
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Xcode 8 edition

Developer Tools #WWDC16

Session 417

Debugging Tips and Tricks

Kate Stone
Enrico Granata
Sean Callanan
Jim Ingham

LLDB is Apple’s Debugger

LLDB in the Xcode debug console
• Xcode hosts app console + LLDB prompt

… and it’s everywhere you need it

LLDB is Apple’s Debugger

LLDB in the Xcode debug console
• Xcode hosts app console + LLDB prompt

… and it’s everywhere you need it

LLDB is Apple’s Debugger

LLDB in the Xcode debug console
• Xcode hosts app console + LLDB prompt

… and it’s everywhere you need it

LLDB is Apple’s Debugger

Scheme option to use standalone terminal

… and it’s everywhere you need it
NEW

LLDB is Apple’s Debugger

Scheme option to use standalone terminal

… and it’s everywhere you need it
NEW

LLDB is Apple’s Debugger

Scheme option to use standalone terminal

… and it’s everywhere you need it
NEW

LLDB is Apple’s Debugger

Scheme option to use standalone terminal
• Remainder of talk focused on LLDB commands

… and it’s everywhere you need it

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

LLDB is Apple’s Debugger

Scheme option to use standalone terminal
• Remainder of talk focused on LLDB commands

The Swift REPL is LLDB

… and it’s everywhere you need it

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

LLDB is Apple’s Debugger

Scheme option to use standalone terminal
• Remainder of talk focused on LLDB commands

The Swift REPL is LLDB
• :<command> enables any LLDB command

… and it’s everywhere you need it

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

protocol Comparable : Equatable { 
 @warn_unused_result func <(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func <=(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func >=(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func >(lhs: Self, rhs: Self) -> Swift.Bool 
}

 1>

:type lookup Comparable

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

protocol Comparable : Equatable { 
 @warn_unused_result func <(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func <=(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func >=(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func >(lhs: Self, rhs: Self) -> Swift.Bool 
}

 1>

func abs<T : SignedNumber>(_ x: T) -> T

 1>

:type lookup Comparable

:type lookup abs

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

protocol Comparable : Equatable { 
 @warn_unused_result func <(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func <=(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func >=(lhs: Self, rhs: Self) -> Swift.Bool 
 @warn_unused_result func >(lhs: Self, rhs: Self) -> Swift.Bool 
}

 1>

func abs<T : SignedNumber>(_ x: T) -> T

 1>

import SwiftShims 
struct UnsafePointer<Pointee> : Strideable, Hashable, _Pointer { 
 typealias Distance = Swift.Int 
 let _rawValue: Builtin.RawPointer 
 init(_ _rawValue: Builtin.RawPointer) 
 init(_ from: Swift.OpaquePointer) 
 …

:type lookup Comparable

:type lookup abs

:type lookup Swift

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

 2.

 3.

 4>

func greet() {

print("Welcome to WWDC16!")

}

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

 2.

 3.

 4>

Breakpoint 1: where = $__lldb_expr2`__lldb_expr_1.greet () -> () + 4 at repl.swift:2,

address = 0x0000000100558074
…
 4>

func greet() {

print("Welcome to WWDC16!")

}

:b 2

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

 2.

 3.

 4>

Breakpoint 1: where = $__lldb_expr2`__lldb_expr_1.greet () -> () + 4 at repl.swift:2,

address = 0x0000000100558074
…
 4>

Execution stopped at breakpoint. Enter LLDB commands to investigate (type help for

assistance.)
…
(lldb)

func greet() {

print("Welcome to WWDC16!")

}

:b 2

greet()

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

 2.

 3.

 4>

Breakpoint 1: where = $__lldb_expr2`__lldb_expr_1.greet () -> () + 4 at repl.swift:2,

address = 0x0000000100558074
…
 4>

Execution stopped at breakpoint. Enter LLDB commands to investigate (type help for

assistance.)
…
(lldb)

* thread #1: tid = 0xd698f, 0x000000010068f064 $__lldb_expr2`greet() -> () + 4 at 
repl.swift:2, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1 
 * frame #0: 0x000000010068f064 $__lldb_expr2`greet() -> () + 4 at repl.swift:2 
 frame #1: 0x000000010068f84e $__lldb_expr4`main + 94 at repl.swift:4 
 frame #2: 0x0000000100000e00 repl_swift`_mh_execute_header + 3584 
 frame #3: 0x00007fffd408d285 libdyld.dylib`start + 1

func greet() {

print("Welcome to WWDC16!")

}

:b 2

greet()

bt

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

(lldb)

:

$ swift  
Welcome to Apple Swift version 3.0. Type :help for assistance.

 1>

(lldb)

 1>

:

repl

LLDB as a Command-Line Tool

LLDB as a Command-Line Tool

Ideal for automating debugging tasks

LLDB as a Command-Line Tool

Ideal for automating debugging tasks
• Provide a file containing LLDB commands

 lldb --source <filename>

LLDB as a Command-Line Tool

Ideal for automating debugging tasks
• Provide a file containing LLDB commands

 lldb --source <filename>

• Provide LLDB commands without requiring a file

 lldb --one-line <command>

LLDB as a Command-Line Tool

Ideal for automating debugging tasks
• Provide a file containing LLDB commands

 lldb --source <filename>

• Provide LLDB commands without requiring a file

 lldb --one-line <command> -o <command2>

LLDB as a Command-Line Tool

Ideal for automating debugging tasks
• Provide a file containing LLDB commands

 lldb --source <filename>

• Provide LLDB commands without requiring a file

 lldb --one-line <command> -o <command2>

• Run a series of commands and exit – unless target crashes

 lldb --batch --source <filename>

LLDB as a Command-Line Tool

Ideal for automating debugging tasks
• Provide a file containing LLDB commands

 lldb --source <filename>

• Provide LLDB commands without requiring a file

 lldb --one-line <command> -o <command2>

• Run a series of commands and exit – unless target crashes

 lldb --batch --source <filename> while true; ; done

LLDB as a Command-Line Tool

Ideal for automating debugging tasks
• Provide a file containing LLDB commands

 lldb --source <filename>

• Provide LLDB commands without requiring a file

 lldb --one-line <command> -o <command2>

• Run a series of commands and exit – unless target crashes

 lldb --batch --source <filename> while true; ; done

Review lldb --help for details

… and it’s completely transparent
Xcode 8 and LLDB: Distinct Processes NEW

… and it’s completely transparent
Xcode 8 and LLDB: Distinct Processes

Multiple debugger versions supported
• Debugger selected automatically

NEW

… and it’s completely transparent
Xcode 8 and LLDB: Distinct Processes

Multiple debugger versions supported
• Debugger selected automatically
• Swift 3 uses latest debugger

- As does pure Objective-C and C++

NEW

… and it’s completely transparent
Xcode 8 and LLDB: Distinct Processes

Multiple debugger versions supported
• Debugger selected automatically
• Swift 3 uses latest debugger

- As does pure Objective-C and C++
• Swift 2.3 uses Xcode 7.3.1-era debugger

NEW

… and it’s completely transparent
Xcode 8 and LLDB: Distinct Processes

Multiple debugger versions supported
• Debugger selected automatically
• Swift 3 uses latest debugger

- As does pure Objective-C and C++
• Swift 2.3 uses Xcode 7.3.1-era debugger
• Open source Swift uses matching debugger

NEW

… and it’s completely transparent
Xcode 8 and LLDB: Distinct Processes

Multiple debugger versions supported
• Debugger selected automatically
• Swift 3 uses latest debugger

- As does pure Objective-C and C++
• Swift 2.3 uses Xcode 7.3.1-era debugger
• Open source Swift uses matching debugger

Xcode gracefully recovers when LLDB cannot

NEW

Customization and Introspection

Enrico Granata

Debugger Customization

Debugger Customization

Customize your debugger for greater awesomeness

Debugger Customization

Customize your debugger for greater awesomeness
Command aliases
Custom commands
Data formatters

Debugger Customization

Customize your debugger for greater awesomeness

NEW

Command aliases
Custom commands
Data formatters
Stepping actions

Command Aliases

Command Aliases

Create shorter syntax for frequent actions

Command Aliases

Create shorter syntax for frequent actions
Customize help text

NEW

(lldb) command alias

(lldb) command alias -h "Run a command in the UNIX shell."

