
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Part 1

Graphics and Games #WWDC16

Session 604

What’s New in Metal

Aaftab Munshi GPU Software Engineer
James Ding GPU Software Engineer
Jose Enrique D’Arnaude del Castillo GPU Software Engineer
Alp Yucebilgin GPU Software Engineer

Adopting Metal
Part One
• Fundamental Concepts
• Basic Drawing
• Lighting and Texturing

A look at the sessions
Metal at WWDC This Year

Part Two
• Dynamic Data Management
• CPU-GPU Synchronization
• Multithreaded Encoding

A look at the sessions
Metal at WWDC This Year

What’s New in Metal
Part One
• Tessellation
• Resource Heaps and Memoryless  

Render Targets
• Improved Tools

Part Two
• Function Specialization and Function

Resource Read-Writes
• Wide Color and Texture Assets
• Additions to Metal Performance Shaders

A look at the sessions
Metal at WWDC This Year

Advanced Shader Optimization
• Shader Performance Fundamentals
• Tuning Shader Code

NEWAgenda

Function Specialization and  
Function Resource Read-Writes

NEWAgenda

Wide Color and Texture Assets

Additions to Metal Performance Shaders

Function Specialization and  
Function Resource Read-Writes

Wide Color and Texture Assets

Additions to Metal Performance Shaders

NEWAgenda

Function Specialization and  
Function Resource Read-Writes

Wide Color and Texture Assets

Additions to Metal Performance Shaders

NEWAgenda

Function Specialization and  
Function Resource Read-Writes

Wide Color and Texture Assets

Additions to Metal Performance Shaders

NEWAgenda

Tessellation

Resource Heaps and Memoryless Render Targets

Improved Tools

Tessellation

Aaftab Munshi GPU Software Engineer

NEW

Motivation

Motivation

Large increase in memory bandwidth required to render high resolution geometry

Motivation

Large increase in memory bandwidth required to render high resolution geometry
Describe input geometry as a coarser or lower resolution model

Motivation

Large increase in memory bandwidth required to render high resolution geometry
Describe input geometry as a coarser or lower resolution model
Generate high resolution model from the coarser model
• High resolution model not stored in graphics memory
• Method to generate high resolution model is programmable

 — A technique to amplify and refine the geometric details of an objectTessellation

GFXBench 4.0
Tessellation in Action

GFXBench 4.0
Tessellation in Action

GFXBench 4.0
Tessellation in Action

GFXBench 4.0
Tessellation in Action

GFXBench 4.0
Tessellation in Action

GFXBench 4.0
Tessellation in Action

Tessellation in Metal

A simpler and efficient approach
Metal Tessellation

A simpler and efficient approach
Metal Tessellation

Modern clean-sheet approach
Easy to use
Efficient and performant

Availability
Tessellation in Metal

All Configurations

Availability
Tessellation in Metal

All Configurations A9 Processor

Topics we’ll cover
Tessellation in Metal

Topics we’ll cover
Tessellation in Metal

Metal Graphics Pipeline
Rendering Geometry
Adopting Metal Tessellation

With Tessellation
Metal Graphics Pipeline

Tessellation Input Primitives
Patches

Tessellation Input Primitives
Patches

A patch is a parametric surface made from
spline curves
Described by a set of control vertices

patch

Tessellation Input Primitives
Patches

A patch is a parametric surface made from
spline curves
Described by a set of control vertices
Tessellation controls how to render the
patch as triangles

patch

Tessellation Input Primitives
Patches

A patch is a parametric surface made from
spline curves
Described by a set of control vertices
Tessellation controls how to render the
patch as triangles

patch

Tessellation Input Primitives
Patches

A patch is a parametric surface made from
spline curves
Described by a set of control vertices
Tessellation controls how to render the
patch as triangles

patch

First stage — Tessellation kernel
Metal Tessellation

Graphics Memory

First stage — Tessellation kernel
Metal Tessellation

Graphics Memory

Tessellation Kernel

Buffers, Textures
Input Control Point

A programmable stage

First stage — Tessellation kernel
Metal Tessellation

Computations to generate
• Tessellation factors for a patch — determines how much to subdivide the patch
• Additional patch data, if required

Graphics Memory

Tessellation Kernel

Patch Data
Tessellation Factors

A programmable stage

Tessellation Factors

Second stage — Tessellator
Metal Tessellation

Graphics Memory

Tessellation Kernel

Patch Data

A fixed-function stage but configurable

Tessellation Factors

Second stage — Tessellator
Metal Tessellation

Graphics Memory

Tessellation Kernel Tessellator

Patch Data

A fixed-function stage but configurable
• Subdivides the patch into triangles using the tessellation factors
• Triangles describe the high resolution geometry to draw

Tessellation Factors

Second stage — Tessellator
Metal Tessellation

Graphics Memory

Tessellation Kernel Tessellator

Patch Data

A fixed-function stage but configurable
• Subdivides the patch into triangles using the tessellation factors
• Triangles describe the high resolution geometry to draw
• Triangle list not stored in graphics memory
• Generates parametric (u, v) values for vertices on subdivided patch
• Triangle list not stored in graphics memory

