
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Developer Tools #WWDC16

Session 414

Using and Extending  
the Xcode Source Editor

Mike Swingler Xcode Infrastructure and Editors
Chris Hanson Xcode Infrastructure and Editors

Overview

Using
• New features in Xcode 8
• Other not so new, but useful features

Overview

Using
• New features in Xcode 8
• Other not so new, but useful features

Extending
• How to add your own features
• …and share them!

Demo
New features in the Xcode 8 source editor

Enhancing Xcode
Xcode Source Editor Extensions

What you can do
Extending Xcode

Add commands to the source editor

What you can do
Extending Xcode

Add commands to the source editor
Edit text

What you can do
Extending Xcode

Add commands to the source editor
Edit text
Change selections

What you can do
Extending Xcode

Add commands to the source editor
Edit text
Change selections
One extension, several commands

What you can do
Extending Xcode

How it works
Extending Xcode

Xcode Extensions are Application Extensions

How it works
Extending Xcode

Xcode Extensions are Application Extensions
• Each runs in its own process

How it works
Extending Xcode

Xcode Extensions are Application Extensions
• Each runs in its own process
• Sandboxed and uses entitlements

How it works
Extending Xcode

Xcode Extensions are Application Extensions
• Each runs in its own process
• Sandboxed and uses entitlements
• Gets access to text at invocation

Stability,

Stability, Security,

Stability, Security, Speed

App Store

Getting them into users’ hands
Delivering Xcode Extensions

An Xcode Extension is embedded in an application

Getting them into users’ hands
Delivering Xcode Extensions

An Xcode Extension is embedded in an application
• Your App is a great place to put your extension’s preferences

Getting them into users’ hands
Delivering Xcode Extensions

An Xcode Extension is embedded in an application
• Your App is a great place to put your extension’s preferences
• Any other UI you want to provide—no UI in extensions

Getting them into users’ hands
Delivering Xcode Extensions

An Xcode Extension is embedded in an application
• Your App is a great place to put your extension’s preferences
• Any other UI you want to provide—no UI in extensions
• Distribute via the Mac App Store

Getting them into users’ hands
Delivering Xcode Extensions

An Xcode Extension is embedded in an application
• Your App is a great place to put your extension’s preferences
• Any other UI you want to provide—no UI in extensions
• Distribute via the Mac App Store
• Distribute on your own via Developer ID

Startup
The Xcode Extension Lifecycle

Startup
The Xcode Extension Lifecycle

Xcode automatically finds and starts extensions

Startup
The Xcode Extension Lifecycle

Xcode automatically finds and starts extensions
• Extensions are kept alive while the user is likely to need them 

Startup
The Xcode Extension Lifecycle

Xcode automatically finds and starts extensions
• Extensions are kept alive while the user is likely to need them 

Extensions sent extensionDidFinishLaunching

Startup
The Xcode Extension Lifecycle

Xcode automatically finds and starts extensions
• Extensions are kept alive while the user is likely to need them 

Extensions sent extensionDidFinishLaunching
• Do any needed startup as fast as possible

Startup
The Xcode Extension Lifecycle

Xcode automatically finds and starts extensions
• Extensions are kept alive while the user is likely to need them 

Extensions sent extensionDidFinishLaunching
• Do any needed startup as fast as possible
• Asynchronous with Xcode and other extensions

Providing commands
The Xcode Extension Lifecycle

Xcode asks each extension for its
commands, which can come from:

Providing commands
The Xcode Extension Lifecycle

Xcode asks each extension for its
commands, which can come from:
• Your extension’s Info.plist

<key>NSExtensionAttributes</key>
<dict>
 <key>XCSourceEditorCommandDefinitions</key>
 <array>
 <dict>
 <key>XCSourceEditorCommandClassName</key>
 <string>ChrisFormat.WrapText</string>
 <key>XCSourceEditorCommandIdentifier</key>
 <string>com.example.ChrisFormat.WrapText</string>
 <key>XCSourceEditorCommandName</key>
 <string>Wrap Text</string>
 </dict>
 </array>
 <key>XCSourceEditorExtensionPrincipalClass</key>
 <string>ChrisFormat.ChrisFormatExtension</string>
</dict>

Providing commands
The Xcode Extension Lifecycle

Xcode asks each extension for its
commands, which can come from:
• Your extension’s Info.plist
• Your extension’s commandDefinitions

property, overriding the Info.plist

<key>NSExtensionAttributes</key>
<dict>
 <key>XCSourceEditorCommandDefinitions</key>
 <array>
 <dict>
 <key>XCSourceEditorCommandClassName</key>
 <string>ChrisFormat.WrapText</string>
 <key>XCSourceEditorCommandIdentifier</key>
 <string>com.example.ChrisFormat.WrapText</string>
 <key>XCSourceEditorCommandName</key>
 <string>Wrap Text</string>
 </dict>
 </array>
 <key>XCSourceEditorExtensionPrincipalClass</key>
 <string>ChrisFormat.ChrisFormatExtension</string>
</dict>

var commandDefinitions {
 return [[
 .classNameKey:
 "ChrisFormat.WrapText",
 .identifierKey:
 "com.apple.ChrisFormat.WrapText",
 .nameKey:
 "Wrap Text"]]
}

Where commands live
The Xcode Extension Lifecycle

Where commands live
The Xcode Extension Lifecycle

Each extension gets a submenu of the
Editor menu for its commands

Where commands live
The Xcode Extension Lifecycle

Each extension gets a submenu of the
Editor menu for its commands
• Extensions listed in Finder sort order