(lldb) command alias -h "Run a command in the UNIX shell." --

(lldb) command alias -h "Run a command in the UNIX shell." -- shell

(lldb) command alias -h "Run a command in the UNIX shell." -- shell

(lldb) command alias -h "Run a command in the UNIX shell." -- shell platform shell

(lldb) command alias -h "Run a command in the UNIX shell." -- shell platform shell

(lldb)

(lldb) command alias -h "Run a command in the UNIX shell." -- shell platform shell

(lldb) help shell

(lldb) command alias -h "Run a command in the UNIX shell." -- shell platform shell

(lldb)

Run a command in the UNIX shell. This command takes 'raw' input (no need to quote stuff).

…

(lldb)

help shell

(lldb) command alias -h "Run a command in the UNIX shell." -- shell platform shell

(lldb)

Run a command in the UNIX shell. This command takes 'raw' input (no need to quote stuff).

…

(lldb)

help shell

shell whoami

(lldb) command alias -h "Run a command in the UNIX shell." -- shell platform shell

(lldb)

Run a command in the UNIX shell. This command takes 'raw' input (no need to quote stuff).

…

(lldb)

egranata

help shell

shell whoami

Scripting LLDB in Python

Scripting LLDB in Python

LLDB comes with a Python API

Scripting LLDB in Python

LLDB comes with a Python API
Get started

Scripting LLDB in Python

LLDB comes with a Python API
Get started
• Previous WWDC sessions

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

Scripting LLDB in Python

LLDB comes with a Python API
Get started
• Previous WWDC sessions
• http://lldb.llvm.org

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

Scripting LLDB in Python

LLDB comes with a Python API
Get started
• Previous WWDC sessions
• http://lldb.llvm.org
Community doing amazing things

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

Example

Example

A command to retrieve the return value of the last function call

Example

A command to retrieve the return value of the last function call
Only works if you finish your way out of a function

Example

A command to retrieve the return value of the last function call
Only works if you finish your way out of a function
• And don’t step!

(lldb)

(lldb)

(lldb)

command script import ~/getreturn.py

(lldb)

(lldb)

…

Return value: (unsigned int) $0 = 2416832525

…

(lldb)

command script import ~/getreturn.py

finish

(lldb)

(lldb)

…

Return value: (unsigned int) $0 = 2416832525

…

(lldb)

command script import ~/getreturn.py

finish

bt

 …

 frame #15: 0x00007fff81ad32c9 AE`dispatchEventAndSendReply(AEDesc const*, AEDesc*) + 39

 frame #16: 0x00007fff81ad31d5 AE`aeProcessAppleEvent + 312

 frame #17: 0x00007fff80285ae7 HIToolbox`AEProcessAppleEvent + 55

 frame #18: 0x00007fff7e9e5583 AppKit`_DPSNextEvent + 1811

 frame #19: 0x00007fff7f0eab6c AppKit`-[NSApplication(NSEvent)

_nextEventMatchingEventMask:untilDate:inMode:dequeue:] + 670

 frame #20: 0x00007fff7e9d9bf2 AppKit`-[NSApplication run] + 929

 frame #21: 0x00007fff7e9a551f AppKit`NSApplicationMain + 1237

 frame #22: 0x0000000100001462 WWDCrash`main(argc=1, argv=0x00007fff5fbff638) + 34 at

main.m:12

 frame #23: 0x00007fff94dc0285 libdyld.dylib`start + 1

 frame #24: 0x00007fff94dc0285 libdyld.dylib`start + 1

(lldb)

 …

 frame #15: 0x00007fff81ad32c9 AE`dispatchEventAndSendReply(AEDesc const*, AEDesc*) + 39

 frame #16: 0x00007fff81ad31d5 AE`aeProcessAppleEvent + 312

 frame #17: 0x00007fff80285ae7 HIToolbox`AEProcessAppleEvent + 55

 frame #18: 0x00007fff7e9e5583 AppKit`_DPSNextEvent + 1811

 frame #19: 0x00007fff7f0eab6c AppKit`-[NSApplication(NSEvent)

_nextEventMatchingEventMask:untilDate:inMode:dequeue:] + 670

 frame #20: 0x00007fff7e9d9bf2 AppKit`-[NSApplication run] + 929

 frame #21: 0x00007fff7e9a551f AppKit`NSApplicationMain + 1237

 frame #22: 0x0000000100001462 WWDCrash`main(argc=1, argv=0x00007fff5fbff638) + 34 at

main.m:12

 frame #23: 0x00007fff94dc0285 libdyld.dylib`start + 1

 frame #24: 0x00007fff94dc0285 libdyld.dylib`start + 1

(lldb) getreturn

 …

 frame #15: 0x00007fff81ad32c9 AE`dispatchEventAndSendReply(AEDesc const*, AEDesc*) + 39

 frame #16: 0x00007fff81ad31d5 AE`aeProcessAppleEvent + 312

 frame #17: 0x00007fff80285ae7 HIToolbox`AEProcessAppleEvent + 55

 frame #18: 0x00007fff7e9e5583 AppKit`_DPSNextEvent + 1811

 frame #19: 0x00007fff7f0eab6c AppKit`-[NSApplication(NSEvent)

_nextEventMatchingEventMask:untilDate:inMode:dequeue:] + 670

 frame #20: 0x00007fff7e9d9bf2 AppKit`-[NSApplication run] + 929

 frame #21: 0x00007fff7e9a551f AppKit`NSApplicationMain + 1237

 frame #22: 0x0000000100001462 WWDCrash`main(argc=1, argv=0x00007fff5fbff638) + 34 at

main.m:12

 frame #23: 0x00007fff94dc0285 libdyld.dylib`start + 1

 frame #24: 0x00007fff94dc0285 libdyld.dylib`start + 1

(lldb)

(unsigned int) $0 = 2416832525

(lldb)

getreturn

class GetLatestReturnCommand:

 def __init__(self, debugger, session_dict):

 pass

 def __call__(self, debugger, command, exe_ctx, result):

 retval = exe_ctx.thread.GetStopReturnValue()

 T = retval.GetType().GetName()

 N = retval.GetName()

 V = retval.GetValue()

 S = retval.GetSummary()

 print >>result,"(%s) %s = %s" % (T, N, S if S else V if V else "")

 def get_short_help(self):

 return "Retrieve the last value returned by a function call on this thread."

def __lldb_init_module(debugger, *args):

 debugger.HandleCommand('com scr add --class command.GetLatestReturnCommand getreturn')

Persistent Customizations

Persistent Customizations

Save yourself from repetitive typing

Persistent Customizations

Save yourself from repetitive typing
Initialization file:

Persistent Customizations

Save yourself from repetitive typing
Initialization file:

~/.lldbinit

Persistent Customizations

Save yourself from repetitive typing
Initialization file:

~/.lldbinit
Xcode specific: ~/.lldbinit-Xcode

Persistent Customizations

Save yourself from repetitive typing
Initialization file:

~/.lldbinit
Xcode specific: ~/.lldbinit-Xcode

Python at startup: use command script import

Data Served Three Ways

Data Served Three Ways

p <expression>
po <expression>

Data Served Three Ways

p <expression>
po <expression>

e

e

Data Served Three Ways

p <expression>
po <expression>

+Full expressionse

e

e

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target

e

e

e

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

e

e

e

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

e

eo

e

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

±Customized by type author

e

eo

e

o

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

e

eo

e

o

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

e

eo

frame variable <local-name>

e

o

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

e

eo

f frame variable <local-name>

e

o

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

+Extremely predictable

e

eo

f frame variable <local-name>

e

o

f

Data Served Three Ways

p <expression>
po <expression>

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

+Extremely predictable
- Limited syntax

e

eo

f frame variable <local-name>

e

o

f

Data Served Three Ways

p <expression>
po <expression>

Many

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

+Extremely predictable
- Limited syntax

e

eo

f frame variable <local-name>

NEW

e

o

f

Data Served Three Ways

p <expression>
po <expression>

Many

+Full expressions
- Executed in target
- Not always possible

±Customized by type author
- Executed in target

+Extremely predictable
- Limited syntax

e

eo

f

e

eo

parray <count> <expression>
poarray <count> <expression>

frame variable <local-name>

NEW

e

o

f

Example

Example

C pointers have no notion of element count

(lldb)