Tessellation Factors

Second stage — Tessellator
Metal Tessellation

u

v

Graphics Memory

Tessellation Kernel Tessellator

Patch Data

Third stage — Post Tessellation Vertex Shader
Metal Tessellation

Graphics Memory

Tessellation Kernel Tessellator

Tessellation Factors
Patch Data

Third stage — Post Tessellation Vertex Shader
Metal Tessellation

Graphics Memory

Tessellation Kernel Tessellator Post-Tessellation
Vertex Shader

Tessellation Factors
Patch Data

A programmable stage

Third stage — Post Tessellation Vertex Shader
Metal Tessellation

Graphics Memory

Tessellation Kernel Tessellator Post-Tessellation
Vertex Shader

Buffers, Textures
Tessellation Factors

Patch Data

A programmable stage
• Executes for vertices generated by tessellator
• Evaluates position and other attributes on high resolution surface
• Similar role as the domain shader in DirectX

Complete pipeline
Metal Tessellation

Graphics Memory

Tessellation Kernel Tessellator Post-Tessellation
Vertex Shader

Complete pipeline
Metal Tessellation

Tessellation factors and patch data can also be generated by vertex or fragment shader
• Compute kernel preferred as it can asynchronously execute with draw commands on GPU

Fragment Shader

Graphics Memory

Tessellation Kernel Tessellator Post-Tessellation
Vertex Shader Rasterizer

Complete pipeline
Metal Tessellation

Tessellation factors and patch data can also be generated by vertex or fragment shader
• Compute kernel preferred as it can asynchronously execute with draw commands on GPU

Tessellation kernel does not need to execute every frame
• Apply a scale value to the tessellation factors

Fragment Shader

Graphics Memory

Tessellator Post-Tessellation
Vertex Shader Rasterizer

Without Tessellation
Metal Graphics Pipeline

Graphics Memory

Without Tessellation
Metal Graphics Pipeline

Fragment Shader

Graphics Memory

Vertex Shader Rasterizer

Vertex Data Buffers, Textures

With Tessellation
Metal Graphics Pipeline

Fragment Shader

Graphics Memory

Rasterizer

With Tessellation
Metal Graphics Pipeline

Fragment Shader

Graphics Memory

Rasterizer

Patch Data Buffers, Textures

Tessellator Post-Tessellation
Vertex Shader

Tessellation Factors

Rendering Geometry  
with Tessellation

Rendering Geometry with Tessellation

Rendering Geometry with Tessellation

Writing a Post-Tessellation Vertex Shader
Specifying Patch Data Inputs
Configuring the Tessellator
Drawing Patches

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

A vertex shader that executes for vertices of a tessellated surface

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

A vertex shader that executes for vertices of a tessellated surface

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

A vertex shader that executes for vertices of a tessellated surface
Shader Inputs
• Patch Data vs. Vertex Data

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

A vertex shader that executes for vertices of a tessellated surface
Shader Inputs
• Patch Data vs. Vertex Data

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

A vertex shader that executes for vertices of a tessellated surface
Shader Inputs
• Patch Data vs. Vertex Data

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

[[patch(quad, 16)]]

vertex VertexOutput 
myPostTessellationVertexShader(uint patchID [[patch_id]],  
 float2 patchUV [[position_in_patch]],

 MyPatchData patchData [[stage_in]],  
 …)

A vertex shader that executes for vertices of a tessellated surface
Shader Inputs
• Patch Data vs. Vertex Data

Shader Outputs
• Similar to outputs from a vertex shader

Meet the new shader, same as the old shader
Writing a Post-Tessellation Vertex Shader

Two types of input data
Patch Data Inputs

Two types of input data
Patch Data Inputs

Per-patch and control-point data
• Multiple control-points per patch

- Example: 16 control-points in a Bezier patch

Two types of input data
Patch Data Inputs

Per-patch and control-point data
• Multiple control-points per patch

- Example: 16 control-points in a Bezier patch

Use MTLVertexDescriptor to specify the patch data layout in memory

Two types of input data
Patch Data Inputs

Per-patch and control-point data
• Multiple control-points per patch

- Example: 16 control-points in a Bezier patch

Use MTLVertexDescriptor to specify the patch data layout in memory
Declared as a struct with [[stage_in]] qualifier in post-tessellation vertex shader
• Attribute index used to identify and match patch input data with MTLVertexDescriptor
• Control-point data specified as a templated type

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

// Control-Point Data // Per-Patch Data

struct ControlPointData { struct PerPatchData {

 float3 position [[attribute(0)]]; float b [[attribute(2)]];

 uint a [[attribute(1)]]; uint c [[attribute(3)]];

}; };

// struct that stores the per-patch and control-point data

struct MyPatchData {

 PerPatchData patchData;

 patch_control_point<ControlPointData> controlPointData;

