
 if ([self hasBarometer])
 return [self measurePressure];

 return nil;
}

Nullability of Your API is a Contract

Do not change just to silence the analyzer

Do carefully consider nullability of API

Suppress with Cast

Return nil defensively for backwards compatibility:
 - (NSString * _Nonnull)stringAtIndex:(int) index {

 if (index < 0 || index >= _count)

 return (NSString * _Nonnull)nil;

 …

 }

Static Analyzer

Wrapping Up

These Tools Find Real Bugs!

Address Sanitizer and Thread Sanitizer
Clang Static Analyzer
Use on your code!

More Information

https://developer.apple.com/wwdc16/412

Related Sessions

Internationalization Best Practices Mission Tuesday 9:00AM

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Debugging Tips and Tricks Pacific Heights Friday 1:40PM

Using Time Profiler in Instruments Nob Hill Friday 3:00PM

Concurrent Programming with GCD in Swift 3 Pacific Heights Friday 4:00PM

Labs

Thread Sanitizer, Static Analysis, and 
LLVM Compiler Lab Developer Tools Lab B Thursday 12:00PM

Thread Sanitizer, Static Analysis, and 
LLVM Compiler Lab Developer Tools Lab C Friday 3:00PM

LLVM Compiler, Objective-C, and C++ Lab Developer Tools Lab C Friday 4:30PM

GCD Lab Frameworks Lab D Friday 5:00PM