(lldb)

(int *) $0 = 0x0000000100200260

(lldb)

p dataset

(lldb)

(int *) $0 = 0x0000000100200260

(lldb)

(int *) $1 = 0

(lldb)

p dataset

p dataset[0]

(lldb)

(int *) $0 = 0x0000000100200260

(lldb)

(int *) $1 = 0

(lldb)

(int) $2 = 16842769

…

p dataset

p dataset[0]

p dataset[1]

(lldb)

(lldb) parray 3 dataset

(lldb)

(int *) $7 = 0x0000000100200260 {

 (int) [0] = 0

 (int) [1] = 16842769

 (int) [2] = 33685538

}

(lldb)

parray 3 dataset

(lldb)

(lldb) parray `count` dataset

(lldb)

(int *) $8 = 0x0000000100200260 {

 (int) [0] = 0

 (int) [1] = 16842769

 (int) [2] = 33685538

 (int) [3] = 50528307

 (int) [4] = 67371076

}

(lldb)

parray `count` dataset

(lldb)

(lldb) poarray `numCustomers` customers

(lldb)

{

 Kate, 1 Infinite Loop, Cupertino, CA

 Enrico, 700 Swift Street, Mountain View, CA

 Sean, SF MoMA, San Francisco, CA

 Jim, He Won’t Tell Me Blvd., Somewhere, CA

}

(lldb)

poarray `numCustomers` customers

Exploring Memory Addresses

Exploring Memory Addresses

(lldb) po 0x1003183e0

Enrico, 700 Swift Street, Mountain View, CA

Exploring Memory Addresses

(lldb) po 0x1003183e0

Enrico, 700 Swift Street, Mountain View, CA

(lldb) po 0x1003183e0

4298212320

Exploring Memory Addresses

Exploring Memory Addresses

(lldb) expr -O --language objc -- 0x1003183e0

Enrico, 700 Swift Street, Mountain View, CA

Low-Level Debugging

Low-Level Debugging

First rule: don’t!

Low-Level Debugging

First rule: don’t!
Optimized code

Low-Level Debugging

First rule: don’t!
Optimized code
Third-party code with no debug info

Low-Level Debugging

First rule: don’t!
Optimized code
Third-party code with no debug info
Proceed at your own risk

Reading Registers

Read processor register values
• All registers or only a few
• Apply custom formats

(lldb)

(lldb) register read

(lldb)

General Purpose Registers:

 rax = 0x0000000000000000

 rbx = 0x0000000000000000

 rcx = 0x0000000000000000

 rdx = 0x0000000000000020

 rdi = 0x00000000000004d2

 rsi = 0x00007fff914ab7df "stringByAppendingString:"

 rbp = 0x00007fff5fbfcf60

 rsp = 0x00007fff5fbfcf28

 r8 = 0x0000000000000010

 r9 = 0x0000000100100080

 r10 = 0x00000000ffffff00

 r11 = 0x0000000000000292

 r12 = 0x0000000000000000

 r13 = 0x00007fff5fbfcf70

 r14 = 0x0000000100096000

…

(lldb)

register read

Reading Registers

Reading Registers

Arguments often passed in registers

Reading Registers

Arguments often passed in registers
Mapping given by Application Binary Interface (ABI)

Reading Registers

Arguments often passed in registers
Mapping given by Application Binary Interface (ABI)
Debugger exposes $arg1,$arg2 … pseudo-registers

Reading Registers

Arguments often passed in registers
Mapping given by Application Binary Interface (ABI)
Debugger exposes $arg1,$arg2 … pseudo-registers
Map one-to-one for scalar/pointer arguments

Reading Registers

Arguments often passed in registers
Mapping given by Application Binary Interface (ABI)
Debugger exposes $arg1,$arg2 … pseudo-registers
Map one-to-one for scalar/pointer arguments
Available in C-family expressions

int function(int some, void* thing, char more) {

 // great code

}

int function(int some, void* thing, char more) {

 // great code

}

 function(12, myBuffer, 'Q');12 myBuffer 'Q'

int function(int some, void* thing, char more) {

 // great code

}

 function(12, myBuffer, 'Q');12 myBuffer 'Q'

$arg1 $arg2 $arg3

int function(int some, void* thing, char more) {

 // great code

}

 function(12, myBuffer, 'Q');

12

myBuffer 'Q'

$arg1 $arg2 $arg3

int function(int some, void* thing, char more) {

 // great code

}

 function(12, myBuffer, 'Q');

12 myBuffer

'Q'

$arg1 $arg2 $arg3

int function(int some, void* thing, char more) {

 // great code

}

 function(12, myBuffer, 'Q');

12 myBuffer 'Q'

$arg1 $arg2 $arg3

(lldb)

(lldb)

frame #0: 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23

libobjc.A.dylib`objc_msgSend:

-> 0x7fff8eae04d7 <+23>: andq (%rdi), %r10

 0x7fff8eae04da <+26>: movq %rsi, %r11

 0x7fff8eae04dd <+29>: andl 0x18(%r11), %r11d

 0x7fff8eae04e1 <+33>: shlq $0x4, %r11

(lldb)

frame select 0

(lldb)

frame #0: 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23

libobjc.A.dylib`objc_msgSend:

-> 0x7fff8eae04d7 <+23>: andq (%rdi), %r10

 0x7fff8eae04da <+26>: movq %rsi, %r11

 0x7fff8eae04dd <+29>: andl 0x18(%r11), %r11d

 0x7fff8eae04e1 <+33>: shlq $0x4, %r11

(lldb)

 rdi = 0x00000000000004d2

 rsi = 0x00007fff914ab7df "stringByAppendingString:"

(lldb)

frame select 0

register read $arg1 $arg2

(lldb)

frame #0: 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23

libobjc.A.dylib`objc_msgSend:

-> 0x7fff8eae04d7 <+23>: andq (%rdi), %r10

 0x7fff8eae04da <+26>: movq %rsi, %r11

 0x7fff8eae04dd <+29>: andl 0x18(%r11), %r11d

 0x7fff8eae04e1 <+33>: shlq $0x4, %r11

(lldb)

 rdi = 0x00000000000004d2

 rsi = 0x00007fff914ab7df "stringByAppendingString:"

(lldb)

error: memory read failed for 0x400

(lldb)

frame select 0

register read $arg1 $arg2

memory read $arg1

stringByAppendingString:stringByAppendingString:0x00000000000004d20x00000000000004d2

id objc_msgSend(id object, SEL selector, …)

$arg1 $arg2

stringByAppendingString:stringByAppendingString:0x00000000000004d20x00000000000004d2

id objc_msgSend(id object, SEL selector, …)

$arg1 $arg2

 objc_msgSend(,)

stringByAppendingString:

stringByAppendingString:

0x00000000000004d2

0x00000000000004d2

id objc_msgSend(id object, SEL selector, …)

$arg1 $arg2

 objc_msgSend(,)

stringByAppendingString:

stringByAppendingString:

0x00000000000004d2

0x00000000000004d2

id objc_msgSend(id object, SEL selector, …)

$arg1 $arg2

 objc_msgSend(,)

Calling selector on a
bad object

Stack Frames

Stack Frames

objc_msgSendframe 0

Stack Frames

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSendframe 0

Stack Frames

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

frame N

frame 0

Stack Frames

Current Frame

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

(lldb)

Current Frame

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

(lldb)

(lldb)

Current Frame

up

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

(lldb)

(lldb)

Current Frame

up

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

Current Frame

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

(lldb)