};

// post-tessellation vertex shader

[[patch(quad, 16)]]

vertex VertexOutput

myPostTessellationVertexShader(MyPatchData patchData [[stage_in]], …)

Configuring the Tessellator

Configuring the Tessellator

Tessellation Properties
• Specified in MTLRenderPipelineDescriptor

Configuring the Tessellator

Tessellation Properties
• Specified in MTLRenderPipelineDescriptor

Tessellation Factors
• Edge and Inside factors
• 16-bit floating-point values

// specify the tessellation factor buffer in the MTLRenderCommandEncoder

renderEncoder.setTessellationFactorBuffer(buffer, offset: offset, instanceStride: stride)

New APIs in MTLRenderCommandEncoder
Drawing Patches

New APIs in MTLRenderCommandEncoder
Drawing Patches

Non-indexed and indexed draw patch APIs
• Specify patch start, number of patches to draw, control-point index buffer …

renderEncoder.drawPatches(numberOfControlPoints,  
 patchStart: patchStart, numberOfPatches: n, …)

renderEncoder.drawIndexedPatches(numberOfControlPoints,  
 patchStart: patchStart, numberOfPatches: n, …,

 controlPointIndexBuffer: buffer,

 controlPointIndexBufferOffset: offset, …)

DrawIndirect variants
• Allows previous draw or dispatch commands to generate draw parameters
• Draw parameters such as patch start, patch count specified in a buffer filled out on GPU

New APIs in MTLRenderCommandEncoder
Drawing Patches

Non-indexed and indexed draw patch APIs
• Specify patch start, number of patches to draw, control-point index buffer …

renderEncoder.drawPatches(numberOfControlPoints,  
 patchStart: patchStart, numberOfPatches: n, …)

renderEncoder.drawIndexedPatches(numberOfControlPoints,  
 patchStart: patchStart, numberOfPatches: n, …,

 controlPointIndexBuffer: buffer,

 controlPointIndexBufferOffset: offset, …)

Adopting Metal Tessellation

“Unity Technologies is proud to be working with Apple to
make our Metal renderer the best of its kind, enabling
Unity developers to harness the power of Metal. Later
this year, we will be shipping support for Metal
Tessellation, Metal Compute, and the ability to write
native Metal shaders in Unity.”

Unity Technology

“Metal provides great performance and efficiency
improvements alongside a wonderfully clean
programming model. We're very enthusiastic about the
ongoing revolution in high-end graphics on iOS and Mac
enabled by Metal.”

Epic Games

Demo
Tessellation in Action

Digital content creation tools
Adopting Metal Tessellation

“OpenSubdiv is a key technology at Pixar that helps our
artists create expressive performances and beautiful
worlds. Pixar is thrilled to see the high performance and
full fidelity of OpenSubdiv realized with Metal Tessellation
on macOS and iOS devices and with Apple’s contribution
of a native Metal implementation to the OpenSubdiv
open source project.”

David Yu
Senior Software Engineer of Pixar’s GPU Team

From DirectX to Metal
Adopting Metal Tessellation

Graphics Memory

Domain Shader

From DirectX to Metal
Adopting Metal Tessellation

Graphics Memory

Vertex Shader Hull Shader Fragment
Shader RasterizerTessellator

From DirectX to Metal
Adopting Metal Tessellation

Graphics Memory

Vertex Shader Hull Shader Fragment
Shader RasterizerTessellator Post-Tessellation

Vertex Shader

One-to-one mapping between domain and post-tessellation vertex shader
Tessellator remains the same

From DirectX to Metal
Adopting Metal Tessellation

Graphics Memory

Vertex Shader Hull Shader Fragment
Shader RasterizerTessellator Post-Tessellation

Vertex Shader

One-to-one mapping between domain and post-tessellation vertex shader
Tessellator remains the same

From DirectX to Metal
Adopting Metal Tessellation

Graphics Memory

Vertex ShaderHull Shader Fragment
Shader RasterizerTessellator Post-Tessellation

Vertex Shader

One-to-one mapping between domain and post-tessellation vertex shader
Tessellator remains the same
Vertex and hull shader to be translated to a Metal kernel

Tessellation Kernel

Vertex + Hull Shader = Metal Tessellation Kernel
Moving Existing Tessellation Shaders to Metal

Vertex descriptor used to describe vertex data layout
• [[stage_in]] in a Metal kernel
• Input data layout described in a MTLStageInputOutputDescriptor

Vertex + Hull Shader = Metal Tessellation Kernel
Moving Existing Tessellation Shaders to Metal

Vertex descriptor used to describe vertex data layout
• [[stage_in]] in a Metal kernel
• Input data layout described in a MTLStageInputOutputDescriptor
Vertex and hull shader observations
• Vertex shader executes for each control-point
• Hull shader described by control-point and per-patch functions

Vertex + Hull Shader = Metal Tessellation Kernel
Moving Existing Tessellation Shaders to Metal

