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Extending
• How to add your own features
• …and share them!



Demo
New features in the Xcode 8 source editor
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How it works
Extending Xcode

Xcode Extensions are Application Extensions
• Each runs in its own process
• Sandboxed and uses entitlements
• Gets access to text at invocation



Stability,



Stability, Security,



Stability, Security, Speed



App Store
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Getting them into users’ hands
Delivering Xcode Extensions

An Xcode Extension is embedded in an application
• Your App is a great place to put your extension’s preferences
• Any other UI you want to provide—no UI in extensions
• Distribute via the Mac App Store
• Distribute on your own via Developer ID
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Startup
The Xcode Extension Lifecycle

Xcode automatically finds and starts extensions
• Extensions are kept alive while the user is likely to need them 

Extensions sent extensionDidFinishLaunching
• Do any needed startup as fast as possible
• Asynchronous with Xcode and other extensions
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The Xcode Extension Lifecycle

Xcode asks each extension for its 
commands, which can come from:
• Your extension’s Info.plist

<key>NSExtensionAttributes</key> 
<dict> 
 <key>XCSourceEditorCommandDefinitions</key> 
 <array> 
  <dict> 
   <key>XCSourceEditorCommandClassName</key> 
   <string>ChrisFormat.WrapText</string> 
   <key>XCSourceEditorCommandIdentifier</key> 
   <string>com.example.ChrisFormat.WrapText</string> 
   <key>XCSourceEditorCommandName</key> 
   <string>Wrap Text</string> 
  </dict> 
 </array> 
 <key>XCSourceEditorExtensionPrincipalClass</key> 
 <string>ChrisFormat.ChrisFormatExtension</string> 
</dict>



Providing commands
The Xcode Extension Lifecycle

Xcode asks each extension for its 
commands, which can come from:
• Your extension’s Info.plist
• Your extension’s commandDefinitions 

property, overriding the Info.plist

<key>NSExtensionAttributes</key> 
<dict> 
 <key>XCSourceEditorCommandDefinitions</key> 
 <array> 
  <dict> 
   <key>XCSourceEditorCommandClassName</key> 
   <string>ChrisFormat.WrapText</string> 
   <key>XCSourceEditorCommandIdentifier</key> 
   <string>com.example.ChrisFormat.WrapText</string> 
   <key>XCSourceEditorCommandName</key> 
   <string>Wrap Text</string> 
  </dict> 
 </array> 
 <key>XCSourceEditorExtensionPrincipalClass</key> 
 <string>ChrisFormat.ChrisFormatExtension</string> 
</dict>

var commandDefinitions { 
 return [[ 
    .classNameKey: 
       "ChrisFormat.WrapText", 
    .identifierKey: 
        "com.apple.ChrisFormat.WrapText", 
    .nameKey: 
        "Wrap Text" ]] 
}
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Where commands live
The Xcode Extension Lifecycle

Each extension gets a submenu of the 
Editor menu for its commands
• Extensions listed in Finder sort order
• Commands are in the order the  

extension provides
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Invoking commands
The Xcode Extension Lifecycle

User chooses a command
• Selecting menu item
• Pressing keyboard equivalent

Your command is sent an invocation and a callback
• The invocation contains a text buffer and metadata to operate on
• The command uses the callback to tell Xcode it’s done
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                      completionHandler: (NSError?) -> Void) -> Void 
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// Text Buffer 

public class XCSourceTextBuffer : NSObject { 

    public let contentUTI: String 

    public let tabWidth: Int 

    public let indentationWidth: Int 

    public let usesTabsForIndentation: Bool 

    public var completeBuffer: String 

    public let lines: NSMutableArray<String> 

    public let selections: NSMutableArray<XCSourceTextRange> 

}



// Positions and Ranges 

public class XCSourceTextRange : NSObject, NSCopying { 

    public var start: XCSourceTextPosition 

    public var end: XCSourceTextPosition 

} 

public struct XCSourceTextPosition { 

    public var line: Int 

    public var column: Int 

} 



// Positions and Ranges 

public class XCSourceTextRange : NSObject, NSCopying { 

    public var start: XCSourceTextPosition 

    public var end: XCSourceTextPosition 

} 

public struct XCSourceTextPosition { 

    public var line: Int 

    public var column: Int 

} 



// Positions and Ranges 

public class XCSourceTextRange : NSObject, NSCopying { 

    public var start: XCSourceTextPosition 

    public var end: XCSourceTextPosition 

} 

public struct XCSourceTextPosition { 

    public var line: Int 

    public var column: Int 

} 



Creating an Xcode source editor extension
Demo
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Speed

Text editing is “user-synchronous”
Users will invoke your command via typing
User changes to a document are prevented while a command is running
The user can cancel your command
• A command that takes a while gets a cancellation banner

The command “Speed Slide” is still busy. Cancel
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How Xcode helps
Speed

Keeps your extension alive for fast invocation
Optimizes data transfer for performance
Cancellation is immediate for the user
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How you can help Xcode
Speed

Start up quickly
Use GCD and follow standard asynchronous patterns
Don’t replace the whole buffer if you don’t have to
Handle cancellation quickly



Summary

New features in the source editor
• Documentation comments
• Color and image literals, with code complete

Recent features
• Fuzzy code completion

Xcode source editor extensions
• How they work
• How to make them



More Information

https://developer.apple.com/wwdc16/414



Related Sessions

Optimizing App Startup Time Mission Wednesday 10:00AM

Introduction to Xcode Nob Hill Thursday 1:40PM

Creating Extensions for iOS and OS X, Part 1 WWDC 2014

Creating Extensions for iOS and OS X, Part 2 WWDC 2014

App Extension Best Practices WWDC 2015



Labs

Xcode Open Hours Developer Tools Lab B Friday 9:00AM

Xcode Open Hours Developer Tools Lab B Friday 12:00PM

Xcode Open Hours Developer Tools Lab B Friday 3:00PM






