
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Waiting, looping, switching, widening, optimizing

Media #WWDC16

Session 503

Advances in AVFoundation Playback

Sam Bushell Media Systems Architect

AVFoundation

File Playback

Editing

ExportVideo Capture

Video Effects

Audio Mixing

Video Processing

Photo Capture

Network Playback

Metadata

Subtitles

Alternate Audio

AVFoundation

File Playback

Editing

ExportVideo Capture

Video Effects

Audio Mixing

Video Processing

Photo Capture

Network Playback

Metadata

Subtitles

Alternate Audio

AVFoundation

Kinds of Playback

4

Kinds of Playback

4

Local File file:///.../example.MOV

Kinds of Playback

4

Local File file:///.../example.MOV

Progressive Download https://example.com/example.MOV

Kinds of Playback

4

Local File file:///.../example.MOV

Progressive Download https://example.com/example.MOV

HTTP Live Streaming master playlist

Kinds of Playback

4

Local File file:///.../example.MOV

Progressive Download https://example.com/example.MOV

HTTP Live Streaming master playlist

video 6Mbit playlist
video 4Mbit playlist
video 2Mbit playlist
audio stereo playlist
audio surround playlist

Kinds of Playback

4

Local File file:///.../example.MOV

Progressive Download https://example.com/example.MOV

HTTP Live Streaming master playlist

video 6Mbit playlist
video 4Mbit playlist
video 2Mbit playlist
audio stereo playlist
audio surround playlist

segments
segments
segments
segments
segments

Overview

Overview

Automatic waiting for buffering

Overview

Automatic waiting for buffering
Simple way to loop playback

Overview

Automatic waiting for buffering
Simple way to loop playback
Playback refinements

Overview

Automatic waiting for buffering
Simple way to loop playback
Playback refinements
Wide color

Overview

Automatic waiting for buffering
Simple way to loop playback
Playback refinements
Wide color
Best practices for being awesome

Buffering
Please wait...

6

Media Playback Over the Internet

Playback is at the mercy of the network!
• Start too soon → playback may stall

• Start too late → user unhappy

• Start when likely to keep up → just right

Existing
AVPlayerItem Buffering State Properties

playbackLikelyToKeepUp

playbackBufferFull

playbackBufferEmpty

For progressive-download playback, in iOS 9
• Wait until playbackLikelyToKeepUp or playbackBufferFull before setting
AVPlayer.rate

For HLS, rules are simpler
• Set AVPlayer.rate and it will automatically wait for buffering before playback begins

AVPlayer in iOS 10 / macOS Sierra / tvOS 10

Same rules for progressive and HLS
• Set AVPlayer.rate when user clicks play
• Automatically waits to buffer to avoid stalling

If network drops and playback stalls, playback will automatically resume when buffered

NEW

App A

AVFoundation

AVKit MediaPlayer (deprecated)

AVFoundation AVFoundation

App B

App C

Autoplay or Autowait?

automaticallyWaitsToMinimizeStalling

waitingpaused playing

waitingpaused playing
play()

waitingpaused playing
play() likelyToKeepUp

waitingpaused playing
play() likelyToKeepUp

bufferEmpty

waitingpaused playing
play() likelyToKeepUp

pause()

bufferEmpty

waitingpaused playing
play() likelyToKeepUp

pause()

pause()

bufferEmpty

waitingpaused playing

playImmediately(atRate:)

play() likelyToKeepUp

pause()

pause()

bufferEmpty

playImmediately(atRate:)

Might not mean what you thought it meant
AVPlayer.rate

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

NEW

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

AVPlayer.reasonForWaitingToPlay

NEW

NEW

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

AVPlayer.reasonForWaitingToPlay

waiting

NEW

NEW

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

AVPlayer.reasonForWaitingToPlay

waiting

1.0

NEW

NEW

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

AVPlayer.reasonForWaitingToPlay

waiting

1.0

0.0

NEW

NEW

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

AVPlayer.reasonForWaitingToPlay

waiting

1.0

0.0

WaitingToPlayAtSpecifiedRateNEW

NEW

Might not mean what you thought it meant
AVPlayer.rate

AVPlayer.rate
the app's requested playback rate

AVPlayerItem.timebase.rate
the rate at which playback is actually occurring

AVPlayer.timeControlStatus
Paused, WaitingToPlayAtSpecifiedRate, Playing

AVPlayer.reasonForWaitingToPlay

waiting

1.0

0.0

WaitingToPlayAtSpecifiedRate

WaitingToMinimizeStallsReason

NEW

NEW

Demo
Autowait

Moritz Wittenhagen

rate vs timeControlStatus

AVPlayer.rate AVPlayer.timeControlStatus

0.0

1.0

1.0

waiting

paused

playing

Finding the Network Link Conditioner

Finding the Network Link Conditioner

Cautions

Cautions

Enabled automatically if app linked on or after iOS 10, OSX 10.12, tvOS 10
• AVPlayer.automaticallyWaitsToMinimizeStalling = true