Vertex descriptor used to describe vertex data layout
• [[stage_in]] in a Metal kernel
• Input data layout described in a MTLStageInputOutputDescriptor
Vertex and hull shader observations
• Vertex shader executes for each control-point
• Hull shader described by control-point and per-patch functions
Translate vertex and hull shaders to Metal functions

Vertex + Hull Shader = Metal Tessellation Kernel
Moving Existing Tessellation Shaders to Metal

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Control-Point  
Hull Function

Vertex Function

Control- 
Point

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Control-Point  
Hull Function

Vertex Function

Thread 0
Control- 

Point

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Control-Point  
Hull Function

Vertex Function

Control- 
Point

Control-Point  
Hull Function

Vertex Function

Control- 
Point

Thread 1

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Control-Point  
Hull Function

Vertex Function

Control- 
Point

Control-Point  
Hull Function

Vertex Function

Control- 
Point

…

… Control-Point  
Hull Function

Vertex Function

Control- 
Point

Thread n-1

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Control-Point  
Hull Function

Per-Patch  
Hull Function

Vertex Function

Control- 
Point

Control-Point  
Hull Function

Vertex Function

Control- 
Point

…

… Control-Point  
Hull Function

Vertex Function

Control- 
Point

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Graphics Memory

Control-Point  
Hull Function

Per-Patch  
Hull Function

Vertex Function

Control- 
Point

Tessellation  
Factors

Control-Point  
Hull Function

Vertex Function

Control- 
Point

…

… Control-Point  
Hull Function

Vertex Function

Control- 
Point

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Graphics Memory

Control-Point  
Hull Function

Per-Patch  
Hull Function

Vertex Function

Control- 
Point

Tessellation  
Factors

Patch  
Data

Control-Point  
Hull Function

Vertex Function

Control- 
Point

…

… Control-Point  
Hull Function

Vertex Function

Control- 
Point

Control-PointControl-Point Control-Point

Vertex + Hull Shader = Metal Tessellation Kernel
Metal Tessellation

Threadgroup Memory

Graphics Memory

Control-Point  
Hull Function

Per-Patch  
Hull Function

Vertex Function

Control- 
Point

Tessellation  
Factors

Patch  
Data

Control-Point  
Hull Function

Vertex Function

Control- 
Point

…

… Control-Point  
Hull Function

Vertex Function

Control- 
Point

Summary
Tessellation

Summary
Tessellation

Simple to use and performant
Easy to adapt your existing tessellation code to Metal
Available on iOS and macOS

Summary
Tessellation

Simple to use and performant
Easy to adapt your existing tessellation code to Metal
Available on iOS and macOS

• Use tessellation to improve the visual content rendered by your application
Call to Action

Resource Heaps and
Memoryless Render Targets

James Ding GPU Software Engineer

Lower overhead resource management
Resource Heaps NEW

Lower overhead resource management
Resource Heaps

Resource Sub-Allocation

NEW

Lower overhead resource management
Resource Heaps

Resource Sub-Allocation
Resource Aliasing

NEW

Lower overhead resource management
Resource Heaps

Resource Sub-Allocation
Resource Aliasing
Explicit Command Synchronization

NEW

Resource Sub-Allocation

Faster resource creation and binding
Resource Sub-Allocation

Faster resource creation and binding
Resource Sub-Allocation

Resource creation with MTLDevice
• Heavy CPU operation

Faster resource creation and binding
Resource Sub-Allocation

Resource creation with MTLDevice
• Heavy CPU operation

Faster resource creation and binding
Resource Sub-Allocation

Resource creation with MTLDevice
• Heavy CPU operation

Resource binding
• Tracking costs add up for complex scenes

Faster resource creation and binding
Resource Sub-Allocation

Resource creation with MTLDevice
• Heavy CPU operation

Resource binding
• Tracking costs add up for complex scenes

Faster resource creation and binding
Resource Sub-Allocation

Resource creation with MTLDevice
• Heavy CPU operation

Resource binding
• Tracking costs add up for complex scenes

Resource Heaps address these performance issues
• Perform expensive memory operations ahead of time
• Only heaps are tracked, not their resources

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

Memory

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

MemoryResource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

MemoryResource MemoryResource MemoryResource MemoryResource

Creating Resources
with MTLHeap

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

MemoryResource MemoryResource MemoryResource MemoryResource

Creating Resources
with MTLHeap

Memory

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

MemoryResource MemoryResource MemoryResource MemoryResource

Creating Resources
with MTLHeap

Memory

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Memory

Resource

MemoryResource MemoryResource MemoryResource MemoryResource

Resource Resource ResourceResource

Resource Resource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Creating Resources
with MTLHeap

Memory

Resource

MemoryResource MemoryResource MemoryResource MemoryResource

ResourceResource

Resource Resource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Creating Resources
with MTLHeap

Memory

Resource

MemoryResource MemoryResource

ResourceResource

Resource Resource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Creating Resources
with MTLHeap