Where commands live
The Xcode Extension Lifecycle

Each extension gets a submenu of the
Editor menu for its commands
• Extensions listed in Finder sort order
• Commands are in the order the  

extension provides

Invoking commands
The Xcode Extension Lifecycle

User chooses a command

Invoking commands
The Xcode Extension Lifecycle

User chooses a command
• Selecting menu item

Invoking commands
The Xcode Extension Lifecycle

User chooses a command
• Selecting menu item
• Pressing keyboard equivalent

Invoking commands
The Xcode Extension Lifecycle

User chooses a command
• Selecting menu item
• Pressing keyboard equivalent

Your command is sent an invocation and a callback

Invoking commands
The Xcode Extension Lifecycle

User chooses a command
• Selecting menu item
• Pressing keyboard equivalent

Your command is sent an invocation and a callback
• The invocation contains a text buffer and metadata to operate on

Invoking commands
The Xcode Extension Lifecycle

User chooses a command
• Selecting menu item
• Pressing keyboard equivalent

Your command is sent an invocation and a callback
• The invocation contains a text buffer and metadata to operate on
• The command uses the callback to tell Xcode it’s done

// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol {

 public func perform(with invocation: XCSourceEditorCommandInvocation,

 completionHandler: (NSError?) -> Void) -> Void

}

// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol {

 public func perform(with invocation: XCSourceEditorCommandInvocation,

 completionHandler: (NSError?) -> Void) -> Void

}

public class XCSourceEditorCommandInvocation : NSObject {

 public let commandIdentifier: String

 public var cancellationHandler: () -> Void

 public let buffer: XCSourceTextBuffer

}

// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol {

 public func perform(with invocation: XCSourceEditorCommandInvocation,

 completionHandler: (NSError?) -> Void) -> Void

}

public class XCSourceEditorCommandInvocation : NSObject {

 public let commandIdentifier: String

 public var cancellationHandler: () -> Void

 public let buffer: XCSourceTextBuffer

}

// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol {

 public func perform(with invocation: XCSourceEditorCommandInvocation,

 completionHandler: (NSError?) -> Void) -> Void

}

public class XCSourceEditorCommandInvocation : NSObject {

 public let commandIdentifier: String

 public var cancellationHandler: () -> Void

 public let buffer: XCSourceTextBuffer

}

// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol {

 public func perform(with invocation: XCSourceEditorCommandInvocation,

 completionHandler: (NSError?) -> Void) -> Void

}

public class XCSourceEditorCommandInvocation : NSObject {

 public let commandIdentifier: String

 public var cancellationHandler: () -> Void

 public let buffer: XCSourceTextBuffer

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Text Buffer

public class XCSourceTextBuffer : NSObject {

 public let contentUTI: String

 public let tabWidth: Int

 public let indentationWidth: Int

 public let usesTabsForIndentation: Bool

 public var completeBuffer: String

 public let lines: NSMutableArray<String>

 public let selections: NSMutableArray<XCSourceTextRange>

}

// Positions and Ranges

public class XCSourceTextRange : NSObject, NSCopying {

 public var start: XCSourceTextPosition

 public var end: XCSourceTextPosition

}

public struct XCSourceTextPosition {

 public var line: Int

 public var column: Int

}

// Positions and Ranges

public class XCSourceTextRange : NSObject, NSCopying {

 public var start: XCSourceTextPosition

 public var end: XCSourceTextPosition

}

public struct XCSourceTextPosition {

 public var line: Int

 public var column: Int

}

// Positions and Ranges

public class XCSourceTextRange : NSObject, NSCopying {

 public var start: XCSourceTextPosition

 public var end: XCSourceTextPosition

}

public struct XCSourceTextPosition {

 public var line: Int

 public var column: Int

}

Creating an Xcode source editor extension
Demo

Speed

Text editing is “user-synchronous”

Speed

Text editing is “user-synchronous”
Users will invoke your command via typing

Speed

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running

Speed

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running
The user can cancel your command

Speed

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running
The user can cancel your command
• A command that takes a while gets a cancellation banner

The command “Speed Slide” is still busy. Cancel

Speed

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running
The user can cancel your command
• A command that takes a while gets a cancellation banner

The command “Speed Slide” is still busy. Cancel

How Xcode helps
Speed

How Xcode helps
Speed

Keeps your extension alive for fast invocation

How Xcode helps
Speed

Keeps your extension alive for fast invocation
Optimizes data transfer for performance

How Xcode helps
Speed

Keeps your extension alive for fast invocation
Optimizes data transfer for performance
Cancellation is immediate for the user

How you can help Xcode
Speed

How you can help Xcode
Speed

Start up quickly

How you can help Xcode
Speed

Start up quickly
Use GCD and follow standard asynchronous patterns

How you can help Xcode
Speed

Start up quickly
Use GCD and follow standard asynchronous patterns
Don’t replace the whole buffer if you don’t have to

How you can help Xcode
Speed

Start up quickly
Use GCD and follow standard asynchronous patterns
Don’t replace the whole buffer if you don’t have to
Handle cancellation quickly

Summary

New features in the source editor
• Documentation comments
• Color and image literals, with code complete

Recent features
• Fuzzy code completion

Xcode source editor extensions
• How they work
• How to make them

More Information

https://developer.apple.com/wwdc16/414

Related Sessions

Optimizing App Startup Time Mission Wednesday 10:00AM

Introduction to Xcode Nob Hill Thursday 1:40PM

Creating Extensions for iOS and OS X, Part 1 WWDC 2014

Creating Extensions for iOS and OS X, Part 2 WWDC 2014

App Extension Best Practices WWDC 2015

Labs

Xcode Open Hours Developer Tools Lab B Friday 9:00AM

Xcode Open Hours Developer Tools Lab B Friday 12:00PM

Xcode Open Hours Developer Tools Lab B Friday 3:00PM