Current Frame

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

(lldb)

(lldb)

Current Frame

down

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Stack Frames

(lldb)

(lldb)

Current Frame

down

main

NSApplicationMain

myFunction1

myFunction2

-didFinishLaunching:

objc_msgSend

Disassembly

The disassemble command shows disassembled machine code
• For the current frame, an address, or a function

Disassembly

The disassemble command shows disassembled machine code
• For the current frame, an address, or a function

Customize disassembly format:
• Intel vs. AT&T
• Entirely custom format (disassembly-format setting)

Disassembly

The disassemble command shows disassembled machine code
• For the current frame, an address, or a function

Customize disassembly format:
• Intel vs. AT&T
• Entirely custom format (disassembly-format setting)

Show disassembly:
• When no source or no debug info
• Always
• Never

(lldb)

(lldb)

* thread #1: tid = 0x158321, 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23, queue =

'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x4d2)

 * frame #0: 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23

 frame #1: 0x000000010000149f WWDCrash`-[AppDelegate applicationDidFinishLaunching:]

(self=0x0000000100246890, _cmd="applicationDidFinishLaunching:",

aNotification=@"NSApplicationDidFinishLaunchingNotification") + 47 at AppDelegate.m:24

…

(lldb)

bt

(lldb)

* thread #1: tid = 0x158321, 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23, queue =

'com.apple.main-thread', stop reason = EXC_BAD_ACCESS (code=1, address=0x4d2)

 * frame #0: 0x00007fff8eae04d7 libobjc.A.dylib`objc_msgSend + 23

 frame #1: 0x000000010000149f WWDCrash`-[AppDelegate applicationDidFinishLaunching:]

(self=0x0000000100246890, _cmd="applicationDidFinishLaunching:",

aNotification=@"NSApplicationDidFinishLaunchingNotification") + 47 at AppDelegate.m:24

…

(lldb)

bt

(lldb)

(lldb)

…

(lldb)

up

(lldb)

…

(lldb)

…

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

…

(lldb)

up

disassemble --frame

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb) ni

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb) reg read rax

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 rax = 0x00000000000004d2

(lldb)

reg read rax

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 rax = 0x00000000000004d2

(lldb)

reg read rax

si

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb) si

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb) si

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb) reg read $arg1

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

(lldb)

 rdi = 0x00000000000004d2

(lldb)

reg read $arg1

 0x100001484 <+20>: callq 0x100001460 ; getGlobalToken

 0x100001489 <+25>: leaq 0xb90(%rip), %rdx ; @"'magicText'"

 0x100001490 <+32>: movq 0x14a9(%rip), %rsi ; "stringByAppendingString:"

 0x100001497 <+39>: movq %rax, %rdi

 0x10000149a <+42>: callq 0x1000014c2 ; symbol stub for: objc_msgSend

Low-Level Debugging

Low-Level Debugging

getGlobalToken() returns an invalid object

Low-Level Debugging

getGlobalToken()
Subsequent usage causes a crash

returns an invalid object

Better and more convenient
Expression Parsing

Sean Callanan

SDK Modules in Objective-C

SDK Modules in Objective-C

(lldb)

SDK Modules in Objective-C

(lldb) p [NSApplication sharedApplication].undoManager

SDK Modules in Objective-C

(lldb) p [NSApplication sharedApplication].undoManager

error: property ‘undoManager’ not found on object of type ‘id’😡

SDK Modules in Objective-C

SDK Modules in Objective-C

(lldb)

SDK Modules in Objective-C

(lldb) p @import AppKit

(lldb)
🙄

SDK Modules in Objective-C

(lldb) p @import AppKit

(NSUndoManager * __nullable) $1 = 0x00007fb399629cd0

(lldb) p [NSApplication sharedApplication].undoManager
🙄

SDK Modules in Objective-C

(NSUndoManager * __nullable) $1 = 0x00007fb399629cd0

(lldb) p [NSApplication sharedApplication].undoManager

NEW

SDK Modules in Objective-C

(NSUndoManager * __nullable) $1 = 0x00007fb399629cd0

(lldb) p [NSApplication sharedApplication].undoManager

NEW

(lldb) settings show target.auto-import-clang-modules false

Controlled by

Reusable Code

Swift

Reusable Code

Swift

(lldb)

Reusable Code

Swift

(lldb) expr let a = 3; print(a)

3

(lldb)

Reusable Code

Swift

error: <EXPR>:3:1: error: use of unresolved identifier 'a'

(lldb) expr let a = 3; print(a)

3

expr a(lldb)

Reusable Code

Swift

error: <EXPR>:3:1: error: use of unresolved identifier 'a'

(lldb) expr let a = 3; print(a)

3

expr a(lldb)

Reusable Code

Swift

(lldb) expr let $a = 3; print($a)

3

expr $a

(Int) $R1 = 3

(lldb)

(lldb)

Defining Reusable Functions

Swift

(lldb)

Defining Reusable Functions

expr

Enter expressions, then terminate with an empty line to evaluate:

Swift

(lldb)

Defining Reusable Functions

expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

func $addTwoNumbers(a: Int, b: Int) -> Int {

 return a + b

}

(lldb)

Swift

(lldb)

Defining Reusable Functions

expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

func $addTwoNumbers(a: Int, b: Int) -> Int {

 return a + b

}

(lldb) expr $addTwoNumbers(a: 2, b: 3)

(Int) $R0 = 5

Swift

(lldb)

Defining Reusable Functions

C, C++, and Objective-C

(lldb)

Defining Reusable Functions

expr

Enter expressions, then terminate with an empty line to evaluate:

C, C++, and Objective-C

(lldb)

Defining Reusable Functions

expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

int $addTwoNumbers(int a, int b) {

 return a + b

}

C, C++, and Objective-C

(lldb)

Defining Reusable Functions

expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

int $addTwoNumbers(int a, int b) {

 return a + b

}

error: function declaration is not allowed here

error: 1 error parsing expression

C, C++, and Objective-C

Why Not?

Swift

Why Not?

func functionYouAreStoppedIn() {

 func $addTwoNumbers(…) -> Int {

 }

}

Swift

Why Not?

func functionYouAreStoppedIn() {

 func $addTwoNumbers(…) -> Int {

 }

}

Swift

Why Not?

func functionYouAreStoppedIn() {

 func $addTwoNumbers(…) -> Int {

 }

}

void functionYouAreStoppedIn() {

 int $addTwoNumbers(…) {

 }

}

Swift

C, C++, and Objective-C

Why Not?

func functionYouAreStoppedIn() {

 func $addTwoNumbers(…) -> Int {

 }

}

void functionYouAreStoppedIn() {

 int $addTwoNumbers(…) {

 }

}

Swift

C, C++, and Objective-C

Defining Reusable Functions NEW

C, C++, and Objective-C

Defining Reusable Functions NEW

(lldb)

C, C++, and Objective-C

Defining Reusable Functions NEW

(lldb) expr --top-level --

Enter expressions, then terminate with an empty line to evaluate:

C, C++, and Objective-C

Defining Reusable Functions NEW

(lldb) expr --top-level --

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

int $addTwoNumbers(int a, int b) {

 return a + b;

}

(lldb)

C, C++, and Objective-C

Defining Reusable Functions NEW

(lldb) expr --top-level --

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

int $addTwoNumbers(int a, int b) {

 return a + b;

}

(lldb) expr $addTwoNumbers(2,3)

(Int) $R0 = 5

C, C++, and Objective-C

Swift

Defining Reusable Closures

Swift

Defining Reusable Closures

(lldb)

Swift

Defining Reusable Closures

(lldb)

(lldb) p let $add = { (a:Int, b:Int) in a+b }

Swift

Defining Reusable Closures

p $add(s.startIndex, s.count)(lldb)

(lldb) p let $add = { (a:Int, b:Int) in a+b }

(Int) $R0 = 6

C, C++, and Objective-C

Swift

Defining Reusable Closures

(lldb) p int (^$add)(int, int) =

 ^(int a, int b) { return a+b; }
(lldb) p $add(r.location,r.length)

