
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Graphics and Games #WWDC16

Session 601

Go Live with ReplayKit

Ben Harry Software Engineer
Edwin Iskandar Software Engineer

ReplayKit

Record app visuals and audio
Record microphone input
Share recordings
Simple API

ReplayKit

HD quality
• Low performance impact
• Minimal power usage

Privacy safeguards
• User consent prompt
• Recording excludes system UI

Available since iOS 9

ReplayKit NEW

ReplayKit

Apple TV support

NEW

ReplayKit

Apple TV support
Live broadcasting

NEW

ReplayKit

Apple TV support
Live broadcasting
Expanded commentary options

NEW

ReplayKit Architecture

Application

Application

ReplayKit Architecture

Application

RPScreenRecorder

Application

ReplayKit Architecture

Replay Daemon MovieSystem

Application

RPScreenRecorder

Application

Replay Daemon Preview and Share ExtensionMovieSystem

ReplayKit Architecture

Application

RPScreenRecorder RPPreviewViewController

Application

Classes and Protocols

Classes and Protocols

RPScreenRecorder

• Start, stop, discard recording
• Check availability to record

RPScreenRecorderDelegate

• Availability changes
• Recording stops

Classes and Protocols

RPScreenRecorder

• Start, stop, discard recording
• Check availability to record

RPScreenRecorderDelegate

• Availability changes
• Recording stops

RPPreviewViewController

• Preview the recording
• Edit and trim (iOS)
• Share

RPPreviewViewControllerDelegate

• Finished with preview user interface

Demo
ReplayKit on Apple TV

From beginning to end
ReplayKit on Apple TV

Menu

Record

From beginning to end
ReplayKit on Apple TV

Menu

Record

Gameplay

Recording

From beginning to end
ReplayKit on Apple TV

MenuMenu

Record

Gameplay

StopRecording

Menu

From beginning to end
ReplayKit on Apple TV

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Start Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Start Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressRecordButton() {
 let sharedRecorder = RPScreenRecorder.shared()

 sharedRecorder.startRecording { error in

 if error == nil {
 self.showIndicatorView(text: "Recording")
 }
 }
}

Start Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressRecordButton() {
 let sharedRecorder = RPScreenRecorder.shared()

 sharedRecorder.startRecording { error in

 if error == nil {
 self.showIndicatorView(text: "Recording")
 }
 }
}

Start Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressRecordButton() {
 let sharedRecorder = RPScreenRecorder.shared()

 sharedRecorder.startRecording { error in

 if error == nil {
 self.showIndicatorView(text: "Recording")
 }
 }
}

Start Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressRecordButton() {
 let sharedRecorder = RPScreenRecorder.shared()

 sharedRecorder.startRecording { error in

 if error == nil {
 self.showIndicatorView(text: "Recording")
 }
 }
}

Excluding UI

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Excluding UI

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func showIndicatorView(text: String) {

 recordingIndicatorWindow = UIWindow(frame: UIScreen.main().bounds)
 recordingIndicatorWindow?.isHidden = false
 recordingIndicatorWindow?.backgroundColor = UIColor.clear()
 recordingIndicatorWindow?.isUserInteractionEnabled = false

 let indicatorView = IndicatorView(text: text)
 recordingIndicatorWindow?.addSubview(indicatorView)
}

Excluding UI

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func showIndicatorView(text: String) {

 recordingIndicatorWindow = UIWindow(frame: UIScreen.main().bounds)
 recordingIndicatorWindow?.isHidden = false
 recordingIndicatorWindow?.backgroundColor = UIColor.clear()
 recordingIndicatorWindow?.isUserInteractionEnabled = false

 let indicatorView = IndicatorView(text: text)
 recordingIndicatorWindow?.addSubview(indicatorView)
}

Excluding UI

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func showIndicatorView(text: String) {

 recordingIndicatorWindow = UIWindow(frame: UIScreen.main().bounds)
 recordingIndicatorWindow?.isHidden = false
 recordingIndicatorWindow?.backgroundColor = UIColor.clear()
 recordingIndicatorWindow?.isUserInteractionEnabled = false

 let indicatorView = IndicatorView(text: text)
 recordingIndicatorWindow?.addSubview(indicatorView)
}

Stop Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Stop Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressStopButton() {

 sharedRecorder.stopRecording { previewViewController, error in

 self.hideIndicatorView()

 if error == nil {
 self.previewViewController = previewViewController

 self.previewViewController?.previewControllerDelegate = self
 }
 }
}

Stop Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressStopButton() {

 sharedRecorder.stopRecording { previewViewController, error in

 self.hideIndicatorView()

 if error == nil {
 self.previewViewController = previewViewController

 self.previewViewController?.previewControllerDelegate = self
 }
 }
}

Stop Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressStopButton() {

 sharedRecorder.stopRecording { previewViewController, error in

 self.hideIndicatorView()

 if error == nil {
 self.previewViewController = previewViewController

 self.previewViewController?.previewControllerDelegate = self
 }
 }
}

Stop Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

func didPressStopButton() {

 sharedRecorder.stopRecording { previewViewController, error in

 self.hideIndicatorView()

 if error == nil {
 self.previewViewController = previewViewController

 self.previewViewController?.previewControllerDelegate = self
 }
 }
}

Preview Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Preview Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Preview Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