Cautions

Enabled automatically if app linked on or after iOS 10, OSX 10.12, tvOS 10
• AVPlayer.automaticallyWaitsToMinimizeStalling = true

Opt out if using setRate(..., time:..., atHostTime:...) to synchronize
playback with external timeline
• AVPlayer.automaticallyWaitsToMinimizeStalling = false

• Otherwise, NSException

Cautions

Enabled automatically if app linked on or after iOS 10, OSX 10.12, tvOS 10
• AVPlayer.automaticallyWaitsToMinimizeStalling = true

Opt out if using setRate(..., time:..., atHostTime:...) to synchronize
playback with external timeline
• AVPlayer.automaticallyWaitsToMinimizeStalling = false

• Otherwise, NSException

Never use the player rate to project currentTime into the future
• Use currentItem's timebase rate for that instead

Made easier
Looping

When end reached, rewind?
How Do You Loop an AVPlayerItem?

AVPlayer

AVPlayerItem

When end reached, rewind?
How Do You Loop an AVPlayerItem?

AVPlayer

- AVPlayerItem

When end reached, rewind?
How Do You Loop an AVPlayerItem?

AVPlayerItemAVPlayerItem AVPlayerItem

Latency Preroll

When end reached, rewind?
How Do You Loop an AVPlayerItem?

AVPlayerItem

AVPlayerItem

AVPlayerItem

Preroll

AVQueuePlayer

AVPlayerItem

AVQueuePlayer

AVPlayerItem AVPlayerItem

AVQueuePlayer

AVPlayerItem

AVQueuePlayer

AVPlayerItem AVPlayerItem

AVAsset

AVPlayerItem

The "Treadmill"

AVQueuePlayer

AVPlayerItem AVPlayerItem

AVPlayerItem

The "Treadmill"

AVQueuePlayer

AVPlayerItem AVPlayerItem

AVPlayerItem

The "Treadmill"

AVPlayerItem

AVQueuePlayer

AVPlayerItem AVPlayerItem

AVPlayerItem

The "Treadmill"

AVPlayerItem

AVQueuePlayer

AVPlayerItem AVPlayerItem

AVPlayerItem

The "Treadmill"

AVPlayerItem

AVQueuePlayer

AVPlayerItem AVPlayerItem AVPlayerItem

// Looping using AVQueuePlayer

override func observeValue(forKeyPath keyPath: String?, of object: AnyObject?, change:

[NSKeyValueChangeKey : AnyObject]?, context: UnsafeMutablePointer<Void>?) {

 if context == &ObserverContexts.currentItem {

 guard let player = player else { return }

 if player.items().isEmpty {

 // Play queue emptied out due to bad player item. End looping.

 }

 else {

 if let itemRemoved = change?[.oldKey] as? AVPlayerItem {

 itemRemoved.seek(to: kCMTimeZero)

 stopObserving()

 player.insert(itemRemoved, after: nil)

 startObserving()

 }

 }

 }

 // else ...

}

// Looping using AVQueuePlayer

override func observeValue(forKeyPath keyPath: String?, of object: AnyObject?, change:

[NSKeyValueChangeKey : AnyObject]?, context: UnsafeMutablePointer<Void>?) {

 if context == &ObserverContexts.currentItem {

 guard let player = player else { return }

 if player.items().isEmpty {

 // Play queue emptied out due to bad player item. End looping.

 }

 else {

 if let itemRemoved = change?[.oldKey] as? AVPlayerItem {

 itemRemoved.seek(to: kCMTimeZero)

 stopObserving()

 player.insert(itemRemoved, after: nil)

 startObserving()

 }

 }

 }

 // else ...

}

// Looping using AVQueuePlayer

override func observeValue(forKeyPath keyPath: String?, of object: AnyObject?, change:

[NSKeyValueChangeKey : AnyObject]?, context: UnsafeMutablePointer<Void>?) {

 if context == &ObserverContexts.currentItem {

 guard let player = player else { return }

 if player.items().isEmpty {

 // Play queue emptied out due to bad player item. End looping.

