#FWWDC16

Developer Tools

—)

Debugging Tips and Tricks

Xcode 8 edition

Session 41/

Kate Stone
-nrico GGranata
Sean Callanan
Jim Ingham

© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

LLDB is Apple’s Debugqger

... and it's everywhere you need it

LLDB in the Xcode debug console
» Xcode hosts app console + LLDB prompt

LLDB is Apple’s Debugqger

... and it's everywhere you need it

LLDB in the Xcode debug console
» Xcode hosts app console + LLDB prompt

LLDB is Apple’s Debugqger

... and it's everywhere you need it

LLDB in the Xcode debug console
» Xcode hosts app console + LLDB prompt

L LDB is Apple's Debugger

... and it's everywhere you need it

Scheme option to use standalone terminal

L LDB is Apple's Debugger

... and it's everywhere you need it

Scheme option to use standalone terminal

L LDB is Apple's Debugger

... and it's everywhere you need it

Scheme option to use standalone terminal

LLDB is Apple’s Debugqger

... and it's everywhere you need it

Scheme option to use standalone terminal

- Remainder of talk focused on LLDB commands

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

LLDB is Apple’s Debugqger

... and it's everywhere you need it

Scheme option to use standalone terminal

- Remainder of talk focused on LLDB commands
The Swift REPL is LLDB

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

LLDB is Apple’s Debugqger

... and it's everywhere you need it

Scheme option to use standalone terminal

- Remainder of talk focused on LLDB commands
The Swift REPL is LLDB

+ :<command> enables any LLDB command

Visual Debugging with Xcode

Thread Sanitizer and Static Analysis

Presidio

Mission

Wednesday 4:00PM

Thursday 10:00AM

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.
1>

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.

1> :1type lookup Comparable
protocol Comparable : Equatable {

@warn_unused_result func <(lhs: Self, rhs: Self) —> Swift.Bool
@warn_unused _result func <=(1lhs: Self, rhs: Self) —> Swift.Bool
@warn_unused result func >=(1lhs: Self, rhs: Self) —> Swift.Bool

@warn_unused_result func >(lhs: Self, rhs: Self) —> Swift.Bool

1>

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.

1> :1type lookup Comparable
protocol Comparable : Equatable {

@warn_unused_result func <(lhs: Self, rhs: Self) —> Swift.Bool
@warn_unused _result func <=(1lhs: Self, rhs: Self) —> Swift.Bool
@warn_unused result func >=(1lhs: Self, rhs: Self) —> Swift.Bool

@warn_unused_result func >(lhs: Self, rhs: Self) —> Swift.Bool

1> :type lookup abs
func abs<T : SignedNumber>(_ x: T) —> T
1>

$ swift

Welcome to Apple Swift version 3.0. Type :help for assistance.

1> :1type lookup Comparable
protocol Comparable : Equatable {

@warn_unused_result func <(lhs: Self, rhs:

Self) —> Swift.Bool
Self) —> Swift.Bool

@warn_unused_result func <=(1lhs: Self, rhs:

Self) —> Swift.Bool

@warn_unused_result func >=(1lhs: Self, rhs:

@warn_unused_result func >(lhs: Self, rhs:

1> :type lookup abs
func abs<T : SignedNumber>(_ x: T) —> T
1> :type lookup Swift

import SwiftShims

Self) —> Swift.Bool

struct UnsafePointer<Pointee> : Strideable, Hashable, Pointer {

typealias Distance = Swift.Int
let rawValue: Builtin.RawPointer
init(_ _rawValue: Builtin.RawPointer)

init(_ from: Swift.OpaquePointer)

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.
1>

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.

1> func greet() {
2. print("Welcome to WwDC16!")

3. }
4>

$ swift

Welcome to Apple Swift version 3.0. Type :help for assistance.

1> func greet() {
2. print("Welcome to WwDC16!")

3. }
4> b 2
Breakpoint 1: where = $ 1ldb_expr2 __ l1ldb _expr_1l.greet () — () + 4 at repl.swift:2,

address = 0x0000000100558074

4>

$ swift

Welcome to Apple Swift version 3.0. Type :help for assistance.

1> func greet() {
2. print("Welcome to WwDC16!")

3. }
4> b 2
Breakpoint 1: where = $ 1ldb_expr2 __ l1ldb _expr_1l.greet () — () + 4 at repl.swift:2,

address = 0x0000000100558074

4> greet ()
Enter LLDB commands to investigate (type help for

assistance.)

(1Lldb)

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.

1> func greet() {

2. print("Welcome to WwDC16!'!")

3. }

4> b 2
Breakpoint 1: where = $ 1ldb_expr2 __ l1ldb _expr_1l.greet () — () + 4 at repl.swift:2,
address = 0x0000000100558074

4> greet()
Enter LLDB commands to investigate (type help for

assistance.)

(Lldb) bt
x thread #1: tid = 0xd698f, 0x000000010068f064 $ 11ldb_expr2 greet() —> () + 4 at

repl.swift:2, queue ‘com.apple.main-thread', stop reason = breakpoint 1.1

*x frame #0: 0x000000010068f064 $ 1ldb_expr2 greet() —> () + 4 at repl.swift:2
frame #1: 0x000000010068f84e $ 1ldb_exprd4 main + 94 at repl.swift:4
frame #2: 0x0000000100000e00 repl _swift _mh_execute_header + 3584

frame #3: 0x00007fffd408d285 libdyld.dylib start + 1

$ swift
Welcome to Apple Swift version 3.0. Type :help for assistance.
1>

$ swift

Welcome to Apple Swift version 3.0. Type :help for assistance.
1>

(1Lldb)

$ swift

Welcome to Apple Swift version 3.0. Type :help for assistance.
1>

(Lldb) repl
1>

| LDB as a Commanad-Line Tool

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

- Provide a file containing LLDB commands

Lldb ——source <filename>

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

- Provide a file containing LLDB commands

Lldb ——source <filename>

- Provide LLDB commands without requiring a file

Lldb —one-1line <command>

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

- Provide a file containing LLDB commands

Lldb ——source <filename>

- Provide LLDB commands without requiring a file

Lldb ——one-1line <command> -0 <command2=

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

- Provide a file containing LLDB commands

Lldb ——source <filename>

- Provide LLDB commands without requiring a file

Lldb ——one-1line <command> -0 <command2=

- Run a series of commands and exit — unless target crashes

Lldb ——batch —-—-source <filename>

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

- Provide a file containing LLDB commands

Lldb ——source <filename>

- Provide LLDB commands without requiring a file

Lldb ——one-1line <command> -0 <command2=

- Run a series of commands and exit — unless target crashes

while true:; lldb —--batch ——source <filename>: done

| LDB as a Commanad-Line Tool

[deal for automating debugging tasks

- Provide a file containing LLDB commands

Lldb ——source <filename>

- Provide LLDB commands without requiring a file

Lldb ——one-1line <command> -0 <command2=

- Run a series of commands and exit — unless target crashes

while true:; lldb —--batch ——source <filename>: done

Review Lldb ——help for details

Xcode 8 and LLDB: Distinct Processes

.. and it's completely transparent

Xcode 8 and LLDB: Distinct Processes

.. and it's completely transparent

Multiple debugger versions supported

+ Debugger selected automatically

Xcode 8 and LLDB: Distinct Processes

.. and it's completely transparent

Multiple debugger versions supported
+ Debugger selected automatically

- Swift 3 uses latest debugger
- As does pure Objective-C and C++

Xcode 8 and LLDB: Distinct Processes

.. and it's completely transparent

Multiple debugger versions supported
+ Debugger selected automatically

- Swift 3 uses latest debugger
- As does pure Objective-C and C++
- Swift 2.3 uses Xcode 73.1-era debugger

Xcode 8 and LLDB: Distinct Processes

.. and it's completely transparent

Multiple debugger versions supported
+ Debugger selected automatically

- Swift 3 uses latest debugger
- As does pure Objective-C and C++
- Swift 2.3 uses Xcode 73.1-era debugger

- Open source Swift uses matching debugger

Xcode 8 and LLDB: Distinct Processes

.. and it's completely transparent

Multiple debugger versions supported
+ Debugger selected automatically

- Swift 3 uses latest debugger
- As does pure Objective-C and C++
- Swift 2.3 uses Xcode 73.1-era debugger

- Open source Swift uses matching debugger

Xcode gracefully recovers when LLDB cannot

Customization and Introspection

Enrico Granata

Debugger Customization

Debugger Customization

Customize your debugger for greater awesomeness

Debugger Customization

Customize your debugger for greater awesomeness
Command aliases
Custom commands

Data formatters

Debugger Customization

Customize your debugger for greater awesomeness
Command aliases

Custom commands

Data formatters

Stepping actions

Command Aliases

Command Aliases

Create shorter syntax for frequent actions

Command Aliases

Create shorter syntax for frequent actions

Customize help text

(11ldb) command alias

(1ldb) command alias -h "Run a command in the UNIX shell."

