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ReplayKit

Record app visuals and audio
Record microphone input
Share recordings
Simple API



ReplayKit

HD quality
• Low performance impact
• Minimal power usage

Privacy safeguards
• User consent prompt
• Recording excludes system UI

Available since iOS 9
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Replay Daemon Preview and Share ExtensionMovieSystem

ReplayKit Architecture
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• Start, stop, discard recording
• Check availability to record

RPScreenRecorderDelegate 

• Availability changes
• Recording stops



Classes and Protocols

RPScreenRecorder 

• Start, stop, discard recording
• Check availability to record

RPScreenRecorderDelegate 

• Availability changes
• Recording stops

RPPreviewViewController 

• Preview the recording
• Edit and trim (iOS)
• Share

RPPreviewViewControllerDelegate 

• Finished with preview user interface 



Demo
ReplayKit on Apple TV
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func didPressRecordButton() { 
    let sharedRecorder = RPScreenRecorder.shared() 

    sharedRecorder.startRecording { error in 
         
        if error == nil { 
            self.showIndicatorView(text: "Recording") 
        } 
    } 
}
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func showIndicatorView(text: String) { 

    recordingIndicatorWindow = UIWindow(frame: UIScreen.main().bounds) 
    recordingIndicatorWindow?.isHidden = false 
    recordingIndicatorWindow?.backgroundColor = UIColor.clear() 
    recordingIndicatorWindow?.isUserInteractionEnabled = false 
     
    let indicatorView = IndicatorView(text: text) 
    recordingIndicatorWindow?.addSubview(indicatorView) 
}
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Stop Recording
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func didPressStopButton() { 

    sharedRecorder.stopRecording { previewViewController, error in 

        self.hideIndicatorView() 

        if error == nil { 
      self.previewViewController = previewViewController 

            self.previewViewController?.previewControllerDelegate = self 
        } 
    } 
}
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func didPressStopButton() { 

    sharedRecorder.stopRecording { previewViewController, error in 

        self.hideIndicatorView() 

        if error == nil { 
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        } 
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// RPPreviewViewController 
public var mode: RPPreviewViewControllerMode

func didPressPreviewButton() { 
    if let preview = previewViewController { 
        preview.mode = .preview 
        self.present(preview, animated: true) 
    } 
} 
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Share Recording
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// RPPreviewViewController 
public var mode: RPPreviewViewControllerMode

func didPressShareButton() { 
    if let preview = previewViewController { 
        preview.mode = .share 
        self.present(preview, animated: true) 
    } 
} 
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Dismissing Preview UI
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// RPPreviewViewControllerDelegate 
func previewControllerDidFinish(_ previewController: RPPreviewViewController) { 
    previewController.dismiss(animated: true) 
}



Discarding the Recording

Automatically discarded when new recording starts
• One recording allowed at a time, per app

Discard when preview no longer available
• Use discardRecording()



ReplayKit on Apple TV

Record your app video and audio content
• Microphone reserved by system

Preview and share the recording
Same simple API as iOS
New in tvOS 10



Live Broadcast

Edwin Iskandar Software Engineer



Live Broadcast

Broadcast live to 3rd party broadcast services
Directly from iOS / tvOS device
Provide commentary with mic and camera (iOS)
Content is secure and only accessible to the broadcast service

NEW
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Initiating a Broadcast

func didPressBroadcastButton() { 
     

RPBroadcastActivityViewController.load { broadcastAVC, error in 
             
         if let broadcastAVC = broadcastAVC { 
              broadcastAVC.delegate = self 
              self.present(broadcastAVC, animated: true) 
         } 
     } 
}
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Starting a Broadcast

func broadcastActivityViewController( 
                           _ broadcastAVC: RPBroadcastActivityViewController,  

didFinishWith broadcastController: RPBroadcastController?,  
                            error: NSError?) { 

                
        broadcastAVC.dismiss(animated: true) { 
             
            self.startCountDownTimer { 
                broadcastController?.startBroadcast { error in 
                    // broadcast started! 
                } 
            } 
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Required during broadcast

broadcastController.isBroadcasting
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Indicating a Broadcast