 }

 else {

 if let itemRemoved = change?[.oldKey] as? AVPlayerItem {

 itemRemoved.seek(to: kCMTimeZero)

 stopObserving()

 player.insert(itemRemoved, after: nil)

 startObserving()

 }

 }

 }

 // else ...

}

// Looping using AVQueuePlayer

override func observeValue(forKeyPath keyPath: String?, of object: AnyObject?, change:

[NSKeyValueChangeKey : AnyObject]?, context: UnsafeMutablePointer<Void>?) {

 if context == &ObserverContexts.currentItem {

 guard let player = player else { return }

 if player.items().isEmpty {

 // Play queue emptied out due to bad player item. End looping.

 }

 else {

 if let itemRemoved = change?[.oldKey] as? AVPlayerItem {

 itemRemoved.seek(to: kCMTimeZero)

 stopObserving()

 player.insert(itemRemoved, after: nil)

 startObserving()

 }

 }

 }

 // else ...

}

AVPlayerLooper

AVQueuePlayer

AVAsset

AVPlayerLooper

AVPlayerItem

Template

NEW

AVPlayerLooper

AVQueuePlayer

AVAsset

AVPlayerItem AVPlayerItem AVPlayerItem

AVPlayerLooper

AVPlayerItem

Template

NEW

AVPlayerLooper

player = AVQueuePlayer()

playerLayer = AVPlayerLayer(player: player)

playerItem = AVPlayerItem(url: videoURL)

playerLooper = AVPlayerLooper(player: player, templateItem: playerItem)

player.play()

Demo
AVPlayerLooper

Make sure audio and video tracks are same length
Optimizing Movies for Looping

Video

Audio

Make sure audio and video tracks are same length
Optimizing Movies for Looping

Video

Audio

Video

Audio

Video

Audio

Make sure audio and video tracks are same length
Optimizing Movies for Looping

Video

Audio

Video

Audio

Video

Audio

Make sure audio and video tracks are same length
Optimizing Movies for Looping

Video

Audio

Video

Audio

Video

Audio

Under the hood
Playback Refinements

When Tracks Come and Go During Playback

Video

English Audio

English Subtitles

French Audio

Spanish Subtitles

When Tracks Come and Go During Playback

Video

English Audio

English Subtitles

French Audio

Spanish Subtitles

Where once there were glitches
Some More Smoothness

• Adding / Removing the only AVPlayerLayer on playing AVPlayer
• Changing subtitle language on playing AVPlayer
• Changing audio language on playing AVPlayer
• Manually disabling / enabling tracks on playing AVPlayer

Preparing for Wide Color Video

Color Space Tagging in Media Files

Color space information is part of the metadata of video tracks

Standard tag numbers defined in ISO/IEC 23001-8, "Coding Independent Code Points"

SD HD P3 D65
Color Primaries Rec. 601 Rec. 709 P3 D65

Transfer Characteristics Rec. 709 Rec. 709 Rec. 709

Y'CbCr Matrix Rec. 601 Rec. 709 Rec. 709

Detecting Wide Color Tags

Use AVMediaCharacteristicUsesWideGamutColorSpace

let wideGamutTracks = asset.tracks(

 withMediaCharacteristic:AVMediaCharacteristicUsesWideGamutColorSpace)

if wideGamutTracks.count > 0 {

 // use wide color aware processing

}

else {

 // use Rec 709 processing

}

NEW

Specifying Working Color Space

AVPlayerItemVideoOutput, AVAssetReaderOutput and AVAssetWriterInput
now support color space specification in outputSettings

let exampleSettings =

 [AVVideoColorPropertiesKey:

 [AVVideoColorPrimariesKey: AVVideoColorPrimaries_P3_D65,

 AVVideoTransferFunctionKey: AVVideoTransferFunction_ITU_R_709_2,

 AVVideoYCbCrMatrixKey: AVVideoYCbCrMatrix_ITU_R_709_2]]

let videoOutput = AVPlayerItemVideoOutput(outputSettings:exampleSettings)

let readerOutput = AVAssetReaderOutput(outputSettings:exampleSettings)

let writerInput = AVAssetWriterInput(mediaType:AVMediaTypeVideo, outputSettings:exampleSettings)

