Developer Tools FWWDC16

—)

Using and Extending
the Xcode Source Editor

Session 414

Mike Swingler Xcode Infrastructure and Editors
Chris Hanson Xcode Infrastructure and Editors

© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.



Overview

Using
- New features in Xcode 8

- Other not so new, but useful features




Overview

Using

- New features in Xcode 8

» Other not so new, but useful features
Extending

- How to add your own features

- ...and share them!



Demo

New features in the Xcode 8 source editor



Xcode Source Editor Extensions

Fnhancing Xcode



Fxtending Xcode
What you can do




Fxtending Xcode
What you can do

Add commands to the source editor




Fxtending Xcode
What you can do

Add commands to the source editor

Edit text




Fxtending Xcode
What you can do

Add commands to the source editor
Fdit text

Change selections




Fxtending Xcode
What you can do

Add commands to the source editor
Edit text
Change selections

One extension, several commands




Fxtending Xcode

HOW It WOrKS

Xcode Extensions are Application Extensions



Fxtending Xcode

HOW It WOrKS

Xcode Extensions are Application Extensions

» Each runs in its own process



Fxtending Xcode

HOW It WOrKS

Xcode Extensions are Application Extensions
» Each runs in its own process

- Sandboxed and uses entitlements



Fxtending Xcode

HOW It WOrKS

Xcode Extensions are Application Extensions
» Each runs in its own process
+ Sandboxed and uses entitlements

» (Gets access to text at iInvocation



Stapility,



Stapility, Security,



Stability, Security, Speed






Delivering Xcode Extensions
Getting them into users hands

An Xcode Extension is embedded in an application



Delivering Xcode Extensions
Getting them into users hands

An Xcode Extension is embedded in an application

- Your App is a great place to put your extension’s preferences



Delivering Xcode Extensions
Getting them into users hands

An Xcode Extension is embedded in an application
- Your App is a great place to put your extension’s preferences

+ Any other Ul you want to provide—no Ul in extensions



Delivering Xcode Extensions
Getting them into users hands

An Xcode Extension is embedded in an application
+ Your App is a great place to put your extension’s preferences
+ Any other Ul you want to provide—no Ul in extensions

+ Distribute via the Mac App Store



Delivering Xcode Extensions
Getting them into users hands

An Xcode Extension is embedded in an application

+ Your App is a great place to put your extension’s preferences
+ Any other Ul you want to provide—no Ul in extensions

+ Distribute via the Mac App Store

- Distribute on your own via Developer D



The Xcode Extension Lifecycle
Startup



The Xcode Extension Lifecycle
Startup

Xcode automatically finds and starts extensions



The Xcode Extension Lifecycle
Startup

Xcode automatically finds and starts extensions

+ Extensions are kept alive while the user is likely to need them



The Xcode Extension Lifecycle
Startup

Xcode automatically finds and starts extensions

+ Extensions are kept alive while the user is likely to need them

Extensions sent extensionDidFinishLaunching



The Xcode Extension Lifecycle
Startup

Xcode automatically finds and starts extensions

+ Extensions are kept alive while the user is likely to need them

Extensions sent extensionDidFinishLaunching

+ Do any needed startup as fast as possible



The Xcode Extension Lifecycle
Startup

Xcode automatically finds and starts extensions

+ Extensions are kept alive while the user is likely to need them

Extensions sent extensionDidFinishLaunching
+ Do any needed startup as fast as possible

+ Asynchronous with Xcode and other extensions



The Xcode Extension Lifecycle
Providing commands

Xcode asks each extension for its
commands, which can come from:




The Xcode Extension Lifecycle
Providing commands

Xcode asks each extension for its ~key>NSExtensionAttributes</key>
: I , <dict>
com mands, Wh|Ch Can come rom: <key>XCSourceEditorCommandDefinitions</key>
<array>
- Your extension’s Info.plist sdict=

<key>XCSourceEditorCommandClassName</key=>
<string>ChrisFormat.WrapText</string>
<key>XCSourceEditorCommandIdentifier</key>
<string>com.example.ChrisFormat.WrapText</string>
<key>XCSourceEditorCommandName</key>
<string>Wrap Text</string>
</dict>
</array>
<key>XCSourceEditorExtensionPrincipalClass</key>
<string>ChrisFormat.ChrisFormatExtension</string=
</dict>