Memory

Resource

MemoryResource MemoryResource

MemoryResource

Resource Resource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Creating Resources
with MTLHeap

Memory

Resource

MemoryResource MemoryResource

MemoryResource

Resource ResourceResource

Comparing MTLDevice and MTLHeap
Resource Creation NEW

Creating Resources
with MTLDevice

Creating Resources
with MTLHeap

Memory

Resource

MemoryResource MemoryResource

// Creating Resources with MTLHeap

// Create heap descriptor, including the heap size.

let heapDesc = MTLHeapDescriptor()

heapDesc.size = heapSize

// Create the heap object ahead of time.

let heap = device.newHeap(with:heapDesc)

// Sub-allocate resources from heap - very fast!

let buffer = heap.newBuffer(withLength:bufferSize)

let texture = heap.newTexture(with:textureDescriptor)

// Creating Resources with MTLHeap

// Create heap descriptor, including the heap size.

let heapDesc = MTLHeapDescriptor()

heapDesc.size = heapSize

// Create the heap object ahead of time.

let heap = device.newHeap(with:heapDesc)

// Sub-allocate resources from heap - very fast!

let buffer = heap.newBuffer(withLength:bufferSize)

let texture = heap.newTexture(with:textureDescriptor)

// Creating Resources with MTLHeap

// Create heap descriptor, including the heap size.

let heapDesc = MTLHeapDescriptor()

heapDesc.size = heapSize

// Create the heap object ahead of time.

let heap = device.newHeap(with:heapDesc)

// Sub-allocate resources from heap - very fast!

let buffer = heap.newBuffer(withLength:bufferSize)

let texture = heap.newTexture(with:textureDescriptor)

// Creating Resources with MTLHeap

// Create heap descriptor, including the heap size.

let heapDesc = MTLHeapDescriptor()

heapDesc.size = heapSize

// Create the heap object ahead of time.

let heap = device.newHeap(with:heapDesc)

// Sub-allocate resources from heap - very fast!

let buffer = heap.newBuffer(withLength:bufferSize)

let texture = heap.newTexture(with:textureDescriptor)

Best practices
Resource Sub-Allocation

Best practices
Resource Sub-Allocation

Use Resource Heaps to create resources on a performance-critical path

Best practices
Resource Sub-Allocation

Use Resource Heaps to create resources on a performance-critical path

Best practices
Resource Sub-Allocation

Use Resource Heaps to create resources on a performance-critical path
Create multiple, size-bucketed heaps to reduce fragmentation

Best practices
Resource Sub-Allocation

Use Resource Heaps to create resources on a performance-critical path
Create multiple, size-bucketed heaps to reduce fragmentation

Best practices
Resource Sub-Allocation

Use Resource Heaps to create resources on a performance-critical path
Create multiple, size-bucketed heaps to reduce fragmentation
Use resource size and alignment queries to determine appropriate heap sizes

Resource Aliasing

Resource Heaps allow multiple resources to occupy the same memory location
Aliasing resources together reduces total memory usage

Multiple resources sharing memory
Resource Aliasing NEW

Resource Heaps allow multiple resources to occupy the same memory location
Aliasing resources together reduces total memory usage

Multiple resources sharing memory
Resource Aliasing NEW

Normal Heap
Resources

Resource A Resource B

Resource Heaps allow multiple resources to occupy the same memory location
Aliasing resources together reduces total memory usage

Multiple resources sharing memory
Resource Aliasing NEW

Normal Heap
Resources

Resource A Resource B

Aliasing Heap
Resources

Resource A
Resource B

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow maps are produced and consumed in consecutive passes

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow Map A Shadow Map B Shadow Map C

Shadow maps are produced and consumed in consecutive passes

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow Map A Shadow Map B Shadow Map C

Shadow maps are produced and consumed in consecutive passes

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow Map A Shadow Map B Shadow Map C

Shadow maps are produced and consumed in consecutive passes

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow Map A Shadow Map B Shadow Map C

Shadow maps are produced and consumed in consecutive passes
Post-processing uses temporary textures internally

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow Map A Shadow Map B Shadow Map C

Shadow maps are produced and consumed in consecutive passes
Post-processing uses temporary textures internally

Post Processing D Post Processing E

Example

Time

Main Pass Post Processing PassesShadow Map Passes

Shadow Map A Shadow Map B Shadow Map C

Shadow maps are produced and consumed in consecutive passes
Post-processing uses temporary textures internally
Contents never used at the same time

Post Processing D Post Processing E

Example

Time

Main Pass Post Processing PassesShadow Map Passes

// Create Aliasing Textures

let heap = device.newHeap(with:heapDesc)

let shadowMapA = heap.newTexture(with:shadowDesc)

let shadowMapB = heap.newTexture(with:shadowDesc)

let shadowMapC = heap.newTexture(with:shadowDesc)