NEW

Preserving Wide Color Space

Alternatively, ask AVPlayerItemVideoOutput or AVAssetReaderOutput to keep
buffers in original color space via AVVideoAllowWideColorKey

let allowWideColorSettings = [AVVideoAllowWideColorKey:true]

let videoOutput = AVPlayerItemVideoOutput(outputSettings:allowWideColorSettings)

let readerOutput = AVAssetReaderOutput(outputSettings:allowWideColorSettings)

NEW

Specifying working color space
Video Composition

let videoComposition = AVMutableVideoComposition()

videoComposition.colorPrimaries = AVVideoColorPrimaries_P3_D65

videoComposition.colorTransferFunction = AVVideoTransferFunction_ITU_R_709_2

videoComposition.colorYCbCrMatrix = AVVideoYCbCrMatrix_ITU_R_709_2

NEW

Declaring wide color awareness
Custom Video Compositor NEW

class MyCustomVideoCompositor : AVVideoCompositing {

 // ...

 var supportsWideColorSourceFrames: Boolean { return true }

}

Explicitly Tagging Buffers

If you generate source buffers for rendering, you may need to tag them

CVBufferSetAttachment(pixelBuffer, kCVImageBufferColorPrimariesKey,

 kCVImageBufferColorPrimaries_P3_D65, kCVAttachmentMode_ShouldPropagate)

CVBufferSetAttachment(pixelBuffer, kCVImageBufferTransferFunctionKey,

 kCVImageBufferTransferFunction_ITU_R_709_2, kCVAttachmentMode_ShouldPropagate)

CVBufferSetAttachment(pixelBuffer, kCVImageBufferYCbCrMatrixKey,

 kCVImageBufferYCbCrMatrix_ITU_R_709_2, kCVAttachmentMode_ShouldPropagate)

writerAdaptor.append(pixelBuffer, withPresentationTime: PTS)

How can I make my videos start as fast as possible?
Best Practices for Playback

Speeding Up Local File Playback

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

playerItem)playerItem:

1. set up audio-only playback

Speeding Up Local File Playback

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

playerItem)playerItem:

1. set up audio-only playback

2. set up audio+video playback

Speeding Up Local File Playback

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

playerItem)playerItem:

player.replaceCurrentItemWithPlayerItem(playerItem)

Order Matters

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

)

playerItem

Ask for the final goal first

player.replaceCurrentItemWithPlayerItem(playerItem)

Order Matters

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

)

playerItem

Ask for the final goal first

player.replaceCurrentItemWithPlayerItem(playerItem)

Order Matters

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

)

playerItem

Ask for the final goal first

1. set up audio+video playbackplayer.replaceCurrentItemWithPlayerItem(playerItem)

Order Matters

let asset = AVURLAsset(url: url)

let playerItem = AVPlayerItem(asset: asset)

let player = AVPlayer(

let playerLayer = AVPlayerLayer(player: player)

)

playerItem

Ask for the final goal first

Best Practice

Configure AVPlayer and AVPlayerItem first
Connect AVPlayerLayer to AVPlayer,  
 or AVPlayerItemVideoOutput to AVPlayerItem
player.play()

player.replaceCurrentItemWithPlayerItem(playerItem)

Consider the network round-trips
Speeding Up HTTP Live Streaming

Consider the network round-trips
Speeding Up HTTP Live Streaming

Retrieve master playlist

App Server

Consider the network round-trips
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys

App Server

Consider the network round-trips
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys
Retrieve selected variant playlist

App Server

Consider the network round-trips
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys
Retrieve selected variant playlist
Retrieve segments

App Server

Consider the network round-trips
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys
Retrieve selected variant playlist
Retrieve segments

Can you do some of these before the user hits "play"?

App Server

Preloading the Master Playlist
Speeding Up HTTP Live Streaming

var asset = AVURLAsset(url: url)

asset.loadValuesAsynchronously(forKeys: ["duration"], completionHandler: nil)

Compress Playlists
Speeding Up HTTP Live Streaming

Compress Master Playlists and Variant Playlists with gzip
• Your server may be able to do this for you

Initiate key exchange earlier
Speeding Up FairPlay Streaming Startup

var asset = AVURLAsset(url: url)

asset.resourceLoader.preloadsEligibleContentKeys = true

Master playlist must contain SESSION-KEY declarations

What else can we do?
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys
Retrieve selected variant playlist
Retrieve segments

App Server

What else can we do?
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys
Retrieve selected variant playlist
Retrieve segments

App Server

Title Card}

What else can we do?
Speeding Up HTTP Live Streaming

Retrieve master playlist
Retrieve content keys
Retrieve selected variant playlist
Retrieve segments