(1ldb) command alias —-h "Run a command in the UNIX shell." ——

(LLldb) command alias —-h "Run a command in the UNIX shell." —— shell

(LLldb) command alias —-h "Run a command in the UNIX shell." —— shell

(Lldb) command alias -h "Run a command in the UNIX shell." —-- shell platform shell

11d

11d

n) command alias —h "Run a command in the UNIX shell." —— shell platform shell

D)

11d

11d

n) command alias —h "Run a command in the UNIX shell." —— shell platform shell

0) help shell

(Lldb) command alias -h "Run a command in the UNIX shell.'" —— shell platform shell
(LLldb) help shell

Run a command in the UNIX shell. This command takes 'raw' input (no need to quote stuff).

(1ldb)

(Lldb) command alias -h "Run a command in the UNIX shell.'" —— shell platform shell
(LLldb) help shell

Run a command in the UNIX shell. This command takes 'raw' input (no need to quote stuff).

(11ldb) shell whoami

(Lldb) command alias -h "Run a command in the UNIX shell.'" —— shell platform shell
(Lldb) help shell

Run a command in the UNIX shell. This command takes 'raw' input (no need to quote stuff).

(11ldb) shell whoami

egranata

Scripting LLDB in Python

Scripting LLDB in Python

LLDB comes with a Python APJ

Scripting LLDB in Python

LLDB comes with a Python APJ
Get started

Scripting LLDB in Python

LLDB comes with a Python APJ
Get started

- Previous WWDC sessions

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

Scripting LLDB in Python

LLDB comes with a Python APJ
Get started

- Previous WWDC sessions

- http://lldb.llvm.org

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

Scripting LLDB in Python

LLDB comes with a Python APJ
Get started

- Previous WWDC sessions
- http://lldb.llvm.org

Community doing amazing things

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

Example

Example

A command to retrieve the return value of the last function call

Example

A command to retrieve the return value of the last function call

Only works if you finish your way out of a function

Example

A command to retrieve the return value of the last function call

Only works if you finish your way out of a function

- And don't step!

(1ldb)

11d

11d

0) command script import ~/getreturn.py

D)

(Lldb) command script import ~/getreturn.py

(1ldb) finish

Return value: (unsigned int) $0 = 2416832525

(1ldb)

(Lldb) command script import ~/getreturn.py

(1ldb) finish

Return value: (unsigned int) $0 = 2416832525

(Lldb) bt

frame #15: 0x00007fff81lad32c9 AE dispatchEventAndSendReply(AEDesc constx, AEDescx) + 39
frame #16: 0x00007fff81ad31d5 AE aeProcessAppleEvent + 312
frame #17: 0x00007fff80285ae7 HIToolbox AEProcessAppleEvent + 55
frame #18: 0x00007fff7e9e5583 AppKit _DPSNextEvent + 1811
frame #19: 0x00007fff7f0eabbc AppKit —[NSApplication(NSEvent)
nextEventMatchingEventMask:untilDate: inMode:dequeue:] + 670
frame #20: 0x00007fff7e9d9bf2 AppKit —[NSApplication run] + 929
frame #21: 0x00007fff7e9a551f AppKit NSApplicationMain + 1237
frame #22: 0x0000000100001462 WWDCrash main(argc=1, argv=0x00007fff5fbff638) + 34 at
main.m:12
frame #23: 0x00007fff94dc0285 libdyld.dylib start + 1
frame #24: 0x00007fff94dc0285 libdyld.dylib start + 1
Lldb)

frame #15: 0x00007fff81lad32c9 AE dispatchEventAndSendReply(AEDesc constx, AEDescx) + 39
frame #16: 0x00007fff81ad31d5 AE aeProcessAppleEvent + 312
frame #17: 0x00007fff80285ae7 HIToolbox AEProcessAppleEvent + 55
frame #18: 0x00007fff7e9e5583 AppKit _DPSNextEvent + 1811
frame #19: 0x00007fff7f0eabbc AppKit —[NSApplication(NSEvent)
nextEventMatchingEventMask:untilDate: inMode:dequeue:] + 670
frame #20: 0x00007fff7e9d9bf2 AppKit —[NSApplication run] + 929
frame #21: 0x00007fff7e9a551f AppKit NSApplicationMain + 1237
frame #22: 0x0000000100001462 WWDCrash main(argc=1, argv=0x00007fff5fbff638) + 34 at
main.m:12
frame #23: 0x00007fff94dc0285 libdyld.dylib start + 1
frame #24: 0x00007fff94dc0285 libdyld.dylib start + 1
Lldb) getreturn

frame #15: 0x00007fff81lad32c9 AE dispatchEventAndSendReply(AEDesc constx, AEDescx) + 39
frame #16: 0x00007fff81ad31d5 AE aeProcessAppleEvent + 312
frame #17: 0x00007fff80285ae7 HIToolbox AEProcessAppleEvent + 55
frame #18: 0x00007fff7e9e5583 AppKit _DPSNextEvent + 1811
frame #19: 0x00007fff7f0eabbc AppKit —[NSApplication(NSEvent)
nextEventMatchingEventMask:untilDate: inMode:dequeue:] + 670
frame #20: 0x00007fff7e9d9bf2 AppKit —[NSApplication run] + 929
frame #21: 0x00007fff7e9a551f AppKit NSApplicationMain + 1237
frame #22: 0x0000000100001462 WWDCrash main(argc=1, argv=0x00007fff5fbff638) + 34 at
main.m:12
frame #23: 0x00007fff94dc0285 libdyld.dylib start + 1
frame #24: 0x00007fff94dc0285 libdyld.dylib start + 1
Lldb) getreturn
(unsigned int) $0 = 2416832525
Lldb)

GetLatestReturnCommand:
(, debugger, session_dict):

pass

(, debugger, command, exe_ctx, result):
retval = exe_ctx.thread.GetStopReturnValue()
T = retval.GetType().GetName()

N = retval.GetName()
V = retval.GetValue()
S = retval.GetSummary()

>>result,"(%s) %s = %s" % (T, N, S S \ V 1)

get_short_help() :

"Retrieve the last value returned by a function call on this thread."

__1ldb_init_module(debugger, *args):

debugger.HandleCommand('com scr add ——class command.GetLatestReturnCommand getreturn')

Persistent Customizations

Persistent Customizations

Save yourself from repetitive typing

Persistent Customizations

Save yourself from repetitive typing

Initialization file:

Persistent Customizations

Save yourself from repetitive typing

Initialization file:
~/ lldbinit

Persistent Customizations

Save yourself from repetitive typing

Initialization file:

~/lldbinit
Xcode specific: ~/ lldbinit-Xcode

Persistent Customizations

Save yourself from repetitive typing

Initialization file:

~/lldbinit
Xcode specific: ~/ lldbinit-Xcode

Python at startup: use command script import

Data Served Three Ways

Data Served Three Ways

D <expression>

DO <expression>

Data Served Three Ways

0O p <expression>

O po <expression>

Data Served Three Ways

0O p <expression> @ Full expressions

O po <expression>

Data Served Three Ways

0O p <expression> @ Full expressions

O po <expression> - Executed in target

Data Served Three Ways

0O p <expression> @ Full expressions

Q OO <e><pression> - Executed in target

- Not always possible

Data Served Three Ways

0O p <expression> @ - Full expressions

© O po <expression>

- Executed in target

- Not always possible

Data Served Three Ways

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

@ :Customized by type author

Data Served Three Ways

0O p <expression> @ - Full expressions

© O po <expression>

- Executed in target

- Not always possible

@ :Customized by type author

- Executed in target

Data Served Three Ways

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

. @ :Customized by type author
frame variable <local-name>

- Executed in target

Data Served Three Ways

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

. @ :Customized by type author
€ frame variable <local-name>

- Executed in target

Data Served Three Ways

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

. @ :Customized by type author
€ frame variable <local-name>

- Executed in target

€ Cxtemely predictable

Data Served Three Ways

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

. @ :Customized by type author
€ frame variable <local-name>

- Executed in target

€ Cxtemely predictable
- Limited syntax

“Ways
Many y

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

. @ :Customized by type author
€ frame variable <local-name>

- Executed in target

€ Cxtemely predictable
- Limited syntax

“Ways
Many y

0O p <expression> @ - Full expressions

Q @ OO <expre55ion> - Executed in target

- Not always possible

. @ :Customized by type author
€ frame variable <local-name>

- Executed in target

© parray <count> <expression> @ - Extremely predictable

. - Limited syntax
O O poarray <count> <expression>

Example

Example

C pointers have no notion of element count

(1ldb)

(Lldb) p dataset
(int *x) $0 = 0x0000000100200260
(Lldb)

(Lldb) p dataset

(int *) $0 = 0x0000000100200260
(1ldb) p dataset[0]

(int *x) $1 = 0

(1ldb)

(Lldb) p dataset

(int *) $0 = 0x0000000100200260
(1ldb) p dataset[0]

(int *x) $1 = 0

(Lldb) p dataset[1]

(int) $2 = 16842769

(1ldb)

(1ldb) parray 3 dataset

(1ldb) parray 3 dataset

(int %) $7 = 0x0000000100200260 1
(int) [0] = ©
(int) [1] = 16842769
(int) [2] = 33685538

}

(lldb)

(1ldb) parray “count® dataset
(int %) $8 = 0x0000000100200260 1
(int) [0] = ©
(int) [1] = 16842769
(int) [2] = 33685538
(int) [3] = 50528307
(int) [4] = 67371076

¥
(1ldb)

(1ldb)

(1ldb) poarray “numCustomers™ customers

(1ldb) poarray “numCustomers™ customers

{
Kate, 1 Infinite Loop, Cupertino, CA
Enrico, 700 Swift Street, Mountain View, CA
Sean, SF MoMA, San Francisco, CA
Jim, He Won't Tell Me Blvd., Somewhere, CA

}
(1ldb)

Exploring Memory Addresses

Exploring Memory Addresses

(Lldb) po 0x1003183e0
Enrico, 700 Swift Street, Mountain View, CA

Exploring Memory Addresses

(Lldb) po 0x1003183e0
Enrico, 700 Swift Street, Mountain View, CA

(Lldb) po 0x1003183e0
4298212320

Exploring Memory Addresses

Exploring Memory Addresses

(1Lldb) expr -0 ——language objc —— 0x1003183e0
Enrico, 700 Swift Street, Mountain View, CA

L ow-Level Debugging

L ow-Level Debugging

First rule: don't!

L ow-Level Debugging

First rule: don't!

Optimized code

L ow-Level Debugging

First rule: don't!
Optimized code
Third-party code with no debug info

L ow-Level Debugging

First rule: don't!
Optimized code
Third-party code with no debug info

Proceed at your own risk

Reading Registers

Read processor register values
+ All registers or only a few

+ Apply custom formats

(1ldb)

(1ldb) register read

(1ldb)

register read

General Purpose Registers:

(1ldb)

rax
rbx
rcx
rdx
rdi
rsi
rbp
rsp

r8

ro
rlo
ril
rl2
ri3
rl4

0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000020
0x0000000000000402
0x00007fff914ab/df
0x0000/fff5fbTcfo0
0x00007fff5fbfcf28
0x0000000000000010
0x0000000100100080
0x00000000TfTTfT00
0x0000000000000292
0x0000000000000000
0x00007fff5fbfcf70
0x0000000100096000

"'stringByAppendingString:"

Reading Registers

Reading Registers

Arguments often passed in registers

Reading Registers

Arguments often passed in registers

Mapping given by Application Binary Interface (ABI)

Reading Registers

Arguments often passed in registers
Mapping given by Application Binary Interface (ABI)

Debugger exposes $argl, $arg2 ... pseudo-registers

Reading Registers

Arguments often passed in registers

Mapping given by Application Binary Interface (ABI)

Debugger exposes $argl, $arg2 ... pseudo-registers

Map one-to-one for scalar/pointer arguments

Reading Registers

Arguments often passed in registers
Mapping given by Application Binary Interface (ABI)

Debugger exposes $argl, $arg2 ... pseudo-registers
Map one-to-one for scalar/pointer arguments

Available in C-family expressions

function(some, x thing, more) A

// great code

function(some, x thing, more) A

// great code

function(12, myBuffer, 'Q');

int function(int some, voidx thing, char more) {

// great code

function(12, myBuffer, 'Q');

$argl $arg2 $arg3

int function(int some, voidx thing, char more) {

// great code

function(12, myBuffer, 'Q');

$argl $arg2 $arg3

int function(int some, voidx thing, char more) {

// great code

function(12, myBuffer, 'Q');

$argl $arg2 $arg3

int function(int some, voidx thing, char more) {

// great code

function(12, myBuffer, 'Q');

$argl $arg2 $arg3

(1ldb)

(Lldb) frame select 0
frame #0: 0x00007fff8eae®4d7 libobjc.A.dylib objc_msgSend + 23
libobjc.A.dylib objc_msgSend:
—> Qx/fff8eaedd/ <+23>: andg (%Srdi), %ril@
Ox7fff8eae®dda <+26>: movg %rsi, %rill
Ox7fff8eae®d4dd <+29>: andl 0Ox18(%rll), %rilid
Ox7Tff8eaeldel <+33>: shlq $0x4, S%rill
(1Lldb)

(Lldb) frame select 0
frame #0: 0x00007fff8eae®4d7 libobjc.A.dylib objc_msgSend + 23
libobjc.A.dylib objc_msgSend:
—> Qx/fff8eaedd/ <+23>: andg (%Srdi), %ril@
Ox7fff8eae®dda <+26>: movg %rsi, %rill
Ox7fff8eae®d4dd <+29>: andl 0Ox18(%rll), %rilid
Ox7Tff8eaeldel <+33>: shlq $0x4, S%rill
(Lldb) register read $argl $arg?2
0x00000000000004d2
0x00007fff914ab/df '"stringByAppendingString:"

rdi

rsi
(1ldb)

(Lldb) frame select 0
frame #0: 0x00007fff8eae®4d7 libobjc.A.dylib objc_msgSend + 23
libobjc.A.dylib objc_msgSend:
—> Qx/fff8eaedd/ <+23>: andg (%Srdi), %ril@
Ox7fff8eae®dda <+26>: movg %rsi, %rill
Ox7fff8eae®d4dd <+29>: andl 0Ox18(%rll), %rilid
Ox7Tff8eaeldel <+33>: shlq $0x4, S%rill
(Lldb) register read $argl $arg?2
0x00000000000004d2
0x00007fff914ab/df '"stringByAppendingString:"

rdi

rsi
(Lldb) memory read $argl
error: memory read failed for 0x400
(1Lldb)

id objc_msgSend(id object, SEL selector, ..)

Sarg] Sarg?

id objc_msgSend(id object, SEL selector, ..)

objc_msgSend (,)

Sarg] Sarg?

id objc_msgSend(id object, SEL selector, ..)

objc_msgSend(@X00000000000004d2, stringByAppendingString:)

Sarg] Sarg2

id objc_msgSend(id object, SEL selector, ..)

objc_msgSend (@X00000000000004d2, stringByAppendingString:)

g

Sarg] Sarg?

Stack Frames

Stack Frames

Stack Frames

Stack Frames

-

-

Stack Frames

Stack Frames

(1ldb)

Stack Frames

(1ldb) up
(1ldb)

Stack Frames

.

(1ldb) up
(1ldb)

Stack Frames

e

Stack Frames

e

(1ldb)

Stack Frames

e

(1ldb) down
(1ldb)

Stack Frames

.