// Allow heap to reassign shadow map memory to new resources

shadowMapA.makeAliasable()

shadowMapB.makeAliasable()

shadowMapC.makeAliasable()

let postProcessingD = heap.newTexture(with:postProcessingDesc)

let postProcessingE = heap.newTexture(with:postProcessingDesc)

// Create Aliasing Textures

let heap = device.newHeap(with:heapDesc)

let shadowMapA = heap.newTexture(with:shadowDesc)

let shadowMapB = heap.newTexture(with:shadowDesc)

let shadowMapC = heap.newTexture(with:shadowDesc)

// Allow heap to reassign shadow map memory to new resources

shadowMapA.makeAliasable()

shadowMapB.makeAliasable()

shadowMapC.makeAliasable()

let postProcessingD = heap.newTexture(with:postProcessingDesc)

let postProcessingE = heap.newTexture(with:postProcessingDesc)

Shadow Map A Shadow Map B Shadow Map C

// Create Aliasing Textures

let heap = device.newHeap(with:heapDesc)

let shadowMapA = heap.newTexture(with:shadowDesc)

let shadowMapB = heap.newTexture(with:shadowDesc)

let shadowMapC = heap.newTexture(with:shadowDesc)

// Allow heap to reassign shadow map memory to new resources

shadowMapA.makeAliasable()

shadowMapB.makeAliasable()

shadowMapC.makeAliasable()

let postProcessingD = heap.newTexture(with:postProcessingDesc)

let postProcessingE = heap.newTexture(with:postProcessingDesc)

Shadow Map A Shadow Map B Shadow Map C

// Create Aliasing Textures

let heap = device.newHeap(with:heapDesc)

let shadowMapA = heap.newTexture(with:shadowDesc)

let shadowMapB = heap.newTexture(with:shadowDesc)

let shadowMapC = heap.newTexture(with:shadowDesc)

// Allow heap to reassign shadow map memory to new resources

shadowMapA.makeAliasable()

shadowMapB.makeAliasable()

shadowMapC.makeAliasable()

let postProcessingD = heap.newTexture(with:postProcessingDesc)

let postProcessingE = heap.newTexture(with:postProcessingDesc)

Shadow Map A Shadow Map B Shadow Map C

// Create Aliasing Textures

let heap = device.newHeap(with:heapDesc)

let shadowMapA = heap.newTexture(with:shadowDesc)

let shadowMapB = heap.newTexture(with:shadowDesc)

let shadowMapC = heap.newTexture(with:shadowDesc)

// Allow heap to reassign shadow map memory to new resources

shadowMapA.makeAliasable()

shadowMapB.makeAliasable()

shadowMapC.makeAliasable()

let postProcessingD = heap.newTexture(with:postProcessingDesc)

let postProcessingE = heap.newTexture(with:postProcessingDesc)

Shadow Map A Shadow Map B Shadow Map CPost Processing D Post Processing E

// Create Aliasing Textures

let heap = device.newHeap(with:heapDesc)

let shadowMapA = heap.newTexture(with:shadowDesc)

let shadowMapB = heap.newTexture(with:shadowDesc)

let shadowMapC = heap.newTexture(with:shadowDesc)

// Allow heap to reassign shadow map memory to new resources

shadowMapA.makeAliasable()

shadowMapB.makeAliasable()

shadowMapC.makeAliasable()

let postProcessingD = heap.newTexture(with:postProcessingDesc)

let postProcessingE = heap.newTexture(with:postProcessingDesc)

Best practices
Resource Aliasing

Best practices
Resource Aliasing

Calling sequence is important
• Create resources in the order they will be used in a frame
• Interleave with makeAliasable after resource contents are consumed

Best practices
Resource Aliasing

Calling sequence is important
• Create resources in the order they will be used in a frame
• Interleave with makeAliasable after resource contents are consumed

Keep dynamic resources in their own heap

Explicit Command Synchronization

Synchronizing heap resource updates
Explicit Command Synchronization NEW

Synchronizing heap resource updates
Explicit Command Synchronization NEW

Metal does not track command updates to heap resources
• Modification of resource contents
• Reinterpretation of aliasing resources

Synchronizing heap resource updates
Explicit Command Synchronization NEW

Metal does not track command updates to heap resources
• Modification of resource contents
• Reinterpretation of aliasing resources

Synchronizing heap resource updates
Explicit Command Synchronization NEW

Metal does not track command updates to heap resources
• Modification of resource contents
• Reinterpretation of aliasing resources

Tell Metal when heap resources are read or updated
• Necessary for correct results

Synchronizing heap resource updates
Explicit Command Synchronization NEW

Metal does not track command updates to heap resources
• Modification of resource contents
• Reinterpretation of aliasing resources

Tell Metal when heap resources are read or updated
• Necessary for correct results

Synchronizing heap resource updates
Explicit Command Synchronization NEW

Metal does not track command updates to heap resources
• Modification of resource contents
• Reinterpretation of aliasing resources

Tell Metal when heap resources are read or updated
• Necessary for correct results