App Server

Title Card}
Play}

Preload segments before playback
Speeding Up HTTP Live Streaming NEW

// on title card

var playerItem = AVPlayerItem(asset: asset)

playerItem.preferredForwardBufferDuration = CMTime(value: 5, timescale: 1)

let player = AVPlayer()

let playerLayer = AVPlayerLayer(player: player) // keep the layer hidden

player.replaceCurrentItemWithPlayerItem(playerItem)

// as soon as playback begins, reset it to default

playerItem.preferredForwardBufferDuration = kCMTimeZero

Preload segments before playback
Speeding Up HTTP Live Streaming NEW

// on title card

var playerItem = AVPlayerItem(asset: asset)

playerItem.preferredForwardBufferDuration = CMTime(value: 5, timescale: 1)

let player = AVPlayer()

let playerLayer = AVPlayerLayer(player: player) // keep the layer hidden

player.replaceCurrentItemWithPlayerItem(playerItem)

// as soon as playback begins, reset it to default

playerItem.preferredForwardBufferDuration = kCMTimeZero

Preload segments before playback
Speeding Up HTTP Live Streaming NEW

// on title card

var playerItem = AVPlayerItem(asset: asset)

playerItem.preferredForwardBufferDuration = CMTime(value: 5, timescale: 1)

let player = AVPlayer()

let playerLayer = AVPlayerLayer(player: player) // keep the layer hidden

player.replaceCurrentItemWithPlayerItem(playerItem)

// as soon as playback begins, reset it to default

playerItem.preferredForwardBufferDuration = kCMTimeZero

Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Improving Initial Quality

2G
Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

AVPlayerLayer
Improving Initial Quality

Size your AVPlayerLayer appropriately and connect it to AVPlayer early
• Before bringing in playerItem

Set AVPlayerLayer.contentsScale on retina iOS devices

Control initial variant selection
Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Control initial variant selection
Improving Initial Quality

?
Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Control initial variant selection
Improving Initial Quality

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Buffering time to start playback (10-second segments)
Improving Initial Quality

Dimensions Video bitrate Buffering time @ 2 Mbit/sec

400 x 224 110 kbit/sec 0.55 sec

400 x 224 400 kbit/sec 2 sec

640 x 360 600 kbit/sec 3 sec

960 x 540 1800 kbit/sec 9 sec

1280 x 720 4500 kbit/sec 22.5 sec

1920 x 1080 11000 kbit/sec 55 sec

Use previous playback's statistics
Improving Initial Quality

if let lastAccessLogEvent = previousPlayerItem.accessLog()?.events.last {

 lastObservedBitrate = lastAccessLogEvent.observedBitrate

}

Option A: Use preferredPeakBitRate to restrict first choice
Controlling Initial Variant Selection

Dimensions Video bitrate

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1280 x 720 4500 kbit/sec

1920 x 1080 11000 kbit/sec

Option A: Use preferredPeakBitRate to restrict first choice
Controlling Initial Variant Selection

Dimensions Video bitrate

1920 x 1080 11000 kbit/sec

1280 x 720 4500 kbit/sec

960 x 540 1800 kbit/sec

640 x 360 600 kbit/sec

400 x 224 400 kbit/sec

400 x 224 110 kbit/sec

Option A: Use preferredPeakBitRate to restrict first choice
Controlling Initial Variant Selection

Dimensions Video bitrate

1920 x 1080 11000 kbit/sec

1280 x 720 4500 kbit/sec

960 x 540 1800 kbit/sec

640 x 360 600 kbit/sec

400 x 224 400 kbit/sec

400 x 224 110 kbit/sec

// before playback

playerItem.preferredPeakBitRate = 2000

// shortly after playback starts

playerItem.preferredPeakBitRate = 0

Option A: Use preferredPeakBitRate to restrict first choice
Controlling Initial Variant Selection

Dimensions Video bitrate

1920 x 1080 11000 kbit/sec

1280 x 720 4500 kbit/sec

960 x 540 1800 kbit/sec

640 x 360 600 kbit/sec

400 x 224 400 kbit/sec

400 x 224 110 kbit/sec

// before playback

playerItem.preferredPeakBitRate = 2000

// shortly after playback starts

playerItem.preferredPeakBitRate = 0

Option A: Use preferredPeakBitRate to restrict first choice
Controlling Initial Variant Selection