(1ldb) down
(1ldb)

Disassembply

The disassemble command shows disassembled machine code

- For the current frame, an address, or a function

Disassembply

The disassemble command shows disassembled machine code

- For the current frame, an address, or a function
Customize disassembly format:
- |Intel vs. AT&T

- Entirely custom format (disassembly-format setting)

Disassembply

The disassemble command shows disassembled machine code

» For the current frame, an address, or a function
Customize disassembly format:

- Intel vs. AT&T

- Entirely custom format (disassembly-format setting)
Show disassembly:

- When no source or no debug info

+ Always

- Never

(1ldb)

(Lldb) bt
*x thread #1: tid = 0x158321, 0x00007fff8eae®4d7 libobjc.A.dylib objc_msgSend + 23, queue =
'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x4d2)
*x frame #0: 0x00007fff8eae®4d7 libobjc.A.dylib objc_msgSend + 23
frame #1: 0x000000010000149f WWDCrash —[AppDelegate applicationDidFinishLaunching:]
(self=0x0000000100246890, _cmd="applicationDidFinishLaunching:",
aNotification=@"NSApplicationDidFinishLaunchingNotification") + 47 at AppDelegate.m:24

(1ldb)

(Lldb) bt
*x thread #1: tid = 0x158321, 0x00007fff8eae®d4d7 libobjc.A.dylib objc_msgSend + 23, queue =
'com.apple.main-thread', stop reason = EXC BAD_ ACCESS (code=1, address=0x4d2)
*x frame #0: 0x00007fff8eaed®4d7 libobjc.A.dylib objc _msgSend + 23
frame #1: 0x000000010000149f WWDCrash —[AppDelegate applicationDidFinishLaunching:]
(self=0x0000000100246890, _cmd="applicationDidFinishLaunching:",
aNotification=@"NSApplicationDidFinishLaunchingNotification") + 47 at AppDelegate.m:24

(1ldb)

(1ldb)

(1ldb) up

(Lldb)

(1ldb) up

(Lldb) disassemble ——frame

0x100001484 <+20>: callqg

0x100001489
0x100001490
0x100001497
0x10000149a

(1Lldb)

<+25>:
<+32>:
<+39>:

<+42>:

leaq
movqg
movqg

callqg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

getGlobalToken
@" 'magicText'"

"'stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

» getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

ni

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

» getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(Lldb) reg read

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

rax

callg
leaq
movq
mov(

callg

0x100001460

Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(Lldb) reg read

rax
(1ldb)

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

rax

callg
leaq
movq
mov(

callg

0x0000000000000402

0x100001460

Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(Lldb) reg read

rax
(1ldb) si

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

rax

callg
leaq
movq
mov(

callg

0x0000000000000402

0x100001460

Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movg
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

- .

getGlobalToken
@" 'magicText'"

"stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movg
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

- .

getGlobalToken
@" 'magicText'"

"stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

S1

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movg
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

- .

getGlobalToken
@" 'magicText'"

"stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
movg

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

getGlobalToken
@" 'magicText'"

"'stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
movg

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

getGlobalToken
@" 'magicText'"

"'stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

S1

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
movg

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

getGlobalToken
@" 'magicText'"

"'stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb)

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

callg
leaq
movq
mov(

callg

0x100001460
Oxb90 (%rip), S%rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

» symbol stub for: objc_msgSend

0x100001484
0x100001489
0x100001490
0x100001497
0x10000149a

(1ldb) reg read

<+20>:
<+25>:
<+32>:
<+39>:

<+42>:

$argl

callg
leaq
movq
mov(

callg

0x100001460

Oxb90 (%rip), %rdx
0x14a9(%rip), %rsi
%rax, S%rdi

0x1000014c2

, getGlobalToken
, @' 'magicText'"

, 'stringByAppendingString:"

symbol stub for: objc_msgSend

0x100001484 <+20>: callg ©0x100001460 ; getGlobalToken

0x100001489 <+25>: leaq 0xb90(S%rip), Srdx ; @' 'magicText'"

0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; 'stringByAppendingString:"
0x100001497 <+39>: movqgq S%rax, S%rdi

0x10000149a <+42>: callg 0x1000014c2 ; symbol stub for: objc_msgSend

(Lldb) reg read $argl
0x00000000000004d2

rdi
(1ldb)

L ow-Level Debugging

L ow-Level Debugging

getGlobalToken() returnsan invalid object

L ow-Level Debugging

getGlobalToken() returnsan invalid object
Subseguent usage causes a crash

CXpression Parsing

Better and more convenient

Sean Callanan

SDK Modules in Objective-C

SDK Modules in Objective-C

SDK Modules in Objective-C

SDK Modules in Objective-C

(Lldb) p [NSApplication sharedApplication].undoManager

error: property ‘undoManager’ not found on object of type ‘id’ @

SDK Modules in Objective-C

SDK Modules in Objective-C

SDK Modules in Objective-C

SDK Modules in Objective-C

(1Lldb) p @import AppKit @

(Lldb) p [NSApplication sharedApplication].undoManager
(NSUndoManager x* _ _nullable) $1 = 0x00007fb399629cd0

SDK Modules in Objective-C

(Lldb) p [NSApplication sharedApplication].undoManager
(NSUndoManager *x _ _nullable) $1 = 0x000071b399629cd0

SDK Modules in Objective-C

(Lldb) p [NSApplication sharedApplication].undoManager
(NSUndoManager *x _ _nullable) $1 = 0x000071b399629cd0

Controlled by

(Lldb) settings show target.auto-import-clang—-modules false

Reusable Coqe

Swift

Reusable Code

Swift

Reusable Code

Swift

Reusable Code

Swift

Reusable Code

Swift

Reusable Code

Swift

Defining Reusable Functions

Swift

Defining Reusable Functions

Swift

Defining Reusable Functions

Swift

Defining Reusable Functions

Swift
(1Lldb) expr
Enter expressions, then terminate with an empty line to evaluate:

: func $addTwoNumbers(a: Int, b: Int) —> Int {

return a + b

A W N B
—

(Lldb) expr $addTwoNumbers(a: 2, b: 3)
(Int) $RO = 5

Defining Reusable Functions

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C
(1Lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

: int $addTwoNumbers(int a, int b) {

return a + b

A W N B
—

error: function declaration 1s not allowed here

error: 1 error parsing expression

Why Not?

Swift

Why Not?

Swift

Why Not?

Swift

Why Not?

Swift

C, C++, and Objective-C

Why Not?

Swift

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C

Defining Reusable Functions

C, C++, and Objective-C

(Lldb) expr ——top-level ——
Enter expressions, then terminate with an empty line to evaluate:

int $addTwoNumbers(int a, int b) {

1:
2: return a + b;
3: F
4.

Defining Reusable Functions

C, C++, and Objective-C
(Lldb) expr ——top-level —

Enter expressions, then terminate with an empty line to evaluate:

: int $addTwoNumbers(int a, int b) {

return a + b:

A W N OB
-

(Lldb) expr $addTwoNumbers(2,3)
(Int) $RO = 5

Defining Reusable Closures

Swift

Defining Reusable Closures

Swift

Defining Reusable Closures

Swift

(Lldb) p let $add = { (a:Int, b:Int) in a+b }

(1ldb)

Defining Reusable Closures

Swift

(Lldb) p let $add = { (a:Int, b:Int) in a+b }

(Lldb) p $add(s.startIndex, s.count)
(Int) $RO = 6

Defining Reusable Closures
BlOCKS

Swift

(Lldb) p let $add = { (a:Int, b:Int) in a+b }

(Lldb) p $add(s.startIndex, s.count)
(Int) $RO = 6

C, C++, and Objective-C

(Lldb) p int (~$add) (int, int) =

~(int a, int b) { return a+b; }
(Lldb) p $add(r.location,r.length)

(int) $0 = 4

Defining Reusable Closures
Blocks and lambdas

C++

(Lldb) p auto $add = [](int a, int b)

{ return a+b; }
(Lldb) p $add(a.offset,a.elements().size())

(int) $0 = 4

Passing Blocks to Functions

Objective-C

Passing Blocks to Functions

Objective-C

Passing Blocks to Functions

Objective-C

(Lldb) p dispatch_sync(dispatch_get _global queue(0,0),
()1 printf("Hello world\n"); });

Hello world

Passing Blocks to Functions

Objective-C

Passing Blocks to Functions

Objective-C

Passing Blocks to Functions

Objective-C

(1Lldb) p dispatch_sync(dispatch_get _global queue(0,0),
()1 printf("Hello world\n") });

Hello world
Fixit applied, fixed expression was:
dispatch_sync(dispatch_get global_queue(0,0),
()1 printf("Hello world\n"); });

Fix-1ts Work in Swift, Too!