Use GPU fences to explicitly communicate resource dependencies

A GPU fence is a timestamp
GPU Fences

Time

Pass A

Pass B

A GPU fence is a timestamp
GPU Fences

Commands interact with fences with two operations

Time

Pass A

Pass B

A GPU fence is a timestamp
GPU Fences

Commands interact with fences with two operations
• Update the fence with new timestamp

Time

Pass A

Pass B

A GPU fence is a timestamp
GPU Fences

Commands interact with fences with two operations
• Update the fence with new timestamp
• Wait for GPU to reach the current timestamp

Time

Pass A

Pass B

Parallel Command Execution

Time

Shadow
Vertex

Shadow
Fragment

Main
Vertex Main Fragment

Parallel Command Execution

Post Process
Compute

Metal commands are submitted in serial order

Parallel Command Execution

Time

Shadow
Vertex

Shadow
Fragment

Main
Vertex Main Fragment

Parallel Command Execution

Post Process
Compute

Metal commands are submitted in serial order
GPUs execute encoded commands in parallel

Parallel Command Execution

Time

Shadow
Vertex

Shadow
Fragment

Main
Vertex

Main Fragment

Parallel Command Execution

Post Process
Compute

Metal commands are submitted in serial order
GPUs execute encoded commands in parallel
• Even across frames

Parallel Command Execution

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Shadow
Fragment Main Fragment

Main
Vertex

Main Fragment

Parallel Command Execution

Post Process
Compute

Incorrect results without synchronization
Synchronizing Heap Updates

Two commands write to aliasing heap memory simultaneously

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Main Fragment

Main
Vertex

Main Fragment Shadow
Fragment

Post Process
Compute

Serialize commands with a fence
Synchronizing Heap Updates

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Main
Vertex

Main Fragment Main FragmentShadow
Fragment

Post Process
Compute

Serialize commands with a fence
Synchronizing Heap Updates

Use a fence to serialize access to the aliasing heap resources

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Main
Vertex

Main Fragment Main FragmentShadow
Fragment

Post Process
Compute

Serialize commands with a fence
Synchronizing Heap Updates

Use a fence to serialize access to the aliasing heap resources
• Post Process command updates the fence

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Main
Vertex

Main Fragment Main FragmentShadow
Fragment

Post Process
Compute

Serialize commands with a fence
Synchronizing Heap Updates

Use a fence to serialize access to the aliasing heap resources
• Post Process command updates the fence
• Shadow command waits on the fence

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Main
Vertex

Main Fragment Main FragmentShadow
Fragment

Post Process
Compute

Serialize commands with a fence
Synchronizing Heap Updates

Use a fence to serialize access to the aliasing heap resources
• Post Process command updates the fence
• Shadow command waits on the fence

Time

Shadow
Vertex

Shadow
Fragment

Shadow
Vertex

Main
Vertex

Main
Vertex

Main Fragment Main FragmentShadow
Fragment

Post Process
Compute

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

// Using Fences To Synchronize Heap Updates Across Commands

let shadowPostProcessingFence = device.newFence()

// Create post-processing encoder for frame A

let postProcessingEnc = commandBufA.computeCommandEncoder()

dispatchPostProcessingFilters(postProcessingEnc)

// Tell GPU to update fence when post-processing is complete

computeEnc.update(shadowPostProcessingFence)

computeEnc.endEncoding()

// Create shadow encoder for frame B

let shadowEnc = commandBufB.renderCommandEncoder(with:passDesc)

// Wait until compute encoder from frame A is complete

shadowEnc.wait(for:shadowPostProcessingFence, beforeStages:.fragment)

renderShadows(shadowEnc);

shadowEnc.endEncoding()

Best practices
Explicit Command Synchronization

Express dependencies at appropriate granularity
• Do not track static textures
• Track groups of resources with a single fence

Summary
Resource Heaps

Create resources faster with suballocation
Use memory more efficiently with resource aliasing
Synchronize heap updates across commands with GPU Fences

Same Rendering, Less Memory
Memoryless Render Targets

Textures without storage
Memoryless Render Targets NEW

Textures without storage
Memoryless Render Targets

Memoryless render targets are not backed by system memory

NEW

Textures without storage
Memoryless Render Targets

Memoryless render targets are not backed by system memory

NEW

Textures without storage
Memoryless Render Targets

Memoryless render targets are not backed by system memory
Use for render pass attachments that are not stored

NEW

Textures without storage
Memoryless Render Targets

Memoryless render targets are not backed by system memory
Use for render pass attachments that are not stored

NEW

Textures without storage
Memoryless Render Targets

Memoryless render targets are not backed by system memory
Use for render pass attachments that are not stored
Create texture with new storage mode
• MTLStorageModeMemoryless