// RPPreviewViewController
public var mode: RPPreviewViewControllerMode

Preview Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

// RPPreviewViewController
public var mode: RPPreviewViewControllerMode

func didPressPreviewButton() {
 if let preview = previewViewController {
 preview.mode = .preview
 self.present(preview, animated: true)
 }
}

Share Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Share Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

// RPPreviewViewController
public var mode: RPPreviewViewControllerMode

Share Recording

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

// RPPreviewViewController
public var mode: RPPreviewViewControllerMode

func didPressShareButton() {
 if let preview = previewViewController {
 preview.mode = .share
 self.present(preview, animated: true)
 }
}

Dismissing Preview UI

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

Dismissing Preview UI

Menu

Preview Share

MenuMenu

Record

Gameplay

StopRecording

// RPPreviewViewControllerDelegate
func previewControllerDidFinish(_ previewController: RPPreviewViewController) {
 previewController.dismiss(animated: true)
}

Discarding the Recording

Automatically discarded when new recording starts
• One recording allowed at a time, per app

Discard when preview no longer available
• Use discardRecording()

ReplayKit on Apple TV

Record your app video and audio content
• Microphone reserved by system

Preview and share the recording
Same simple API as iOS
New in tvOS 10

Live Broadcast

Edwin Iskandar Software Engineer

Live Broadcast

Broadcast live to 3rd party broadcast services
Directly from iOS / tvOS device
Provide commentary with mic and camera (iOS)
Content is secure and only accessible to the broadcast service

NEW

Olympus Rising: Epic SiegeOlympus Rising: Epic Siege

Alex

Daisy

Alex

Daisy

Game Implementation

Initiate Broadcast

Initiate Broadcast

Select a Broadcast Service

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Initiate Broadcast

Upload

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Initiate Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Upload

Select a Broadcast Service

Set Up a Broadcast

Initiating a Broadcast

func didPressBroadcastButton() {

RPBroadcastActivityViewController.load { broadcastAVC, error in

 if let broadcastAVC = broadcastAVC {
 broadcastAVC.delegate = self
 self.present(broadcastAVC, animated: true)
 }
 }
}

Initiating a Broadcast

func didPressBroadcastButton() {

RPBroadcastActivityViewController.load { broadcastAVC, error in

 if let broadcastAVC = broadcastAVC {
 broadcastAVC.delegate = self
 self.present(broadcastAVC, animated: true)
 }
 }
}

Initiating a Broadcast

func didPressBroadcastButton() {

RPBroadcastActivityViewController.load { broadcastAVC, error in

 if let broadcastAVC = broadcastAVC {
 broadcastAVC.delegate = self
 self.present(broadcastAVC, animated: true)
 }
 }
}

Initiating a Broadcast

func didPressBroadcastButton() {

RPBroadcastActivityViewController.load { broadcastAVC, error in

 if let broadcastAVC = broadcastAVC {
 broadcastAVC.delegate = self
 self.present(broadcastAVC, animated: true)
 }
 }
}

Starting a Broadcast

func broadcastActivityViewController(
 _ broadcastAVC: RPBroadcastActivityViewController,

didFinishWith broadcastController: RPBroadcastController?,
 error: NSError?) {

 broadcastAVC.dismiss(animated: true) {

 self.startCountDownTimer {
 broadcastController?.startBroadcast { error in
 // broadcast started!
 }
 }

Starting a Broadcast

func broadcastActivityViewController(
 _ broadcastAVC: RPBroadcastActivityViewController,

didFinishWith broadcastController: RPBroadcastController?,
 error: NSError?) {

 broadcastAVC.dismiss(animated: true) {

 self.startCountDownTimer {
 broadcastController?.startBroadcast { error in
 // broadcast started!
 }
 }

Starting a Broadcast

func broadcastActivityViewController(
 _ broadcastAVC: RPBroadcastActivityViewController,

didFinishWith broadcastController: RPBroadcastController?,
 error: NSError?) {

 broadcastAVC.dismiss(animated: true) {

 self.startCountDownTimer {
 broadcastController?.startBroadcast { error in
 // broadcast started!
 }
 }