Swift

Fix-1ts Work in Swift, Too!

Swift

Fix-1ts Work in Swift, Too!

Swift

Fix-1ts Work in Swift, Too!

Swift

Fix-1ts Work in Swift, Too!

Swift

Fix-1ts Work in Swift, Too!

S

(Lldb) p let $myInt : Int? = 3
(Lldb) p $myInt + 2

(Int) $RO = 5
Fixit applied, fixed expression was:

$myInt! + 2

Controlled by

(1ldb) settings set target.auto-apply-fixits false
(1ldb) settings set target.notify-about-fixits false

Defining Reusable Types

Swift

Defining Reusable Types

Swift

Defining Reusable Types

Swift

Defining Reusable Types

Swift

Defining Reusable Types

S

(1ldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1: class $MyClass {

2 let m_a: Int

3: init(a: Int) { m a =a }
4: }

(Lldb) expr $MyClass(a:1)
($MyClass) $RO = 0x00000001010023e@ (m_a = 1)

Defining Reusable Types

C++

Defining Reusable Types

C++

Defining Reusable Types

C++

Defining Reusable Types

C++

Example
User-defined predicates

Objective-C

Example
User-defined predicates

Objective-C

Example
User-defined predicates

Objective-C

Example
User-defined predicates

Objective-C

Example
User-defined predicates

Objective-C

Example
User-defined predicates

Objective-C

Example
User-defined predicates

Objective-C

Breakpoints and Troubleshooting

Jim Ingham

Breakpoints

Breakpoints

Simple notion:

Breakpoints

Simple notion:

+ Breakpoints stop your program

Breakpoints

Simple notion:

- Breakpoints stop your program
LLDRB's view:

Breakpoints

Simple notion:
+ Breakpoints stop your program

LLDB's view:

- Breakpoints are searches for places to stop

Breakpoints

Simple notion:

+ Breakpoints stop your program

LLDB's view:

- Breakpoints are searches for places to stop

- Breakpoints specity search criteria

Breakpoints

Simple notion:

+ Breakpoints stop your program

LLDB's view:

- Breakpoints are searches for places to stop
- Breakpoints specity search criteria

» Search hits are actual places to stop: "Breakpoint Locations”

Xcode's Breakpoints

Xcode's Breakpoints

Xcode pbreakpoints are LLDB breakpoints

Xcode's Breakpoints

Xcode pbreakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

(1ldb)

Xcode's Breakpoints

Xcode pbreakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

(11ldb) break set ——1ine 36 ——file GreatCode.swift

Xcode's Breakpoints

Xcode pbreakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

(11ldb) break set ——1ine 36 ——file GreatCode.swift

Symbolic breakpoint; LLDB does:

(1ldb)

Xcode's Breakpoints

Xcode pbreakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

(11ldb) break set ——1ine 36 ——file GreatCode.swift

Symbolic breakpoint; LLDB does:

(11ldb) break set ——name Foo

Multiple Locations
When and why?

Multiple Locations
When and why?

All breakpoints are searches

Multiple Locations
When and why?

All breakpoints are searches

Multiple results are always possible

Multiple Locations
When and why?

All breakpoints are searches
Multiple results are always possible

Let's see some examples

Multiple Locations
When and why?

All breakpoints are searches
Multiple results are always possible
Let's see some examples

+ First for symbolic breakpoints:

(Lldb)

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(1ldb)

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —[NSThread main]
1.3: where =

Foundation - [NSBlockOperation main] \\\\\\

——name breakpoints use loose matching

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break 1list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break 1list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(11db) break set ——fullname main

N

Try a full-name breakpoint

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——fullname main
Breakpoint 2: 2 locations.

(1ldb)

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——fullname main
Breakpoint 2: 2 locations.

(1ldb) break 1list 2

2: name = 'main', locations = 2
2.1: where = Sketch main + 55 at SKTMain.m:17
2.2: where = libpcap.A.dylib main

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——fullname main
Breakpoint 2: 2 locations.

(1ldb) break 1list 2

2: name = 'main', locations = 2
2.1: where = Sketch main + 55 at SKTMain.m:17
2.2: where = libpcap.A.dylib main

Two shared libraries with the same symbol

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break 1list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——fullname main
Breakpoint 2: 2 locations.

(1ldb) break 1list 2

2: name = 'main', locations = 2
2.1: where = Sketch main + 55 at SKTMain.m:17
2.2: where = libpcap.A.dylib main

(1ldb)

(1ldb) break set ——name main
Breakpoint 1: 19 locations.
(11db) break list 1

1: name = 'main', locations = 19
1.1: where = Sketch main + 55 at SKTMain.m:17
1.2: where = Foundation —-[NSThread main]
1.3: where = Foundation —-[NSBlockOperation main]

(1ldb) break set ——fullname main
Breakpoint 2: 2 locations.

(1ldb) break 1list 2

2: name = 'main', locations = 2
2.1: where = Sketch main + 55 at SKTMain.m:17
2.2: where = libpcap.A.dylib main

(1ldb) break set ——fullname main —-shlib Sketch
Breakpoint 3: where = Sketch main + 55 at SKTMain.m:17, address = 0x0000000100018fe7

Multiple Locations
When and why?

Multiple Locations
When and why?

Fxample with file and line breakpoint locations:

(Lldb)

(11db) source list —--line 12
10 func callIt ()

11 {

12 my_object.useClosure() {() —> Void in

13 print ("Main's closure did something.")
14 }

(1ldb)

(11db) source list —--line 12
10 func callIt ()

11 {

12 my_object.useClosure() {() —> Void in

13 print ("Main's closure did something."')
14 }

(1ldb)

(1ldb) source list —--1line 12
10 func callIt ()

11 {

12 my_object.useClosure() {() —> Void in

13 print ("Main's closure did something.")
14 }

(Lldb) break set ——1line 12 ——file Example.swift

Breakpoint 1: 2 locations.
(lldb)

(11db) source list —--1line 12
func calllt ()

10
11
12
13
14

{

my_object.useClosure() {() —> Void in
print ("Main's closure did something.")

}

(Lldb) break set ——1line 12 ——file Example.swift

Breakpoint 1: 2 locations.
(1ldb) break list 1

1: file
1.1: w
1.2: w

Nere

Nere

Examp

e Examp’

'/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

le.callIt () —> () + 25 at Example.swift:12,

Examp |

e Examp’

le.(callIt () — ()).(closure #1) + 15 at Example.swift:13,

(11ldb) source list —--line 12
func calllt ()

10
11
12
13
14

{

my_object.useClosure() {() —> Void in

print ("Main's closure did s

ething.")

(Lldb) break set ——1line 12 —-file Examples/swift

Breakpoint 1: 2 locations.
(1Lldb) break list 1

1: file
1.1: w
1.2: w

Nere

Nere

Examp

Examp |

'/tmp/Example.swift’',

e Exampl

= 12, exact _match = 0, locations = 2
callIt () — () + 25 at Example.swift:12,

e Exam

le.(callIt () — ()).(closure #1) + 15 at Example.swift:13,

This is the closure function

(11db) source list —--1line 12
func calllt ()

10
11
12
13
14

{

my_object.useClosure() {() —> Void in
print ("Main's closure did something.")

}

(Lldb) break set ——1line 12 ——file Example.swift

Breakpoint 1: 2 locations.
(1ldb) break list 1

1: file
1.1: w
1.2: w

Nere

Nere

Examp

e Examp’

'/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

le.callIt () —> () + 25 at Example.swift:12,

Examp |

e Examp’

le.(callIt () — ()).(closure #1) + 15 at Example.swift:13,

(11ldb) source list —--line 12
func calllt ()

10
11
12
13
14

{

my_object.useClosure() {() —> Void in

print ("M

in's closure did something.")