NEW

Textures without storage
Memoryless Render Targets

Memoryless render targets are not backed by system memory
Use for render pass attachments that are not stored
Create texture with new storage mode
• MTLStorageModeMemoryless

iOS and tvOS only

NEW

Tile-Based Rendering

Color Attachment Texture

Depth Attachment Texture

Tile-Based Rendering

A7 and later GPUs render to fast GPU tile
storage, one tile at a time

GPU Tile Storage

Color Attachment Texture

Depth Attachment Texture

Tile-Based Rendering

A7 and later GPUs render to fast GPU tile
storage, one tile at a time
Store actions control whether to copy
results to system memory

GPU Tile Storage

Color Attachment Texture

Depth Attachment Texture

Depth attachments
Use Case

GPU Tile Storage

Color Attachment Texture

Depth Attachment Texture

Depth attachments
Use Case

Depth attachments are required for  
depth testing

GPU Tile Storage

Color Attachment Texture

Depth Attachment Texture

Depth attachments
Use Case

Depth attachments are required for  
depth testing
If the depth attachment is not stored,  
make it memoryless

GPU Tile Storage

Color Attachment Texture

Depth Attachment Texture

Multisample color attachments

GPU Tile Storage

MSAA Color Attachment Texture

Resolve Color Attachment Texture

Use Case

Multisample color attachments

GPU Tile Storage

MSAA Color Attachment Texture

Resolve Color Attachment Texture

Use Case

MSAA attachments are required for
multisample rendering

Multisample color attachments

GPU Tile Storage

MSAA Color Attachment Texture

Resolve Color Attachment Texture

Use Case

MSAA attachments are required for
multisample rendering
If the color attachment is resolved, make the
MSAA color attachment memoryless

Texture Type Potential Savings (MB)

Depth Texture on iPhone 6s Plus
1920x1080 7.9

Depth Texture on iPad Pro (12.9-inch)
2732x2048 21.3

4xMSAA Color Texture on iPhone 6s Plus
1920x1080 31.6

4xMSAA Color Texture on iPad Pro (12.9-inch)
2732x2048 85.4

Memory savings
Use Case

Improved Tools

Jose Enrique D’Arnaude del Castillo GPU Software Engineer
Alp Yucebilgin GPU Software Engineer

What’s New in Metal Tools

Metal System Trace

What’s New in Metal Tools

Metal System Trace
GPU Overrides

What’s New in Metal Tools

Metal System Trace
GPU Overrides
GPU Frame Debugger

Metal System Trace

Frame 2

CPU

GPU

Time

Frame 0 CompletedHandler

Frame 1Frame 0 Frame 2 Frame 3

Frame 1 Frame 3Frame 0

Metal System Trace

Metal System Trace

Metal System Trace

Metal System Trace

Metal System Trace

Metal System Trace

iOS

Metal System Trace

iOS tvOS

Metal System Trace NEW

iOS tvOS

NEWRicher Metal Tracing

Richer Metal Tracing

Resource events

Richer Metal Tracing

Resource events

Richer Metal Tracing

Resource events

Richer Metal Tracing

Resource events
Debug groups

Richer Metal Tracing

Resource events
Debug groups

Richer Metal Tracing

Resource events
Debug groups
Multi GPU (macOS)

Richer Metal Tracing

Resource events
Debug groups
Multi GPU (macOS)

Richer Metal Tracing

Resource events
Debug groups
Multi GPU (macOS)
Scaler (iOS)

Richer Metal Tracing

Resource events
Debug groups
Multi GPU (macOS)
Scaler (iOS)

Integration with More Instruments NEW

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Integration with More Instruments

Navigation NEW

Navigation NEW

Navigation

Navigation

Navigation

Performance Observations NEW

Performance Observations NEW

Performance Observations NEW

Performance Observations

Performance Observations

Performance Observations

Performance Observations

Performance Observations

Performance Observations

Performance Observations

Demo
GPU Frame Debugger

What’s New in Metal Tools

Metal System Trace
GPU Overrides
GPU Frame Debugger

What’s New in Metal Tools

Metal System Trace
GPU Overrides
GPU Frame Debugger
• Extended Validation

What’s New in Metal Tools

Metal System Trace
GPU Overrides
GPU Frame Debugger
• Extended Validation
• Metal Library Projects

Summary

Summary

Tessellation

Resource Heaps and Memoryless Render Targets

Improved Tools

Summary

Tessellation

Resource Heaps and Memoryless Render Targets

Improved Tools

Summary

Tessellation

Function Specialization and  
Function Resource Read-Writes

Wide Color and Texture Assets

Additions to Metal Performance Shaders

Resource Heaps and Memoryless Render Targets

Improved Tools

More Information

https://developer.apple.com/wwdc16/604

Adopting Metal, Part 1 Nob Hill Tuesday 1:40PM

Adopting Metal, Part 2 Nob Hill Tuesday 3:00PM

What’s New in Metal, Part 2 Pacific Heights Wednesday 1:40PM

Advanced Metal Shader Optimization Pacific Heights Wednesday 3:00PM

Related Sessions

Labs

Metal Lab Graphics, Games,
and Media Lab B Thursday 12:00PM

