
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Graphics and Games #WWDC16

Session 609

Advances in SceneKit Rendering

Amaury Balliet SceneKit Engineer
Jean-Baptiste Bégué SceneKit Engineer
Sébastien Métrot SceneKit Engineer
Nick Porcino Model I/O Engineer

Agenda

SceneKit in a Nutshell
Rendering Advances
Demo
Behind the Demo
Camera Effects
Model I/O

In a nutshell
SceneKit

Amaury Balliet SceneKit Engineer

SceneKit

SceneKit

SceneKit

SceneKit

SceneKit

Thank you!

1408 x 792

watchOS 3
SceneKit

SceneKit is now available everywhere
Great opportunity to make attractive apps
New interactions with content on your wrist

watchOS 3
SceneKit

SceneKit is now available everywhere
Great opportunity to make attractive apps
New interactions with content on your wrist

Game Technologies for Apple Watch Mission Friday 3:00PM

watchOS 3
SceneKit

SceneKit is now available everywhere
Great opportunity to make attractive apps
New interactions with content on your wrist

Game Technologies for Apple Watch Mission Friday 3:00PM

SceneKit

What’s New in SceneKit WWDC 2013

What’s New in SceneKit WWDC 2014

Enhancements to SceneKit WWDC 2015

Advances in SceneKit Rendering

Physically based rendering

Physically based rendering
in the hands of everyone.

Advances in SceneKit Rendering

Biggest leap forward since SceneKit’s introduction
Latest advances in 3D graphics
Modern technologies
• Accurate rendering
• Physically based materials and lighting

Accurate Rendering

Linear rendering
Linear Rendering and Color Management

Linear rendering
Linear Rendering and Color Management

Linear rendering
Linear Rendering and Color Management

Linear rendering
Linear Rendering and Color Management

Linear rendering
Linear Rendering and Color Management

Shading in gamma space
Linear Rendering and Color Management

Texture Shading Texture or
Framebuffer

Shading in linear space
Linear Rendering and Color Management

Gamma
Encoding

Gamma
Decoding

Texture Shading Texture or
Framebuffer

Shading in gamma space
Linear Rendering and Color Management

Shading in linear space
Linear Rendering and Color Management

Linear rendering
Linear Rendering and Color Management

Linear rendering
Linear Rendering and Color Management

Essential for physically based shading
Being linear is necessary to get the math right
Benefits to all other lighting models

Color management
Linear Rendering and Color Management

Cross-framework effort for color accuracy
Fully embraced by SceneKit

Color management for textures
Linear Rendering and Color Management

Automatic color management for images
Textures that represent raw data are
supposed to be sRGB
Have a look at texture sets and asset catalogs

Color management for textures
Linear Rendering and Color Management

Automatic color management for images
Textures that represent raw data are
supposed to be sRGB
Have a look at texture sets and asset catalogs

Color management for textures
Linear Rendering and Color Management

Automatic color management for images
Textures that represent raw data are
supposed to be sRGB
Have a look at texture sets and asset catalogs

Working with Wide Color Mission Thursday 1:40PM

Color management for color objects
Linear Rendering and Color Management

Automatic color management for color objects
Color components previously assumed to be sRGB
Be careful with programmatically-generated color objects

Color management for color objects

let colorA = NSColor(displayP3Red: 0.5, green: 1.0, blue: 0.75, alpha: 1) // Display P3

let colorB = NSColor(srgbRed: 0.5, green: 1.0, blue: 0.75, alpha: 1) // sRGB

Linear Rendering and Color Management

Display P3 
(0.5, 1.0, 0.75)

sRGB 
(0.5, 1.0, 0.75)

Color management for color objects
Linear Rendering and Color Management

Color management for color objects
Linear Rendering and Color Management

Automatic color management for color objects
Color components previously assumed to be sRGB
Be careful with programmatically-generated color objects
Be careful with shader modifiers

// Metal Shading Language shader modifier

// linear extended sRGB components for sRGB(0.5, 1.0, 0.75)

_surface.diffuse.rgb += float3(0.235514164, 1.03112769, 0.523271978)

Backward compatibility
Linear Rendering and Color Management

No performance cost
Enabled when building against the new SDKs
Dramatic visual impact for older scenes