(int) $0 = 4

(lldb) p let $add = { (a:Int, b:Int) in a+b }

(lldb) p $add(s.startIndex, s.count)

(Int) $R0 = 6

Blocks
NEW

C++
(lldb) p auto $add = [](int a, int b)

 { return a+b; }
(lldb) p $add(a.offset,a.elements().size())

(int) $0 = 4

Blocks and lambdas
Defining Reusable Closures NEW

Passing Blocks to Functions

Objective-C

(lldb)

Passing Blocks to Functions

Objective-C

(lldb) p dispatch_sync(dispatch_get_global_queue(0,0),

^(){ printf("Hello world\n"); });

Hello world

Passing Blocks to Functions NEW

Objective-C

Passing Blocks to Functions

(lldb) p dispatch_sync(dispatch_get_global_queue(0,0),

 ^(){ printf("Hello world\n") });

Objective-C

Passing Blocks to Functions

error: expected ';' after expression

error: 1 error parsing expression

(lldb) p dispatch_sync(dispatch_get_global_queue(0,0),

 ^(){ printf("Hello world\n") });

Objective-C

Passing Blocks to Functions

Hello world

 Fixit applied, fixed expression was:

 dispatch_sync(dispatch_get_global_queue(0,0),

 ^(){ printf("Hello world\n"); });

NEW

(lldb) p dispatch_sync(dispatch_get_global_queue(0,0),

 ^(){ printf("Hello world\n") });

Objective-C

Swift

Fix-Its Work in Swift, Too!

Swift

Fix-Its Work in Swift, Too!

(lldb)

Swift

Fix-Its Work in Swift, Too!

(lldb) p let $myInt : Int? = 3

(lldb)

Swift

Fix-Its Work in Swift, Too!

(lldb) p let $myInt : Int? = 3

(lldb) p $myInt + 2

Swift

Fix-Its Work in Swift, Too!

(lldb) p let $myInt : Int? = 3

(lldb) p $myInt + 2

(Int) $R0 = 5

 Fixit applied, fixed expression was:

 $myInt! + 2

Controlled by
(lldb) settings set target.auto-apply-fixits false

(lldb) settings set target.notify-about-fixits false

Swift

Fix-Its Work in Swift, Too!

(lldb) p let $myInt : Int? = 3

(lldb) p $myInt + 2

(Int) $R0 = 5

 Fixit applied, fixed expression was:

 $myInt! + 2

Defining Reusable Types

Swift

Defining Reusable Types

(lldb)

Swift

Defining Reusable Types

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

Swift

Defining Reusable Types

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

class $MyClass {

 let m_a: Int

 init(a: Int) { m_a = a }

}

(lldb)

Swift

Defining Reusable Types

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

class $MyClass {

 let m_a: Int

 init(a: Int) { m_a = a }

}

(lldb) expr $MyClass(a:1)

($MyClass) $R0 = 0x00000001010023e0 (m_a = 1)

Swift

Defining Reusable Types

(lldb)

C++

Defining Reusable Types

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

C++

Defining Reusable Types

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

class $MyClass {

 int m_a;

 $MyClass(int a) : m_a(a) { }

}

C++

(lldb)

Defining Reusable Types

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

class $MyClass {

 int m_a;

 $MyClass(int a) : m_a(a) { }

}

C++

(lldb) expr $MyClass(1)

($MyClass) $0 = (m_a = 1)

Objective-C

User-defined predicates
Example

(lldb)

Objective-C

User-defined predicates
Example

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

Objective-C

User-defined predicates
Example

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

NSPredicate *$p =

 [NSPredicate predicateWithBlock:

 ^(NSString *str, NSDictionary *bind) {

 return [str containsString:@"error"]; }]

Objective-C

User-defined predicates
Example

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

NSPredicate *$p =

 [NSPredicate predicateWithBlock:

 ^(NSString *str, NSDictionary *bind) {

 return [str containsString:@"error"]; }]

Objective-C

User-defined predicates
Example

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

NSPredicate *$p =

 [NSPredicate predicateWithBlock:

 ^(NSString *str, NSDictionary *bind) {

 return [str containsString:@"error"]; }]

(lldb)

Objective-C

User-defined predicates
Example

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

NSPredicate *$p =

 [NSPredicate predicateWithBlock:

 ^(NSString *str, NSDictionary *bind) {

 return [str containsString:@"error"]; }]

(lldb) po [messages filteredArrayUsingPredicate:$p]

Objective-C

User-defined predicates
Example

(lldb) expr

Enter expressions, then terminate with an empty line to evaluate:

1:

2:

3:

4:

NSPredicate *$p =

 [NSPredicate predicateWithBlock:

 ^(NSString *str, NSDictionary *bind) {

 return [str containsString:@"error"]; }]

(lldb) po [messages filteredArrayUsingPredicate:$p]

<__NSSingleObjectArrayI 0x100307f90>(

error parsing JSON

)

Breakpoints and Troubleshooting

Jim Ingham

Breakpoints

Breakpoints

Simple notion:

Breakpoints

Simple notion:
• Breakpoints stop your program

Breakpoints

Simple notion:
• Breakpoints stop your program

LLDB's view:

Breakpoints

Simple notion:
• Breakpoints stop your program

LLDB's view:
• Breakpoints are searches for places to stop

Breakpoints

Simple notion:
• Breakpoints stop your program

LLDB's view:
• Breakpoints are searches for places to stop
• Breakpoints specify search criteria

Breakpoints

Simple notion:
• Breakpoints stop your program

LLDB's view:
• Breakpoints are searches for places to stop
• Breakpoints specify search criteria
• Search hits are actual places to stop: "Breakpoint Locations"

Xcode's Breakpoints

Xcode's Breakpoints

Xcode breakpoints are LLDB breakpoints

Xcode's Breakpoints

(lldb)

Xcode breakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

Xcode's Breakpoints

(lldb) break set --line 36 --file GreatCode.swift

Xcode breakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

Xcode's Breakpoints

(lldb) break set --line 36 --file GreatCode.swift

Xcode breakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

(lldb)

Symbolic breakpoint; LLDB does:

Xcode's Breakpoints

(lldb) break set --line 36 --file GreatCode.swift

Xcode breakpoints are LLDB breakpoints
Created from editor gutter; LLDB does:

(lldb) break set --name Foo

Symbolic breakpoint; LLDB does:

When and why?
Multiple Locations

When and why?
Multiple Locations

All breakpoints are searches

When and why?
Multiple Locations

All breakpoints are searches
Multiple results are always possible

When and why?
Multiple Locations

All breakpoints are searches
Multiple results are always possible
Let's see some examples

When and why?
Multiple Locations

All breakpoints are searches
Multiple results are always possible
Let's see some examples
• First for symbolic breakpoints:

(lldb)

(lldb)

Breakpoint 1: 19 locations.

(lldb)

break set --name main

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

break set --name main

break list 1

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

break set --name main

break list 1

--name breakpoints use loose matching

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)

break set --name main

break list 1

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)

break set --name main

break list 1

break set --fullname main

Try a full-name breakpoint

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)
Breakpoint 2: 2 locations.
(lldb)

break set --name main

break list 1

break set --fullname main

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)
Breakpoint 2: 2 locations.
(lldb)
2: name = 'main', locations = 2
 2.1: where = Sketch`main + 55 at SKTMain.m:17
 2.2: where = libpcap.A.dylib`main

break set --name main

break list 1

break set --fullname main

break list 2

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)
Breakpoint 2: 2 locations.
(lldb)
2: name = 'main', locations = 2
 2.1: where = Sketch`main + 55 at SKTMain.m:17
 2.2: where = libpcap.A.dylib`main

break set --name main

break list 1

break set --fullname main

break list 2

Two shared libraries with the same symbol

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)
Breakpoint 2: 2 locations.
(lldb)
2: name = 'main', locations = 2
 2.1: where = Sketch`main + 55 at SKTMain.m:17
 2.2: where = libpcap.A.dylib`main
(lldb)

break set --name main

break list 1

break set --fullname main

break list 2

(lldb)

Breakpoint 1: 19 locations.