Animate to indicate activity
Merge with controls if space constrained
Required during broadcast

func updateBroadcastButton() { 
         
     if self.broadcastController?.isBroadcasting == true { 
         self.startAnimateIndicator() 
     } else { 
         self.stopAnimatingIndicator() 
     } 
 } 

broadcastController.isBroadcasting



Finish Broadcast

func didPressBroadcastButton() { 
         
    self.broadcastController?.finishBroadcast { error in 
                 
         if error == nil { 

          // broadcast finished! 
          self.updateBroadcastUI() 

         } 
    }         
}
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// Error Handling 

func broadcastActivityViewController( 

      _ broadcastActivityViewController: RPBroadcastActivityViewController,  

      didFinishWith broadcastController: RPBroadcastController?,  

                                  error: NSError?) { 

         

     self.broadcastController = broadcastController 

         

     // set a delegate to be notified of errors 

     self.broadcastController?.delegate = self 

 } 
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// Application Backgrounding 

    func applicationWillResignActive() { 

        // ReplayKit will automatically pause the broadcast 

    } 

     

    func applicationDidBecomeActive() { 
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Classes and Protocols

RPBroadcastActivityViewController 

• Present installed broadcast services

RPBroadcastActivityViewControllerDelegate 

• Notified when broadcast setup is complete

Game API

RPBroadcastController 

• Start and finish broadcast
• Check if broadcast is in-progress

RPBroadcastControllerDelegate 

• Handle errors during broadcast



Broadcast Services
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Broadcast Services

Broadcast UI Extension
• Set up broadcast

Broadcast Upload Extension
• Process and upload video and audio data

Upload

Set Up a Broadcast



Broadcast Extensions

Embedded in your application
Execute alongside other application processes
Can share data between parent application
Limited in resources compared to applications



Xcode Templates

New Target templates available in Xcode
Add Target -> iOS/tvOS -> Application 
Extension
Pre-configured with NSExtension properties 
in info.plist Broadcast UI Extension Broadcast Upload



Broadcast UI Extension

Authenticate the user and provide sign-up
Accept terms and conditions
Set up the broadcast
Optionally share via social media
Notify setup is complete

Set Up a Broadcast



Broadcast Upload Extension

Receive and process video and audio data
Upload to server
Implementation to be defined by broadcast services
Work together with us

Upload
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Initiate Broadcast Select a Broadcast Service Set Up a Broadcast

Start and Stop a Broadcast Upload

Indicate Broadcast



Responsibilities

Initiate Broadcast Select a Broadcast Service Set Up a Broadcast

Start and Stop a Broadcast Upload

Indicate Broadcast

Game ReplayKit Broadcast Service



Live Broadcasting



Expanded Commentary Options

FaceTime camera support 
Flexible microphone recording
Available in iOS 10
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RPScreenRecorder.shared().isCameraEnabled 

Camera preview view available in RPScreenRecorder
Subclass of UIView
Position to not obstruct gameplay
Optionally allow the user to move it

FaceTime Camera Support
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RPScreenRecorder.shared().isCameraEnabled 

Camera preview view available in RPScreenRecorder
Subclass of UIView
Position to not obstruct gameplay
Optionally allow the user to move it

if let cameraPreview = RPScreenRecorder.shared().cameraPreviewView { 
cameraPreview.frame = CGRect(…) 
self.view.addSubview(cameraPreview) 

}        
       

RPScreenRecorder.shared().isCameraEnabled = true

FaceTime Camera Support



Microphone Support



// Microphone Recording

    func enableMic { 
        RPScreenRecorder.shared().isMicrophoneEnabled = true 
    } 

func disableMic { 
        RPScreenRecorder.shared().isMicrophoneEnabled = false 
    } 
     
   



Summary

Apple TV support
Live broadcasting
Expanded commentary options



More Information

https://developer.apple.com/wwdc16/601



Related Sessions

What's New in GameplayKit Pacific Heights Thursday 9:00AM

What’s New in SpriteKit Presidio Thursday 5:00PM

What’s New in Game Center Mission Friday 10:00AM



Labs

ReplayKit Lab Graphics Lab A Tuesday 12:00PM

ReplayKit Lab Graphics Lab B Wednesday 9:00AM