Backward compatibility
Linear Rendering and Color Management

Backward compatibility
Linear Rendering and Color Management

Backward compatibility
Linear Rendering and Color Management

Backward compatibility
Linear Rendering and Color Management

No performance cost
Enabled when building against the new SDKs
Dramatic visual impact for older scenes
Global option to opt-out

// Info.plist

<key>SCNDisableLinearSpaceRendering</key>

<true/>

Wide Gamut Content

Wide Gamut Content

Transparent support for wide gamut images and color
Full support of wide gamut displays
• 9.7‑inch iPad Pro
• iMac with Retina display

Caveats
Wide Gamut Content

Increased memory usage
Global option to opt-out

// Info.plist

<key>SCNDisableWideGamut</key>

<true/>

“Color Gamut Showcase” sample code
Wide Gamut Content

Wide Gamut Content

Working with Wide Color Mission Thursday 1:40PM

Advances in SceneKit Rendering

Biggest leap forward since SceneKit’s introduction
Latest advances in 3D graphics
Modern technologies
• Accurate rendering
• Physically based materials and lighting

Physically Based Rendering

Physically Based Rendering

Physically Based Rendering

Physically Based Rendering

Bidirectional reflectance distribution function
Physically Based Rendering

Lo(v) = ∫Ω
f(l, v) Li(l) ⟨n ⋅ l⟩ dl

f(l, v) = fd(l, v) + fr(l, v)

fd(l, v) =
cdiff

π
fr(l, v) = D(h) G(l, v) F(l, v)

4 ⟨n ⋅ l⟩ ⟨n ⋅ v⟩

Physically Based Rendering

Relies on intuitive physical material properties
Adopted and loved by artists
High-level and easy-to-use API

Physically Based Rendering

Physically based materials
Physically based lights

Physically Based Materials

Physically Based Materials

Physically Based Materials

Physically Based Materials

Specular Reflection
Diffuse Reflection

Diffuse reflection
Physically Based Materials

Diffuse reflection
Physically Based Materials

Specular reflection
Physically Based Materials

Specular reflection
Physically Based Materials

Specular reflection
Physically Based Materials

Reflectance
Physically Based Materials

Reflectance
Physically Based Materials

Plastic Aluminum Gold

Metalness
Physically Based Materials

public class SCNMaterial {

 public var metalness: SCNMaterialProperty { get }

}

NEW

Metal versus dielectric
Physically Based Materials

Metal Dielectric

High reflectance Low reflectance

Absorb light Absorb and scatter light

Metal versus dielectric
Physically Based Materials

Metal Dielectric

Bright specular reflection Specular reflection at grazing angles

No diffuse reflection Mainly diffuse reflection

Metal Dielectric

Reflectance at 0°
 diffuse map

Reflectance at 0°
constant

— Object albedo
diffuse map

Metal versus dielectric
Physically Based Materials

Metal versus dielectric
Physically Based Materials

public class SCNMaterial {

 public var diffuse: SCNMaterialProperty { get }

}

Roughness
Physically Based Materials

Roughness
Physically Based Materials

Roughness
Physically Based Materials

public class SCNMaterial {

 public var roughness: SCNMaterialProperty { get }

}

NEW

Material API
Physically Based Materials

Three fundamental properties
• Albedo or reflectance at 0°
• Metalness
• Roughness

public class SCNMaterial {

 public var diffuse: SCNMaterialProperty { get }

 public var metalness: SCNMaterialProperty { get }

 public var roughness: SCNMaterialProperty { get }

}

Material API
Physically Based Materials

New physically based lighting model
diffuse , metalness , and roughness maps

let material = SCNMaterial()

material.lightingModelName = .physicallyBased

material.diffuse.contents = "albedo.png"

material.metalness.contents = "metalness.png"

material.roughness.contents = "roughness.png"

diffuse map

diffuse map, roughness map

diffuse map, roughness map, metalness map

diffuse map

diffuse map, metalness map

diffuse map, metalness map, roughness map

Material API
Physically Based Materials

Use grayscale images for metalness , roughness , and ambientOcclusion
Use scalars for constant values

material.metalness.contents = "metalness.png"

material.roughness.contents = NSNumber(value: 0.5)