(lldb)

1: name = 'main', locations = 19
 1.1: where = Sketch`main + 55 at SKTMain.m:17
 1.2: where = Foundation`-[NSThread main]
 1.3: where = Foundation`-[NSBlockOperation main]
…

(lldb)
Breakpoint 2: 2 locations.
(lldb)
2: name = 'main', locations = 2
 2.1: where = Sketch`main + 55 at SKTMain.m:17
 2.2: where = libpcap.A.dylib`main
(lldb)
Breakpoint 3: where = Sketch`main + 55 at SKTMain.m:17, address = 0x0000000100018fe7

break set --name main

break list 1

break set --fullname main --shlib Sketch

break set --fullname main

break list 2

When and why?
Multiple Locations

When and why?
Multiple Locations

Example with file and line breakpoint locations:

(lldb)

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

source list --line 12

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

source list --line 12

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

Breakpoint 1: 2 locations.

(lldb)

source list --line 12

break set --line 12 --file Example.swift

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

Breakpoint 1: 2 locations.

(lldb)

1: file = '/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

 1.1: where = Example`Example.callIt () -> () + 25 at Example.swift:12, ...

 1.2: where = Example`Example.(callIt () -> ()).(closure #1) + 15 at Example.swift:13, ...

source list --line 12

break set --line 12 --file Example.swift

break list 1

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

Breakpoint 1: 2 locations.

(lldb)

1: file = '/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

 1.1: where = Example`Example.callIt () -> () + 25 at Example.swift:12, ...

 1.2: where = Example`Example.(callIt () -> ()).(closure #1) + 15 at Example.swift:13, ...

source list --line 12

break set --line 12 --file Example.swift

break list 1

This is the closure function

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

Breakpoint 1: 2 locations.

(lldb)

1: file = '/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

 1.1: where = Example`Example.callIt () -> () + 25 at Example.swift:12, ...

 1.2: where = Example`Example.(callIt () -> ()).(closure #1) + 15 at Example.swift:13, ...

source list --line 12

break set --line 12 --file Example.swift

break list 1

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

Breakpoint 1: 2 locations.

(lldb)

1: file = '/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

 1.1: where = Example`Example.callIt () -> () + 25 at Example.swift:12, ...

 1.2: where = Example`Example.(callIt () -> ()).(closure #1) + 15 at Example.swift:13, ...

source list --line 12

break set --line 12 --file Example.swift

break list 1

This is the contribution to the containing function

(lldb)
 10 func callIt ()
 11 {
 12 my_object.useClosure() {() -> Void in
 13 print ("Main's closure did something.")
 14 }
(lldb)

Breakpoint 1: 2 locations.

(lldb)

1: file = '/tmp/Example.swift', line = 12, exact_match = 0, locations = 2

 1.1: where = Example`Example.callIt () -> () + 25 at Example.swift:12, ...

 1.2: where = Example`Example.(callIt () -> ()).(closure #1) + 15 at Example.swift:13, ...

source list --line 12

break set --line 12 --file Example.swift

break list 1

Breakpoint Set Command

Breakpoint Set Command

(lldb)

breakpoint set command form:

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:
• Sets the kind of search you are doing (file and line, symbol name, etc.)

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:
• Sets the kind of search you are doing (file and line, symbol name, etc.)
• Value is the data for the search

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:
• Sets the kind of search you are doing (file and line, symbol name, etc.)
• Value is the data for the search

Other options:

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:
• Sets the kind of search you are doing (file and line, symbol name, etc.)
• Value is the data for the search

Other options:
• Ignore count, condition, and so on

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:
• Sets the kind of search you are doing (file and line, symbol name, etc.)
• Value is the data for the search

Other options:
• Ignore count, condition, and so on
• Specify whether to break, not where…

Breakpoint Set Command

(lldb) break set --<Type> <Value> --<OtherOptions>

breakpoint set command form:

Type option:
• Sets the kind of search you are doing (file and line, symbol name, etc.)
• Value is the data for the search

Other options:
• Ignore count, condition, and so on
• Specify whether to break, not where…
• Can be modified after the fact

Where to stop
Breakpoint Locations

Where to stop
Breakpoint Locations

Each breakpoint location is a single search result

Where to stop
Breakpoint Locations

Each breakpoint location is a single search result
• Unique address where program execution may halt

Where to stop
Breakpoint Locations

Each breakpoint location is a single search result
• Unique address where program execution may halt
• Specified by breakpoint and location numbers:

Where to stop
Breakpoint Locations

Each breakpoint location is a single search result
• Unique address where program execution may halt
• Specified by breakpoint and location numbers:

- Written separated by a dot

Where to stop
Breakpoint Locations

Each breakpoint location is a single search result
• Unique address where program execution may halt
• Specified by breakpoint and location numbers:

- Written separated by a dot
- 1.1, 2.2...

Options for Breakpoints and Locations

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
• Conditions, commands, and so on

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
• Conditions, commands, and so on

Location options override breakpoint options

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
• Conditions, commands, and so on

Location options override breakpoint options
Disabling the breakpoint deactivates all locations

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
• Conditions, commands, and so on

Location options override breakpoint options
Disabling the breakpoint deactivates all locations
• Locations can be disabled individually

Options for Breakpoints and Locations

Breakpoints and locations take the same generic options
• Conditions, commands, and so on

Location options override breakpoint options
Disabling the breakpoint deactivates all locations
• Locations can be disabled individually
• Disabled locations stay disabled when disabling/enabling breakpoint

More Powerful Breakpoint Types

More Powerful Breakpoint Types

How to search for places to stop?

More Powerful Breakpoint Types

How to search for places to stop?
LLDB offers two spaces to search:

More Powerful Breakpoint Types

How to search for places to stop?
LLDB offers two spaces to search:
• Both use regular expressions to express search patterns

More Powerful Breakpoint Types

How to search for places to stop?
LLDB offers two spaces to search:
• Both use regular expressions to express search patterns
• Function name searches:

More Powerful Breakpoint Types

How to search for places to stop?
LLDB offers two spaces to search:
• Both use regular expressions to express search patterns
• Function name searches:
--func-regex (or -r)

More Powerful Breakpoint Types

How to search for places to stop?
LLDB offers two spaces to search:
• Both use regular expressions to express search patterns
• Function name searches:
--func-regex (or -r)

• Source text searches:

More Powerful Breakpoint Types

How to search for places to stop?
LLDB offers two spaces to search:
• Both use regular expressions to express search patterns
• Function name searches:
--func-regex (or -r)

• Source text searches:
--source-pattern-regexp (or -p)

Pattern Matching for Function Names

Pattern Matching for Function Names

Example problems:

Pattern Matching for Function Names

Example problems:
• Stop on all methods implemented by a class

Pattern Matching for Function Names

Example problems:
• Stop on all methods implemented by a class
• But not parent or subclasses

Pattern Matching for Function Names

Example problems:
• Stop on all methods implemented by a class
• But not parent or subclasses

- Swift:

(lldb)

Pattern Matching for Function Names

Example problems:
• Stop on all methods implemented by a class
• But not parent or subclasses

- Swift:

break set -r "\.ClassName\..*"(lldb)

Pattern Matching for Function Names

Example problems:
• Stop on all methods implemented by a class
• But not parent or subclasses

- Swift:

break set -r "\.ClassName\..*"

- Objective-C:

(lldb)

(lldb)

Pattern Matching for Function Names

Example problems:
• Stop on all methods implemented by a class
• But not parent or subclasses

- Swift:

break set -r "\.ClassName\..*"

- Objective-C:

break set -r "\[ClassName \.*\]"

(lldb)

(lldb)

Pattern Matching for Function Names

Example problems:

Pattern Matching for Function Names

Example problems:
• Stop on all functions in a given module:

Pattern Matching for Function Names

(lldb)

Example problems:
• Stop on all functions in a given module:

Pattern Matching for Function Names

break set -r ".*" --shlib MyModule(lldb)

Example problems:
• Stop on all functions in a given module:

Pattern Matching for Function Names

break set -r ".*" --shlib MyModule(lldb)

- Use with breakpoint commands to trace execution

Example problems:
• Stop on all functions in a given module:

Pattern Matching for Function Names

break set -r ".*" --shlib MyModule(lldb)

- Use with breakpoint commands to trace execution
- This will slow down execution

Example problems:
• Stop on all functions in a given module:

Pattern Matching for Function Names

break set -r ".*" --shlib MyModule(lldb)

- Use with breakpoint commands to trace execution
- This will slow down execution
- Disable locations as you hit them

Pattern Matching in Source

Pattern Matching in Source

Some constructs are obvious in source

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code
• Use of MACROS

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code
• Use of MACROS
• Very specific usages:

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code
• Use of MACROS
• Very specific usages:

- Places where you get a particular field from a pointer:

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code
• Use of MACROS
• Very specific usages:

- Places where you get a particular field from a pointer:

->someField

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code
• Use of MACROS
• Very specific usages:

- Places where you get a particular field from a pointer:

->someField
You can also use it to make your own markers:

Pattern Matching in Source

Some constructs are obvious in source
But hard to identify in generated code
• Use of MACROS
• Very specific usages:

- Places where you get a particular field from a pointer:

->someField
You can also use it to make your own markers:

// Break here

Command format:

Pattern Matching in Source

Command format:

Pattern Matching in Source

(lldb)

Command format:

Pattern Matching in Source

break set --source-regexp "// Break here" -f main.swift(lldb)

Command format:

Pattern Matching in Source

break set --source-regexp "// Break here" -f main.swift(lldb)

Patterns in code can mark useful spots to stop

Command format:

Pattern Matching in Source

break set --source-regexp "// Break here" -f main.swift(lldb)

-f specifies files to search for matches

Pattern Matching in Source

Example problem:

Pattern Matching in Source

Example problem:
• In a complex function that can return from many places

Pattern Matching in Source

Example problem:
• In a complex function that can return from many places
• Stop whenever it returns null

Pattern Matching in Source

Example problem:
• In a complex function that can return from many places
• Stop whenever it returns null
--source-regexp-function (or -X) limits search to a function

Pattern Matching in Source

Example problem:
• In a complex function that can return from many places
• Stop whenever it returns null
--source-regexp-function (or -X) limits search to a function

Pattern Matching in Source

break set -p "return *nullptr" -X Foo::StateMachine -f Foo.cpp(lldb)

Additional Breakpoint Options

Additional Breakpoint Options

Specify the language for a breakpoint

Additional Breakpoint Options

Specify the language for a breakpoint
• Use the --language (or -L) option to break set

Additional Breakpoint Options

Specify the language for a breakpoint
• Use the --language (or -L) option to break set
• Useful in mixed Swift/Objective-C projects

Additional Breakpoint Options

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
• By thread id:

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
• By thread id:
--thread-id (or -t)

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
• By thread id:
--thread-id (or -t)

• By name for threads named by pthread_setname_np():

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
• By thread id:
--thread-id (or -t)

• By name for threads named by pthread_setname_np():

--thread-name (or -T)

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
• By thread id:
--thread-id (or -t)

• By name for threads named by pthread_setname_np():

--thread-name (or -T)

• To threads servicing a particular named queue:

Additional Breakpoint Options

Restricting a breakpoint to a specific thread:
• By thread id:
--thread-id (or -t)

• By name for threads named by pthread_setname_np():

--thread-name (or -T)

• To threads servicing a particular named queue:

--queue-name (or -q)

Applying Options to Existing Breakpoints

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well
Command is break modify

break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10(lldb)

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well
Command is break modify
• Specify breakpoints, breakpoint locations, or ranges of either

break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10(lldb)

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well
Command is break modify
• Specify breakpoints, breakpoint locations, or ranges of either

break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10(lldb)

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well
Command is break modify
• Specify breakpoints, breakpoint locations, or ranges of either

break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10(lldb)

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well
Command is break modify
• Specify breakpoints, breakpoint locations, or ranges of either

break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10(lldb)

Applying Options to Existing Breakpoints

Options can be set/modified on extant breakpoints
Can modify Xcode breakpoints as well
Command is break modify
• Specify breakpoints, breakpoint locations, or ranges of either
• Defaults to last set breakpoint when none specified

break modify -T ImportantThreads 1 2.1 4.1-4.5 7-10(lldb)

Storing Complex Breakpoints

Storing Complex Breakpoints

Xcode only persists breakpoints set through the UI

Storing Complex Breakpoints

Xcode only persists breakpoints set through the UI
• For breakpoints in all projects, set in ~/.lldbinit

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Symbolic Breakpoint…

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Example: “-[NSException raise]”

Example: “libSystem.B.dylib”Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Example: “-[NSException raise]”

Example: “libSystem.B.dylib”Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

Example: “libSystem.B.dylib”Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

SketchStoring Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

SketchStoring Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

Sketch

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

Sketch

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

Sketch

command source ~/SketchBreakpoints.lldb

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

Sketch

command source ~/SketchBreakpoints.lldb

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

main

Sketch

command source ~/SketchBreakpoints.lldb

Storing Breakpoints
in a Project
Make a breakpoint Xcode will store
Something hit early on
Add your breakpoints as commands

Stepping

Targeted Stepping in Complex Situations

Targeted Stepping in Complex Situations

In modern languages, many simple expressions are actually function calls

Targeted Stepping in Complex Situations

In modern languages, many simple expressions are actually function calls
Often not interesting to step through...

Targeted Stepping in Complex Situations

In modern languages, many simple expressions are actually function calls
Often not interesting to step through...
This is a common scenario:

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)

I want to stop in doSomething

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 5108 stopped
* thread #1: tid = 0xaa0a3, function: stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int , stop reason = step in
 frame #0: 0x00000001000010fd stepping`stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int at stepping.swift:5
 2 {
 3 var computed_ivar_1 : Int {
 4 get {
-> 5 return 10
 6 }
 7 }
 8 var computed_ivar_2 : Int {
(lldb)

step

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 5108 stopped
* thread #1: tid = 0xaa0a3, function: stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int , stop reason = step in
 frame #0: 0x00000001000010fd stepping`stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int at stepping.swift:5
 2 {
 3 var computed_ivar_1 : Int {
 4 get {
-> 5 return 10
 6 }
 7 }
 8 var computed_ivar_2 : Int {
(lldb)

step

Instead I stopped in an accessor

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 5108 stopped
* thread #1: tid = 0xaa0a3, function: stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int , stop reason = step in
 frame #0: 0x00000001000010fd stepping`stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int at stepping.swift:5
 2 {
 3 var computed_ivar_1 : Int {
 4 get {
-> 5 return 10
 6 }
 7 }
 8 var computed_ivar_2 : Int {
(lldb)

step

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 5108 stopped
* thread #1: tid = 0xaa0a3, function: stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int , stop reason = step in
 frame #0: 0x00000001000010fd stepping`stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int at stepping.swift:5
 2 {
 3 var computed_ivar_1 : Int {
 4 get {
-> 5 return 10
 6 }
 7 }
 8 var computed_ivar_2 : Int {
(lldb)
...
(lldb)

step

finish

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 5108 stopped
* thread #1: tid = 0xaa0a3, function: stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int , stop reason = step in
 frame #0: 0x00000001000010fd stepping`stepping.ComputedProperties.computed_ivar_1.getter :
Swift.Int at stepping.swift:5
 2 {
 3 var computed_ivar_1 : Int {
 4 get {
-> 5 return 10
 6 }
 7 }
 8 var computed_ivar_2 : Int {
(lldb)
...
(lldb)
...

step

finish

step

Targeted Stepping in Complex Situations

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?
Use the step command’s --step-in-target option:

(lldb)

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?
Use the step command’s --step-in-target option:

step --step-in-target doSomething(lldb)

Targeted Stepping in Complex Situations

Step into doSomething without stopping in accessors?
Use the step command’s --step-in-target option:

step --step-in-target doSomething

That almost works in this case:

(lldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = step in
 frame #0: 0x000000010000117a stepping`stepping.main () -> () at stepping.swift:39
 36 {
 37 let my_cp = ComputedProperties()
 38 doSomething(my_cp.computed_ivar_1,
-> 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
 42

step --step-in-target doSomething

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = step in
 frame #0: 0x000000010000117a stepping`stepping.main () -> () at stepping.swift:39
 36 {
 37 let my_cp = ComputedProperties()
 38 doSomething(my_cp.computed_ivar_1,
-> 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
 42

step --step-in-target doSomething

Well, at least I didn't end up in the accessor

Targeted Stepping in Complex Situations

Targeted Stepping in Complex Situations

Stepping is by source line

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...
Specify the end line number:

(lldb)

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...
Specify the end line number:

step -t doSomething --end-linenumber 40(lldb)

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...
Specify the end line number:

step -t doSomething --end-linenumber 40(lldb)

Easier: use the special token block

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...
Specify the end line number:

step -t doSomething --end-linenumber 40(lldb)

Easier: use the special token block
• Step with a safeguard around the current semantic block

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...
Specify the end line number:

step -t doSomething --end-linenumber 40(lldb)

Easier: use the special token block
• Step with a safeguard around the current semantic block

There's even an alias for this:

Targeted Stepping in Complex Situations

Stepping is by source line
This call spans multiple lines...
Specify the end line number:

step -t doSomething --end-linenumber 40(lldb)

Easier: use the special token block
• Step with a safeguard around the current semantic block

There's even an alias for this:
sif stands for step into function

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)

Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.main () -> () , stop reason = breakpoint 1.1
 frame #0: 0x0000000100001165 stepping`stepping.main () -> () at stepping.swift:38
 35 main () -> Void
 36 {
 37 let my_cp = ComputedProperties()
-> 38 doSomething(my_cp.computed_ivar_1,
 39 my_cp.computed_ivar_2,
 40 my_cp.computed_ivar_3)
 41 }
(lldb)
Process 4971 stopped
* thread #1: tid = 0x1c8535, function: stepping.doSomething (Swift.Int, Swift.Int, Swift.Int) ->
Swift.Int , stop reason = step in
 frame #0: 0x00000001000011c0 stepping`stepping.doSomething (Swift.Int, Swift.Int, Swift.Int) ->
Swift.Int at stepping.swift:31
 28 func
 29 doSomething(_ one : Int, _ two: Int, _ three: Int) -> Int
 30 {
-> 31 return one + two + three
 32 }
 33
 34 func

sif doSomething

Troubleshooting

What Binaries Were Loaded?

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
• I have built Release and Debug; which am I using now?

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
• I have built Release and Debug; which am I using now?
• I have a dSYM, is it getting read in?

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
• I have built Release and Debug; which am I using now?
• I have a dSYM, is it getting read in?

The command to query the binaries in your program is:

(lldb)

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
• I have built Release and Debug; which am I using now?
• I have a dSYM, is it getting read in?

The command to query the binaries in your program is:

image list [<ModuleName>](lldb)

What Binaries Were Loaded?

Sometimes you need to see exactly what binaries you are running
• I have built Release and Debug; which am I using now?
• I have a dSYM, is it getting read in?

The command to query the binaries in your program is:
• With no arguments, lists all binaries

image list [<ModuleName>](lldb)

(lldb)

(lldb)
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/MacOS/Example
 /private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example

(lldb)
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/MacOS/Example
 /private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example

This is the path to the binary

(lldb)
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/MacOS/Example
 /private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example

(lldb)
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/MacOS/Example
 /private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example

It is the debug build we've loaded!

(lldb)
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/MacOS/Example
 /private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example

(lldb)
[0] C9F4C7B9-7A81-3428-A1D3-A454B3A3C472 0x0000000100000000 /private/tmp/Example/build/Debug/
Example.app/Contents/MacOS/Example
 /private/tmp/Example/build/Debug/Example.app.dSYM/Contents/Resources/DWARF/Example

image list Example

And here is the dSYM

Swift Debug Information

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module
• Ensures greater fidelity – good!

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module
• Ensures greater fidelity – good!
• Ties the debugger to the compiler that built the module

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module
• Ensures greater fidelity – good!
• Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module
• Ensures greater fidelity – good!
• Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger
• LLDB has to reconstruct the Objective-C modules as originally built

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module
• Ensures greater fidelity – good!
• Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger
• LLDB has to reconstruct the Objective-C modules as originally built

TL;DR?

Swift Debug Information

In Swift, the debugger reads type information directly from the Swift module
• Ensures greater fidelity – good!
• Ties the debugger to the compiler that built the module

The binding between Objective-C modules and Swift is required by the debugger
• LLDB has to reconstruct the Objective-C modules as originally built

TL;DR?
• All Swift code with debug info needs to have been built locally

Optimized Code Debugging

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
• Most people who do it do it by accident

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
• Most people who do it do it by accident
• LLDB will tell you if a .o file was compiled with optimization

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
• Most people who do it do it by accident
• LLDB will tell you if a .o file was compiled with optimization
• When you stop in it

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
• Most people who do it do it by accident
• LLDB will tell you if a .o file was compiled with optimization
• When you stop in it
• Only once per binary with optimization:

Optimized Code Debugging

Enrico's Rule of Optimized Code Debugging:
• Don't do it if you don't have to

Corollary to Enrico's Rule of Optimized Code Debugging:
• Most people who do it do it by accident
• LLDB will tell you if a .o file was compiled with optimization
• When you stop in it
• Only once per binary with optimization:

Func was compiled with optimization - stepping may behave oddly; variables may not be available.

Clang Module Debug Information

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
• Can also use PCH files

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
• Can also use PCH files
• Called Clang Module Debugging in Xcode Build Settings

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
• Can also use PCH files
• Called Clang Module Debugging in Xcode Build Settings
• Compiler flag -gmodules

Clang Module Debug Information

Allows compiler to reuse module type repositories for debug information
• Can also use PCH files
• Called Clang Module Debugging in Xcode Build Settings
• Compiler flag -gmodules
• Can speed up compile times

Clang Module Debug Information

Clang Module Debug Information

Caveats, provisos, and quid pro quos:

Clang Module Debug Information

Caveats, provisos, and quid pro quos:
• Debug information depends on the module cache or PCH files

Clang Module Debug Information

Caveats, provisos, and quid pro quos:
• Debug information depends on the module cache or PCH files

- Not part of your app or framework

Clang Module Debug Information

Caveats, provisos, and quid pro quos:
• Debug information depends on the module cache or PCH files

- Not part of your app or framework
- dsymutil will join all the parts into the dSYM

Clang Module Debug Information

Caveats, provisos, and quid pro quos:
• Debug information depends on the module cache or PCH files

- Not part of your app or framework
- dsymutil will join all the parts into the dSYM
- Can't use it when shipping static archives

Clang Module Debug Information

Caveats, provisos, and quid pro quos:
• Debug information depends on the module cache or PCH files

- Not part of your app or framework
- dsymutil will join all the parts into the dSYM
- Can't use it when shipping static archives

• Deleted the module cache? Rebuild before debugging

Summary

Summary

LLDB is extremely customizable

Summary

LLDB is extremely customizable
Many ways to look at data

Summary

LLDB is extremely customizable
Many ways to look at data
Expressions are flexible, more than just data inspection

Summary

LLDB is extremely customizable
Many ways to look at data
Expressions are flexible, more than just data inspection
Beyond the gutter: breakpoints rock

Summary

LLDB is extremely customizable
Many ways to look at data
Expressions are flexible, more than just data inspection
Beyond the gutter: breakpoints rock
More than source-level debugging

Summary

LLDB is extremely customizable
Many ways to look at data
Expressions are flexible, more than just data inspection
Beyond the gutter: breakpoints rock
More than source-level debugging
• Rich tools for exploring running code

More Information

https://developer.apple.com/wwdc16/417

Related Sessions

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

Debugging with LLDB WWDC 2012

Advanced Debugging with LLDB WWDC 2013