Dimensions Video bitrate

1920 x 1080 11000 kbit/sec

1280 x 720 4500 kbit/sec

960 x 540 1800 kbit/sec

640 x 360 600 kbit/sec

400 x 224 400 kbit/sec

400 x 224 110 kbit/sec

// before playback

playerItem.preferredPeakBitRate = 2000

// shortly after playback starts

playerItem.preferredPeakBitRate = 0

Option B: Dynamically rewrite master playlist
Controlling Initial Variant Selection

Dimensions Video bitrate

1280 x 720 4500 kbit/sec

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1920 x 1080 11000 kbit/sec

Option B: Dynamically rewrite master playlist
Controlling Initial Variant Selection

Dimensions Video bitrate

1280 x 720 4500 kbit/sec

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1920 x 1080 11000 kbit/sec

var asset = AVURLAsset(url:  
 NSURL(string: "myscheme://file.m3u8")!)

asset.resourceLoader.setDelegate(...)

Option B: Dynamically rewrite master playlist
Controlling Initial Variant Selection

Dimensions Video bitrate

1280 x 720 4500 kbit/sec

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1920 x 1080 11000 kbit/sec

var asset = AVURLAsset(url:  
 NSURL(string: "myscheme://file.m3u8")!)

asset.resourceLoader.setDelegate(...)

Option B: Dynamically rewrite master playlist
Controlling Initial Variant Selection

Dimensions Video bitrate

1280 x 720 4500 kbit/sec

400 x 224 110 kbit/sec

400 x 224 400 kbit/sec

640 x 360 600 kbit/sec

960 x 540 1800 kbit/sec

1920 x 1080 11000 kbit/sec

var asset = AVURLAsset(url:  
 NSURL(string: "myscheme://file.m3u8")!)

asset.resourceLoader.setDelegate(...)

Profile Your Code Too

Profile Your Code Too

Look for delays in your code, before AVFoundation is called

Profile Your Code Too

Look for delays in your code, before AVFoundation is called
Don't wait for likelyToKeepUp notification before setting rate

Profile Your Code Too

Look for delays in your code, before AVFoundation is called
Don't wait for likelyToKeepUp notification before setting rate

Make sure you release AVPlayers and AVPlayerItems from old playback sessions

Profile Your Code Too

Look for delays in your code, before AVFoundation is called
Don't wait for likelyToKeepUp notification before setting rate

Make sure you release AVPlayers and AVPlayerItems from old playback sessions
Use Allocations Instrument to check AVPlayer and AVPlayerItem lifespans

Profile Your Code Too

Look for delays in your code, before AVFoundation is called
Don't wait for likelyToKeepUp notification before setting rate

Make sure you release AVPlayers and AVPlayerItems from old playback sessions
Use Allocations Instrument to check AVPlayer and AVPlayerItem lifespans

Suspend other network activity in your app during network playback

Summary

Summary

automaticallyWaitsToMinimizeStalling

Summary

automaticallyWaitsToMinimizeStalling
AVPlayerLooper

Summary

automaticallyWaitsToMinimizeStalling
AVPlayerLooper
Enabling and disabling tracks during playback is smoother

Summary

automaticallyWaitsToMinimizeStalling
AVPlayerLooper
Enabling and disabling tracks during playback is smoother
Prepare for wide color video

Summary

automaticallyWaitsToMinimizeStalling
AVPlayerLooper
Enabling and disabling tracks during playback is smoother
Prepare for wide color video
Optimize playback startup through cunning and measurement

More Information

https://developer.apple.com/wwdc16/503

https://developer.apple.com/wwdc16/503

Related Sessions

Advances in iOS Photography Pacific Heights Tuesday 11:00AM

What's New in HTTP Live Streaming Mission Wednesday 3:00PM

Working with Wide Color Mission Thursday 1:40PM

AVKit on tvOS Presidio Friday 11:00AM

HTTP Live Streaming Authoring and Validation Video Watch on Demand

Labs

AVFoundation / AVKit Lab Graphics, Games, and Media Lab C Wednesday 9:00AM

AVFoundation / AVKit Lab Graphics, Games, and Media Lab C Wednesday 1:00PM

HTTP Live Streaming Lab Graphics, Games, and Media Lab C Wednesday 4:00PM

Photo Capture Lab Graphics, Games, and Media Lab C Thursday 9:00AM

AVFoundation / HTTP Live Steaming Lab Graphics, Games, and Media Lab D Thursday 9:00AM

AVKit Lab Graphics, Games, and Media Lab C Friday 1:00PM