Starting a Broadcast

func broadcastActivityViewController(
 _ broadcastAVC: RPBroadcastActivityViewController,

didFinishWith broadcastController: RPBroadcastController?,
 error: NSError?) {

 broadcastAVC.dismiss(animated: true) {

 self.startCountDownTimer {
 broadcastController?.startBroadcast { error in
 // broadcast started!
 }
 }

Starting a Broadcast

func broadcastActivityViewController(
 _ broadcastAVC: RPBroadcastActivityViewController,

didFinishWith broadcastController: RPBroadcastController?,
 error: NSError?) {

 broadcastAVC.dismiss(animated: true) {

 self.startCountDownTimer {
 broadcastController?.startBroadcast { error in
 // broadcast started!
 }
 }

Indicating a Broadcast

Animate to indicate activity
Merge with controls if space constrained
Required during broadcast

broadcastController.isBroadcasting

Indicating a Broadcast

Animate to indicate activity
Merge with controls if space constrained
Required during broadcast

broadcastController.isBroadcasting

Indicating a Broadcast

Animate to indicate activity
Merge with controls if space constrained
Required during broadcast

broadcastController.isBroadcasting

Indicating a Broadcast

Animate to indicate activity
Merge with controls if space constrained
Required during broadcast

func updateBroadcastButton() {

 if self.broadcastController?.isBroadcasting == true {
 self.startAnimateIndicator()
 } else {
 self.stopAnimatingIndicator()
 }
 }

broadcastController.isBroadcasting

Finish Broadcast

func didPressBroadcastButton() {

 self.broadcastController?.finishBroadcast { error in

 if error == nil {

 // broadcast finished!
 self.updateBroadcastUI()

 }
 }
}

Finish Broadcast

func didPressBroadcastButton() {

 self.broadcastController?.finishBroadcast { error in

 if error == nil {

 // broadcast finished!
 self.updateBroadcastUI()

 }
 }
}

Finish Broadcast

func didPressBroadcastButton() {

 self.broadcastController?.finishBroadcast { error in

 if error == nil {

 // broadcast finished!
 self.updateBroadcastUI()

 }
 }
}

Finish Broadcast

func didPressBroadcastButton() {

 self.broadcastController?.finishBroadcast { error in

 if error == nil {

 // broadcast finished!
 self.updateBroadcastUI()

 }
 }
}

// Error Handling

func broadcastActivityViewController(

 _ broadcastActivityViewController: RPBroadcastActivityViewController,

 didFinishWith broadcastController: RPBroadcastController?,

 error: NSError?) {

 self.broadcastController = broadcastController

 // set a delegate to be notified of errors

 self.broadcastController?.delegate = self

 }

// Error Handling

func broadcastActivityViewController(

 _ broadcastActivityViewController: RPBroadcastActivityViewController,

 didFinishWith broadcastController: RPBroadcastController?,

 error: NSError?) {

 self.broadcastController = broadcastController

 // set a delegate to be notified of errors

 self.broadcastController?.delegate = self

 }

// Error Handling

func broadcastController(

 _ broadcastController: RPBroadcastController,

 didFinishWithError error: NSError?) {

 if error != nil {

 // error occurred during broadcast

 self.showErrorMessage(message: error!.localizedDescription)

 // update UI to indicate the broadcast is stopped

 self.updateBroadcastUI()

 }

}

// Error Handling

func broadcastController(

 _ broadcastController: RPBroadcastController,

 didFinishWithError error: NSError?) {

 if error != nil {

 // error occurred during broadcast

 self.showErrorMessage(message: error!.localizedDescription)

 // update UI to indicate the broadcast is stopped

 self.updateBroadcastUI()

 }

}

// Application Backgrounding

 func applicationWillResignActive() {

 // ReplayKit will automatically pause the broadcast

 }

 func applicationDidBecomeActive() {

 if self.broadcastController?.isBroadcasting == true {

 self.promptUserToResumeBroadcast { userWantsToResume in

 if (userWantsToResume == true) {

 // user wants to resume

 self.broadcastController?.resumeBroadcast()

 self.updateBroadcastUI()

 } else {

 // user does not want to resume

 self.broadcastController?.finishBroadcast { error in

 self.updateBroadcastUI()

 }

// Application Backgrounding

 func applicationWillResignActive() {

 // ReplayKit will automatically pause the broadcast

 }

 func applicationDidBecomeActive() {

 if self.broadcastController?.isBroadcasting == true {

 self.promptUserToResumeBroadcast { userWantsToResume in

 if (userWantsToResume == true) {

 // user wants to resume

 self.broadcastController?.resumeBroadcast()

 self.updateBroadcastUI()

 } else {

 // user does not want to resume

 self.broadcastController?.finishBroadcast { error in

 self.updateBroadcastUI()