(Lldb) break set ——1line 12 ——Xile Example.swift

Breakpoint 1: 2 locations.
(1Lldb) break list 1

1: file
1.1: w
1.2: w

Nere

Nere

Examp

'/tmp/Example.swift', lin

le Examp le.

Examp |

le Examp le.

12, exact _match = 0, locations = 2

This is the contribution to the containing function

(11db) source list —--1line 12
func calllt ()

10
11
12
13
14

{

my_object.useClosure() {() —> Void in
print ("Main's closure did something.")

}

(Lldb) break set ——1line 12 ——file Example.swift

Breakpoint 1: 2 locations.
(1ldb) break list 1

1: file
1.1: w
1.2: w

Nere

Nere

Examp

e Examp’

'/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

le.callIt () —> () + 25 at Example.swift:12,

Examp |

e Examp’

le.(callIt () — ()).(closure #1) + 15 at Example.swift:13,

Breakpoint Set Command

Breakpoint Set Command

breakpoint set command form:

(1ldb)

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:

- Sets the kind of search you are doing (file and line, symbol name, etc.)

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:
- Sets the kind of search you are doing (file and line, symbol name, etc.)

- Value is the data for the search

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:
- Sets the kind of search you are doing (file and line, symbol name, etc.)
+ Value is the data for the search

Other options:

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:

- Sets the kind of search you are doing (file and line, symbol name, etc.)
+ Value is the data for the search

Other options:

» lgnore count, condition, and so on

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:

- Sets the kind of search you are doing (file and line, symbol name, etc.)
+ Value is the data for the search

Other options:

» lgnore count, condition, and so on

+ Specify whether to break, not where. ..

Breakpoint Set Command

breakpoint set command form:

(1ldb) break set ——<Type> <Value> ——<OtherOptions>

lype option:

- Sets the kind of search you are doing (file and line, symbol name, etc.)
+ Value is the data for the search

Other options:

» lgnore count, condition, and so on

+ Specify whether to break, not where. ..

- Can be modified after the fact

Breakpoint Locations
Where to stop

Breakpoint Locations
Where to stop

Fach breakpoint location is a single search result

Breakpoint Locations
Where to stop

Fach breakpoint location is a single search result

+ Unique address where program execution may halt

Breakpoint Locations
Where to stop

Fach breakpoint location is a single search result
+ Unique address where program execution may halt

+ Specified by breakpoint and location numbers:

Breakpoint Locations
Where to stop

Fach breakpoint location is a single search result
+ Unique address where program execution may halt

+ Specified by breakpoint and location numbers:

- Written separated by a dot

Breakpoint Locations
Where to stop

Fach breakpoint location is a single search result
+ Unique address where program execution may halt

+ Specified by breakpoint and location numbers:

- Written separated by a dot
- 11, 2.2...

Options for Breakpoints and Locations

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options

- Conditions, commands, and so on

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
- Conditions, commands, and so on

Location options override breakpoint options

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
- Conditions, commands, and so on

Location options override breakpoint options

Disabling the breakpoint deactivates all locations

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
- Conditions, commands, and so on

Location options override breakpoint options

Disabling the breakpoint deactivates all locations

- Locations can be disabled individually

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
- Conditions, commands, and so on

Location options override breakpoint options

Disabling the breakpoint deactivates all locations

- Locations can be disabled individually

- Disabled locations stay disabled when disabling/enabling breakpoint

More Powertful Breakpoint Types

More Powertful Breakpoint Types

How to search for places to stop?

More Powertful Breakpoint Types

How to search for places to stop?

LLDB offers two spaces to search:

More Powertful Breakpoint Types

How to search for places to stop?

LLDB offers two spaces to search:

- Both use regular expressions to express search patterns

More Powertful Breakpoint Types

How to search for places to stop?

LLDB offers two spaces to search:
- Both use regular expressions to express search patterns

- Function name searches:

More Powertful Breakpoint Types

How to search for places to stop?

LLDB offers two spaces to search:
- Both use regular expressions to express search patterns
- Function name searches:

——func-regex (or —r)

More Powertful Breakpoint Types

How to search for places to stop?

LLDB offers two spaces to search:
- Both use regular expressions to express search patterns
- Function name searches:

——func-regex (or —r)

- Source text searches:

More Powertful Breakpoint Types

How to search for places to stop?

LLDB offers two spaces to search:
- Both use regular expressions to express search patterns
- Function name searches:
——func-regex (or —r)
+ Source text searches:

——source—-pattern-regexp (or —p)

Pattern Matching for Function Names

Pattern Matching for Function Names

Example problems:

Pattern Matching for Function Names

Example problems:

+ Stop on all methods implemented by a class

Pattern Matching for Function Names

Example problems:
+ Stop on all methods implemented by a class

- But not parent or subclasses

Pattern Matching for Function Names

Example problems:
+ Stop on all methods implemented by a class

- But not parent or subclasses

- Swift:

(1ldb)

Pattern Matching for Function Names

Example problems:
+ Stop on all methods implemented by a class

- But not parent or subclasses

- Swift:

(1Lldb) break set -r "\.ClassName\. .x*"

Pattern Matching for Function Names

Example problems:
+ Stop on all methods implemented by a class

- But not parent or subclasses

- Swift:
(1ldb) break set -r "\.ClassName\. .x"
- Objective-C:

(1ldb)

Pattern Matching for Function Names

Example problems:
+ Stop on all methods implemented by a class

- But not parent or subclasses

- Swift:
(1ldb) break set -r "\.ClassName\. .x"
- Objective-C:

(Lldb) break set -r "\ [ClassName \.x\]"

Pattern Matching for Function Names

Pattern Matching for Function Names

Example problems:

Pattern Matching for Function Names

Example problems:

- Stop on all functions in a given module:

(1ldb)

Pattern Matching for Function Names

Example problems:

- Stop on all functions in a given module:

(1Lldb) break set -r ".x" —-shlib MyModule

Pattern Matching for Function Names

Example problems:

- Stop on all functions in a given module:

(1Lldb) break set -r ".x" —-shlib MyModule

- Use with breakpoint commands to trace execution

Pattern Matching for Function Names

Example problems:

- Stop on all functions in a given module:

(1Lldb) break set -r ".x" —-shlib MyModule

- Use with breakpoint commands to trace execution

- This will slow down execution

Pattern Matching for Function Names

Example problems:

- Stop on all functions in a given module:

(1Lldb) break set -r ".x" —-shlib MyModule

- Use with breakpoint commands to trace execution
- This will slow down execution

- Disable locations as you hit them

Pattern Matching in Source

Pattern Matching in Source

Some constructs are obvious in source

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code
- Use of MACROS

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code
- Use of MACROS

- Very specific usages:

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code
» Use of MACROS
- Very specific usages:

- Places where you get a particular field from a pointer:

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code
» Use of MACROS
- Very specific usages:

- Places where you get a particular field from a pointer:

—>someFi1eld

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code
» Use of MACROS
- Very specific usages:

- Places where you get a particular field from a pointer:

->someF1ield
You can also use it to make your own markers:

Pattern Matching in Source

Some constructs are obvious in source

But hard to identity in generated code
» Use of MACROS
- Very specific usages:

- Places where you get a particular field from a pointer:

->someF1ield
You can also use it to make your own markers:

// Break here

Pattern Matching in Source

Command format:

Pattern Matching in Source

Command format:

(1ldb)

Pattern Matching in Source

Command format:

(Lldb) break set ——source-regexp "// Break here" —-f main.swift

Pattern Matching in Source

Command format:

(Lldb) break set ——source-regexp "// Break here" —-f main.swift

Patterns in code can mark useful spots to stop

Pattern Matching in Source

Command format:

(Lldb) break set ——source-regexp "// Break here" —-f main.swift

f

—f specifies files to search for matches

Pattern Matching in Source

Pattern Matching in Source

Example problem:

Pattern Matching in Source

Example problem:

+ In a complex function that can return from many places

Pattern Matching in Source

Example problem:
+ In a complex function that can return from many places

- Stop whenever it returns null

Pattern Matching in Source

Example problem:
+ In a complex function that can return from many places
- Stop whenever it returns null

——source-regexp—function (or =X) limits search to a function

Pattern Matching in Source

Example problem:
+ In a complex function that can return from many places
- Stop whenever it returns null