The Xcode Extension Lifecycle
Providing commands

Xcode asks each extension for its o
var commandDefinitions {

commands, which can come from: return [[
. ClassNameKey:
- Your extension’s Info.plist "ChrisFormat.WrapText",
.ldentifierKey:
» Your extension’s commandDefinitions "com.apple.ChrisFormat.WrapText",
property, overriding the Info.plist -nameKey:

"Wrap Text" 1]



The Xcode Extension Lifecycle
Where commands live



The Xcode Extension Lifecycle
Where commands live

-ach extension gets a submenu of the
—ditor menu for its commands

Show Invisibles

Show Blame for Line

Show Code Coverage

ChrisFormat
Mike’s Navigator
SeanDoc

Next Method
Previous Method "\ {tf6



The Xcode Extension Lifecycle
Where commands live

-ach extension gets a submenu of the
—ditor menu for its commands

- Extensions listed in Finder sort order Show Invisibles

Show Blame for Line

Show Code Coverage

ChrisFormat
Mike's Navigator
SeanDoc

Next Method
Previous Method "\ {tf6



The Xcode Extension Lifecycle

Where com

- Extensions listed

- Commands are |

mands |ive

-ach extension gets a submenu of the
—ditor menu for its commands

iNn Finder sort order

N the order the

extension provic

€5

Show Invisibles

Show Blame for Line

Show Code Coverage

ChrisFormat
Mike's Navigator
SeanDoc

Next Method
Previous Method "\ 1{}re



The Xcode Extension Lifecycle
Invoking commands

User chooses a command



The Xcode Extension Lifecycle
Invoking commands

User chooses a command

+ Selecting menu item



The Xcode Extension Lifecycle
Invoking commands

User chooses a command
+ Selecting menu item

+ Pressing keyboard equivalent



The Xcode Extension Lifecycle
Invoking commands

User chooses a command
+ Selecting menu item
+ Pressing keyboard equivalent

Your command is sent an invocation and a callback



The Xcode Extension Lifecycle
Invoking commands

User chooses a command
+ Selecting menu item
+ Pressing keyboard equivalent

Your command is sent an invocation and a callback

- The invocation contains a text buffer and metadata to operate on



The Xcode Extension Lifecycle
Invoking commands

User chooses a command
+ Selecting menu item
+ Pressing keyboard equivalent

Your command is sent an invocation and a callback

- The invocation contains a text buffer and metadata to operate on

- The command uses the callback to tell Xcode it's done



// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol A

public func perform(with invocation: XCSourceEditorCommandInvocation,

completionHandler: (NSError?) —> Void) —-> Void



// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol A

public func perform(with invocation: XCSourceEditorCommandInvocation,

completionHandler: (NSError?) —> Void) —-> Void

public class XCSourceEditorCommandInvocation : NSObject {

public let commandIdentifier: String

public var cancellationHandler: () —-> Void

public let buffer: XCSourceTextBuffer



// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol A

public func perform(with invocation: XCSourceEditorCommandInvocation,

completionHandler: (NSError?) —> Void) —-> Void

public class XCSourceEditorCommandInvocation : NSObject {

public let commandIdentifier: String

public var cancellationHandler: () —-> Void

public let buffer: XCSourceTextBuffer



// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol A

public func perform(with invocation: XCSourceEditorCommandInvocation,

completionHandler: (NSError?) —> Void) —-> Void

public class XCSourceEditorCommandInvocation : NSObject {

public let commandIdentifier: String

public var cancellationHandler: () —-> Void

public let buffer: XCSourceTextBuffer



// Commands

public protocol XCSourceEditorCommand : NSObjectProtocol A

public func perform(with invocation: XCSourceEditorCommandInvocation,

completionHandler: (NSError?) —> Void) —-> Void

public class XCSourceEditorCommandInvocation : NSObject {

public let commandIdentifier: String

public var cancellationHandler: () —-> Void

public let buffer: XCSourceTextBuffer



// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



public class XCSourceTextBuffer : NSObject {

public

public

public

public

Llet contentUTI: String

let tabWidth: Int
let i1ndentationWidth: Int

let usesTabsForIndentation: Bool

var usesTabsForIndentation: Bool { get }

Whether tabs are used for indentation, or just spaces. When tabs are
used for indentation, indented text is effectively padded to the
indentation width using space characters, and then every tab width
space characters is replaced with a tab character.