 }

// Application Backgrounding

 func applicationWillResignActive() {

 // ReplayKit will automatically pause the broadcast

 }

 func applicationDidBecomeActive() {

 if self.broadcastController?.isBroadcasting == true {

 self.promptUserToResumeBroadcast { userWantsToResume in

 if (userWantsToResume == true) {

 // user wants to resume

 self.broadcastController?.resumeBroadcast()

 self.updateBroadcastUI()

 } else {

 // user does not want to resume

 self.broadcastController?.finishBroadcast { error in

 self.updateBroadcastUI()

 }

// Application Backgrounding

 func applicationWillResignActive() {

 // ReplayKit will automatically pause the broadcast

 }

 func applicationDidBecomeActive() {

 if self.broadcastController?.isBroadcasting == true {

 self.promptUserToResumeBroadcast { userWantsToResume in

 if (userWantsToResume == true) {

 // user wants to resume

 self.broadcastController?.resumeBroadcast()

 self.updateBroadcastUI()

 } else {

 // user does not want to resume

 self.broadcastController?.finishBroadcast { error in

 self.updateBroadcastUI()

 }

Classes and Protocols
Game API

Classes and Protocols

RPBroadcastActivityViewController

• Present installed broadcast services

RPBroadcastActivityViewControllerDelegate

• Notified when broadcast setup is complete

Game API

Classes and Protocols

RPBroadcastActivityViewController

• Present installed broadcast services

RPBroadcastActivityViewControllerDelegate

• Notified when broadcast setup is complete

Game API

RPBroadcastController

• Start and finish broadcast
• Check if broadcast is in-progress

RPBroadcastControllerDelegate

• Handle errors during broadcast

Broadcast Services

Upload

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Upload

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Upload

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Broadcast Services

Broadcast UI Extension
• Set up broadcast

Broadcast Upload Extension
• Process and upload video and audio data

Upload

Set Up a Broadcast

Broadcast Extensions

Embedded in your application
Execute alongside other application processes
Can share data between parent application
Limited in resources compared to applications

Xcode Templates

New Target templates available in Xcode
Add Target -> iOS/tvOS -> Application
Extension
Pre-configured with NSExtension properties
in info.plist Broadcast UI Extension Broadcast Upload

Broadcast UI Extension

Authenticate the user and provide sign-up
Accept terms and conditions
Set up the broadcast
Optionally share via social media
Notify setup is complete

Set Up a Broadcast

Broadcast Upload Extension

Receive and process video and audio data
Upload to server
Implementation to be defined by broadcast services
Work together with us

Upload

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Upload

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Upload

Initiate Broadcast

Select a Broadcast Service

Set Up a Broadcast

Start and Stop a Broadcast

Indicate Broadcast

Upload

Responsibilities

Initiate Broadcast Select a Broadcast Service Set Up a Broadcast

Start and Stop a Broadcast Upload

Indicate Broadcast

Responsibilities

Initiate Broadcast Select a Broadcast Service Set Up a Broadcast

Start and Stop a Broadcast Upload

Indicate Broadcast

Game ReplayKit Broadcast Service

Live Broadcasting

Expanded Commentary Options

FaceTime camera support
Flexible microphone recording
Available in iOS 10

FaceTime Camera Support

FaceTime Camera Support

RPScreenRecorder.shared().isCameraEnabled

Camera preview view available in RPScreenRecorder
Subclass of UIView
Position to not obstruct gameplay
Optionally allow the user to move it

FaceTime Camera Support

RPScreenRecorder.shared().isCameraEnabled

Camera preview view available in RPScreenRecorder
Subclass of UIView
Position to not obstruct gameplay
Optionally allow the user to move it

RPScreenRecorder.shared().isCameraEnabled = true

FaceTime Camera Support

RPScreenRecorder.shared().isCameraEnabled

Camera preview view available in RPScreenRecorder
Subclass of UIView
Position to not obstruct gameplay
Optionally allow the user to move it

if let cameraPreview = RPScreenRecorder.shared().cameraPreviewView {
cameraPreview.frame = CGRect(…)
self.view.addSubview(cameraPreview)

}

RPScreenRecorder.shared().isCameraEnabled = true

FaceTime Camera Support

Microphone Support

// Microphone Recording

 func enableMic {
 RPScreenRecorder.shared().isMicrophoneEnabled = true
 }

func disableMic {
 RPScreenRecorder.shared().isMicrophoneEnabled = false
 }

Summary

Apple TV support
Live broadcasting
Expanded commentary options

More Information

https://developer.apple.com/wwdc16/601

Related Sessions

What's New in GameplayKit Pacific Heights Thursday 9:00AM

What’s New in SpriteKit Presidio Thursday 5:00PM

What’s New in Game Center Mission Friday 10:00AM

Labs

ReplayKit Lab Graphics Lab A Tuesday 12:00PM

ReplayKit Lab Graphics Lab B Wednesday 9:00AM