——source-regexp—function (or =X) limits search to a function

(Lldb) break set —p "return xnullptr" -X Foo::StateMachine -f Foo.cpp

Additional Breakpoint Options

Additional Breakpoint Options

Specity the language for a breakpoint

Additional Breakpoint Options

Specity the language for a breakpoint

+ Use the =——language (or —L) option to break set

Additional Breakpoint Options

Specity the language for a breakpoint
+ Use the =——language (or —L) option to break set

+ Useful in mixed Swift/Objective-C projects

Additional Breakpoint Options

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
+ By thread id:

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
+ By thread id:
——thread-1d (or—-t)

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
+ By thread id:
——thread-1d (or—-t)

+ By name for threads named by pthread_setname_np():

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
- By thread id:
——thread-1d (or—-t)
+ By name for threads named by pthread_setname_np():

——thread-name (or—T)

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
- By thread id:
——thread-1d (or—-t)
+ By name for threads named by pthread_setname_np():

——thread-name (or—T)

- To threads servicing a particular named queue:

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
- By thread id:
——thread-1d (or—-t)
+ By name for threads named by pthread_setname_np():

——thread-name (or—T)

- To threads servicing a particular named queue:

——queue—name (or —q)

Applying Options to Existing Breakpoints

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints

Can modity Xcode breakpoints as well

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modity Xcode breakpoints as well

Command is break modify

(Lldb) break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modity Xcode breakpoints as well

Command is break modify

+ Specifty breakpoints, breakpoint locations, or ranges of either

(1Lldb) break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modity Xcode breakpoints as well

Command is break modify

+ Specifty breakpoints, breakpoint locations, or ranges of either

(1Lldb) break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modity Xcode breakpoints as well

Command is break modify

+ Specifty breakpoints, breakpoint locations, or ranges of either

(1Lldb) break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modity Xcode breakpoints as well

Command is break modify

+ Specifty breakpoints, breakpoint locations, or ranges of either

(1Lldb) break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modity Xcode breakpoints as well

Command is break modify
+ Specifty breakpoints, breakpoint locations, or ranges of either

+ Defaults to last set breakpoint when none specified

(1Lldb) break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10

Storing Complex Breakpoints

Storing Complex Breakpoints

Xcode only persists breakpoints set through the Ul

Storing Complex Breakpoints

Xcode only persists breakpoints set through the Ul

+ For breakpoints in all projects, set in ~/.lldbinit

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store

Something hit early on

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store
Something hit early on

Add your breakpoints as commands

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store
Something hit early on

Add your breakpoints as commands

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store
Something hit early on

Add your breakpoints as commands

Swift Error Breakpoint
Exception Breakpoint...
Symbolic Breakpoint...

OpenGL ES Error Breakpoint
Test Fallure Breakpoint

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store
Something hit early on

Add your breakpoints as commands

Swift Error Breakpoint
Exception Breakpoint...

Symbolic Breakpoint.
OpenGL ES Error Bre:k,aint

Test Fallure Breakpoint

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store
Something hit early on

Add your breakpoints as commands

Storing Breakpoints
IN a Project

Make a breakpoint Xcode will store
Something hit early on

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints i

Condition

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action Add Action

I\/\ake d breaprlﬂt XCOde W|H StOre Options Automatically continue after evaluating actions

Something hit early on

Add your breakpoints as commands

£2 Symbolic Breakpoint

Storing Breakpoints i

Condition

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action Add Action

I\/\ake d breaprlﬂt XCOde W|H StOre Options Automatically continue after evaluating actions

Something hit early on

Add your breakpoints as commands

£2 Symbolic Breakpoint

Storing Breakpoints ol [oon

Condition

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action Add Action

I\/\ake d breaprlﬂt XCOde W|H StOre Options Automatically continue after evaluating actions

Something hit early on

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints e

Condition

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action Add Action

I\/\ake d breaprlﬂt XCOde W|H StOre Options Automatically continue after evaluating actions

Something hit early on

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints e

Condition

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action Add Action

I\/\ake d breaprlﬂt XCOde W|H StOre Options Automaticak\,ontinue after evaluating actions

Something hit early on

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints [

Module main

Condition | Sketch

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action | Debugger Command

Make a breakpoint Xcode will store R

SOmeth | ng hlt cd r‘y On Options Automatically continue after evaluating actions

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints [

Module main

Condition | Sketch

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action | Debugger Command

Make a breakpoint Xcode will store

SOmeth | ng hlt cd r‘y On Options Automatically continue after evaluating actions

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints N

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action | Debugger Command

Make a breakpoint Xcode will store

command source ~/SketchBreakpoints.lldb

SOmeth | ng hlt cd r‘y On Options Automatically continue after evaluating actions

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints N

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action | Debugger Command

Make a breakpoint Xcode will store

command source ~/SketchBreakpoints.lldb

SOmeth | ng hlt cd r‘y On Options Automatically continue after evaluating actions

Add your breakpoints as commands

2 Symbolic Breakpoint

Storing Breakpoints N

o [
| n a P rOJ eCt lgnore 0O ~ times before stopping

Action | Debugger Command

Make a breakpoint Xcode will store

command source ~/SketchBreakpoints.lldb

SOmeth | ng h |t cd r‘y On Options I Automatically continue after evaluating actions

Add your breakpoints as commands

Stepping

Targeted Stepping in Complex Situations

Targeted Stepping in Complex Situations

In modern languages, many simple expressions are actually function calls

Targeted Stepping in Complex Situations

In modern languages, many simple expressions are actually function calls

Often not interesting to step through..

Targeted Stepping in Complex Situations

In modern languages, many simple expressions are actually function calls
Often not interesting to step through..

This is a common scenario:

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(1ldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {
37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
39 my_cp.computed 1ivar_2,
40 my_cp.computed_ivar_3)
41 }
(1ldb)

| want to stop in doSomething

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(Lldb) step
Process 5108 stopped
* thread #1: tid = 0xaa@a3, function: stepping.ComputedProperties.computed_ivar_l.getter :
Swift.Int , stop reason = step 1in

frame #0: 0x00000001000010fd stepping stepping.ComputedProperties.computed ivar_1l.getter :
Swift.Int at stepping.swift:5

2 {

3 var computed_ivar_1 : Int {

4 get {
—-> 5 return 10

6 I3

7 I3

8 var computed_ivar_2 : Int {
(1ldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(1Lldb) step

Process 5108 stopped

* thread #1: tid = 0xaa@a3, function: stepping.ComputedProperties.computed_ivar_l.getter :

Swift.Int , stop reason = step 1in
frame #0: 0x00000001000010fd stepping stepping.ComfjutedProperties.computed ivar_1l.getter :

Swift.Int at stepping.swift:5

2 {

3 var computed_ivar_1 v Int {

4 get {
—-> 5 return 10

6 I3

7 I3

8 var computed_ivar_2 : Int {
(1ldb)

Instead | stopped in an accessor

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(Lldb) step
Process 5108 stopped
* thread #1: tid = 0xaa@a3, function: stepping.ComputedProperties.computed_ivar_l.getter :
Swift.Int , stop reason = step 1in

frame #0: 0x00000001000010fd stepping stepping.ComputedProperties.computed ivar_1l.getter :
Swift.Int at stepping.swift:5

2 {

3 var computed_ivar_1 : Int {

4 get {
—-> 5 return 10

6 I3

7 I3

8 var computed_ivar_2 : Int {
(1ldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(Lldb) step
Process 5108 stopped
* thread #1: tid = 0xaa@a3, function: stepping.ComputedProperties.computed_ivar_l.getter :
Swift.Int , stop reason = step 1in

frame #0: 0x00000001000010fd stepping stepping.ComputedProperties.computed ivar_1l.getter :
Swift.Int at stepping.swift:5

2 {

3 var computed_ivar_1 : Int {

4 get {
—-> 5 return 10

6 I3

7 I3

8 var computed_ivar_2 : Int {
(1ldb) finish

(1ldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(Lldb) step
Process 5108 stopped
* thread #1: tid = 0xaa@a3, function: stepping.ComputedProperties.computed_ivar_l.getter :
Swift.Int , stop reason = step 1in

frame #0: 0x00000001000010fd stepping stepping.ComputedProperties.computed ivar_1l.getter :
Swift.Int at stepping.swift:5

2 {

3 var computed_ivar_1 : Int {

4 get {
—-> 5 return 10

6 I3

7 I3

8 var computed_ivar_2 : Int {
(1ldb) finish

(1ldb) step

Targeted Stepping in Complex Situations

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?