For example, say an XCSourceTextBuffer instance has a tabWith of 8, an
indentationWidth of 4, and its usesTabsForindentation is true. The first
indentation level will be represented by four space characters, the
second by a tab character, the third by a tab followed by four space
characters, the fourth by two tab characters, and so on.

XcodeKit




// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



// Text Buffer

public class XCSourceTextBuffer : NSObject {

public let contentUTI: String

public Llet tabWidth: Int

public let i1ndentationWidth: Int

public let usesTabsForIndentation: Bool

public var completeBuffer: String

public let lines: NSMutableArray<String>
public let selections: NSMutableArray<XCSourceTextRange>



// Positions and Ranges

public class XCSourceTextRange : NSObject, NSCopying 1

public var start: XCSourceTextPosition

public var end: XCSourceTextPosition

public struct XCSourceTextPosition {

public var line: Int

public var column: Int



// Positions and Ranges

public class XCSourceTextRange : NSObject, NSCopying 1

public var start: XCSourceTextPosition

public var end: XCSourceTextPosition

public struct XCSourceTextPosition {

public var line: Int

public var column: Int



// Positions and Ranges

public class XCSourceTextRange : NSObject, NSCopying 1

public var start: XCSourceTextPosition

public var end: XCSourceTextPosition

public struct XCSourceTextPosition {

public var line: Int

public var column: Int



Demo

Creating an Xcode source editor extension



Speeo

Text editing is “user-synchronous”



Speeo

Text editing is “user-synchronous”

Users will invoke your command via typing



Speeo

Text editing is “user-synchronous”
Users will invoke your command via typing

User changes to a document are prevented while a command is running



Speeo

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running

The user can cancel your commanad



The command “Speed Slide” is still busy.

Speeo

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running

The user can cancel your command

- A command that takes a while gets a cancellation banner



The command “Speed Slide” is still busy. Cancel Q

Speeo

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running

The user can cancel your command

- A command that takes a while gets a cancellation banner



Speeo
How Xcode helps



Speeo
How Xcode helps

Keeps your extension alive for fast invocation



Speeo
How Xcode helps

Keeps your extension alive for fast invocation

Optimizes data transfer for performance



Speeo
How Xcode helps

Keeps your extension alive for fast invocation
Optimizes data transfer for performance

Cancellation is immediate for the user



Speeo

How you can help Xcode



Speeo

How you can help Xcode

Start up quickly



Speeo

How you can help Xcode

Start up quickly

Use GCD and follow standard asynchronous patterns



Speeo

How you can help Xcode

Start up quickly

Use GCD and follow standard asynchronous patterns

Don't replace the whole bufter if you don't have to



Speeo

How you can help Xcode

Start up quickly

Use GCD and follow standard asynchronous patterns

Don't replace the whole bufter if you don't have to

Handle cancellation quickly



Summary

New features in the source editor

+ Documentation comments

+ Color and image literals, with code complete
Recent features

+ Fuzzy code completion

Xcode source editor extensions

+ How they work

- How to make them



More Information

https://developerapple.com/wwdc16/414



Related Sessions

Optimizing App Startup Time

Introduction to Xcode

Creating Extensions for iOS and OS X, Part 1
Creating Extensions for iOS and OS X, Part 2

App Extension Best Practices

Mission

Nob Hill

Wednesday 10:00AM
Thursday 1:40PM
WWDC 2014

WWDC 2014

WWDC 2015



| abs

Xcode Open Hours Developer Tools Lab B Friday 9:00AM

Xcode Open Hours Developer Tools Lab B Friday 12:00PM

Xcode Open Hours Developer Tools Lab B Friday 3:00PM