Use the step command’s —=—step-in-target option:

(1ldb)

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?

Use the step command’s —=—step-in-target option:

(1ldb) step ——step-in-target doSomething

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?

Use the step command’s —=—step-in-target option:

(1ldb) step ——step-in-target doSomething

That almost works in this case:

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(1ldb)

Process 4971 stopped

* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason

breakpoint 1.1

frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
main () —> Void

35
36
37
38
39
40
41

{

}

let my _cp = ComputedProperties()

doSomething(my_cp.computed _ivar_1,
my_cp.computed_ivar_2,
my_cp.computed_ivar_3)

(Lldb) step —-step-in-target doSomething
Process 4971 stopped

* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason

step 1in

frame #0: 0x000000010000117a stepping stepping.main () —> () at stepping.swift:39

36
37
38
39
40
41
42

{

let my_cp = ComputedProperties()

doSomething(my_cp.computed ivar 1,
my_cp.computed_ivar_2,
my_cp.computed_ivar_3)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

(Lldb) step —-step-in-target doSomething
Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = step in
frame #0: 0x000000010000117a stepping stepping.main () —> () at stepping.swift:39
36 {

37 let my _cp = ComputedProperties()

38 doSomething(my_cp.computed ivar 1,
—> 39 my_cp.computed_1ivar_2,

40 my_cp.computed_ivar_3)

41 }

42

Well, at least | didn't end up in the accessor

Targeted Stepping in Complex Situations

Targeted Stepping in Complex Situations

Stepping is by source line

Targeted Stepping in Complex Situations

Stepping is by source line

This call spans multiple lines...

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Specity the end line number:

(1ldb)

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Specity the end line number:

(Lldb) step -t doSomething —-—end-linenumber 40

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Specity the end line number:

(Lldb) step -t doSomething —-—end-linenumber 40

Fasier: use the special token block

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Specity the end line number:

(Lldb) step -t doSomething —-—end-linenumber 40

Fasier: use the special token block

- Step with a safeguard around the current semantic block

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Specity the end line number:

(Lldb) step -t doSomething —-—end-linenumber 40

Fasier: use the special token block
- Step with a safeguard around the current semantic block

There's even an alias for this:

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Specity the end line number:

(Lldb) step -t doSomething —-—end-linenumber 40

Fasier: use the special token block
- Step with a safeguard around the current semantic block

There's even an alias for this:

sif stands for step into function

Process 4971 stopped

* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason

breakpoint 1.1

frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
main () —> Void

35
36
37
38
39
40
41

{

let my _cp = ComputedProperties()

doSomething(my_cp.computed _ivar_1,
my_cp.computed_ivar_2,
my_cp.computed_ivar_3)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () —> () , stop reason = breakpoint 1.1
frame #0: 0x0000000100001165 stepping stepping.main () —> () at stepping.swift:38
35 main () -> Void

36 {

37 let my cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,

39 my_cp.computed 1ivar_2,

40 my_cp.computed_ivar_3)

41 }

sif doSomething
Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.doSomething (Swift.Int, Swift.Int, Swift.Int) —>
Swift.Int , stop reason = step 1in
frame #0: 0x00000001000011c@® stepping stepping.doSomething (Swift.Int, Swift.Int, Swift.Int) —>
Swift.Int at stepping.swift:31

28 func
29 doSomething(_ one : Int, _ two: Int, _ three: Int) —> Int
30 {
-> 31 return one + two + three
32 I3
33

34 func

Troubleshooting

What Binaries Were Loaded?

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running

» | have built Release and Debug; which am | using now?

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
+ | have built Release and Debug; which am | using now?

+ | have a dSYM, is it getting read in?

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
» | have built Release and Debug; which am | using now?
» | have a dSYM, is it getting read in?

The command to query the binaries in your program is:

(1ldb)

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
» | have built Release and Debug; which am | using now?
» | have a dSYM, is it getting read in?

The command to query the binaries in your program is:

(1ldb) image list [<ModuleName>]

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
» | have built Release and Debug; which am | using now?

» | have a dSYM, is it getting read in?

The command to query the binaries in your program is:

- With no arguments, lists all binaries

(1ldb) image list [<ModuleName>]

(lldb)

image list Example
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/Mac0S/Example
/private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/Mac0S/Example
/private/tmp/Example/build/Debug/Example.app.dSYM/Contents/ResourcesyDWARF/Example

\
This is the path to the binary

image list Example
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/Mac0S/Example
/private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/Mac0S/Example
/private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

't is the debug build we've loaded!

image list Example
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/Mac0S/Example
/private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/Mac0S/Example
/private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

And here is the dSYM

Switt Debug Information

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module

- Ensures greater fidelity — good!

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module
- Ensures greater fidelity — good!

+ Ties the debugger to the compiler that built the module

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module
- Ensures greater fidelity — good!

+ Ties the debugger to the compiler that built the module
The binding between Objective-C modules and Swift is required by the debugger

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module

- Ensures greater fidelity — good!

+ Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger

+ LLDB has to reconstruct the Objective-C modules as originally built

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module

- Ensures greater fidelity — good!

+ Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger
+ LLDB has to reconstruct the Objective-C modules as originally built

TL:DR?

Switt Debug Information

In Swift, the debugger reads type information directly from the Switt module

- Ensures greater fidelity — good!

+ Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger
+ LLDB has to reconstruct the Objective-C modules as originally built

TL:DR?

- All Swift code with debug info needs to have been built locally

Optimized Code Debugging

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

- Don'tdo it if you don't have to

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
- Don'tdo it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

- Don'tdo it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
+ Most people who do it do it by accident

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

- Don'tdo it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
+ Most people who do it do it by accident

- LLDB will tell you it a .0 file was compiled with optimization

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

- Don'tdo it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:

+ Most people who do it do it by accident

- LLDB will tell you it a .0 file was compiled with optimization

+ When you stop in it

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

- Don'tdo it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:

+ Most people who do it do it by accident

- LLDB will tell you it a .0 file was compiled with optimization
+ When you stop in it

- Only once per binary with optimization:

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

- Don'tdo it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:

+ Most people who do it do it by accident

- LLDB will tell you it a .0 file was compiled with optimization
+ When you stop in it

- Only once per binary with optimization:

Func was compiled with optimization - stepping may behave oddly; variables may not be available.

Clang Module Debug Information

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information

- Can also use PCH files

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
- Can also use PCH files

+ Called Clang Module Debugging in Xcode Build Settings

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
- Can also use PCH files
+ Called Clang Module Debugging in Xcode Build Settings

+ Compiler flag —gmodu Les

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
+ Can also use PCH files

+ Called Clang Module Debugging in Xcode Build Settings

+ Compiler flag —gmodu Les

- (Can speed up compile times

Clang Module Debug Information

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

- Debug information depends on the module cache or PCH files

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

- Debug information depends on the module cache or PCH files

- Not part of your app or framework

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

- Debug information depends on the module cache or PCH files
- Not part of your app or framework

- dsymutil will join all the parts into the dSYM

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

- Debug information depends on the module cache or PCH files
- Not part of your app or framework
- dsymutil will join all the parts into the dSYM

- (Can't use it when shipping static archives

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

- Debug information depends on the module cache or PCH files
- Not part of your app or framework
- dsymutil will join all the parts into the dSYM
- (Can't use it when shipping static archives

- Deleted the module cache? Rebuild before debugging

Summary

Summary

LLDB is extremely customizable

Summary

Many ways to look at data

Summary

Expressions are flexible, more than just data inspection

Summary

Beyond the gutter: breakpoints rock

Summary

More than source-level debugging

Summary

+ Rich tools for exploring running code

More Information

https://developerapple.com/wwdadc16/417

Related Sessions

Visual Debugging with Xcode Presidio Wednesday 4:00PM
Thread Sanitizer and Static Analysis Mission Thursday 10:00AM
Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