NEW

Physically Based Materials

Physically Based Rendering

Physically based materials
Physically based lights

Physically Based Lights

Physically Based Lights

Image based lighting
Light probes
Point lights

Physically Based Lights

Image based lighting
Light probes
Point lights

Image based lighting
Physically Based Lights

Image based lighting
Physically Based Lights

Image based lighting
Physically Based Lights

Image based lighting
Physically Based Lights

Cube map captures the environment
Lighting information is derived from cube map
Image based lighting can be used alone
Not mandatory to add lights in the scene

Image based lighting
Physically Based Lights

let scene = SCNScene()

scene.lightingEnvironment.contents = "outside.exr"

NEW

A single change affects the whole scene

Physically Based Lights

A single change affects the whole scene
Works great with the background property

let scene = SCNScene()

scene.lightingEnvironment.contents = "outside.exr"

scene.background.contents = scene.lightingEnvironment.contents

Image based lighting
NEW

Image based lighting: Caveats
Physically Based Lights

Captures the distant environment
Does not account for obstacles in the scene
Not suited for occluded objects

Physically Based Lights

Image based lighting
Light probes
Point lights

Light probes
Physically Based Lights

Light probes
Physically Based Lights

Light probes
Physically Based Lights

A special kind of light
Captures the local diffuse lighting
Account for obstacles in the scene
Lightweight
Efficient

Light probes
Physically Based Lights

A special kind of light: SCNLightType.probe

let light = SCNLight()

light.type = .probe

NEW

Light probes
Physically Based Lights

Can be placed programmatically or in Xcode
Static lighting information must be baked

public class SCNRenderer {

 public func updateProbes(_ probes: [SCNNode], atTime time: CFTimeInterval)

}

NEW

Physically Based Lights

Image based lighting
Light probes
Point lights

Point lights
Physically Based Lights

Work with physically based materials, too
Updated to be configured with real-world properties

public let SCNLightTypeOmni: String // Omnidirectional light

public let SCNLightTypeDirectional: String // Directional light

public let SCNLightTypeSpot: String // Spot light

Point lights: Intensity
Physically Based Lights

Expressed in lumens (lm)

let light = SCNLight()

light.intensity = 1500 // defaults to 1000 lm

NEW

Point lights: Temperature
Physically Based Lights

Expressed in Kelvin (K)
Modulates the light’s color

let light = SCNLight()

light.temperature = 5000

800K 10,000K

NEW

Photometric lights
Physically Based Lights

New kind of point light

public let SCNLightTypeOmni: String // Omnidirectional light

public let SCNLightTypeDirectional: String // Directional light

public let SCNLightTypeSpot: String // Spot light

public let SCNLightTypeIES: String // IES light

NEW

Photometric lights
Physically Based Lights

New kind of point light

public let SCNLightTypeOmni: String // Omnidirectional light

public let SCNLightTypeDirectional: String // Directional light

public let SCNLightTypeSpot: String // Spot light

public let SCNLightTypeIES: String // IES light

NEW

Photometric lights
Physically Based Lights

New kind of point light
Modeled after real-world lights
Custom attenuation shape

Photometric lights
Physically Based Lights

Spot IES

Photometric lights
Physically Based Lights

Spot IES

Photometric lights
Physically Based Lights

New kind of point light
Modeled after real-world lights
Custom attenuation shape

let light = SCNLight()

light.type = .IES

light.iesProfileURL = Bundle.main().urlForResource("spot", withExtension: "ies")

NEW

Recap
Physically Based Rendering

Physically based materials
Advanced lighting
• Image based lighting
• Light probes
• Point lights

Demo

Jean-Baptiste Bégué SceneKit Engineer
Sébastien Métrot SceneKit Engineer

Bob the Badger
Physically Based Rendering in Practice

Sébastien Métrot SceneKit Engineer

The demo

The demo
is a sample code!

Drafts
Pre-Production

Drafts
Pre-Production

Modeling
Production

Workflow

Our artist exported models and PBR materials as DAE files
Custom tool written in SceneKit
• Import DAE file
• Convert units to meters
• Add light probes along the track

Image based lighting
Lighting

Light coming from the environment
Great for outdoor scenes
Reflections
Works with regular lights, too

Image based lighting
Lighting

Light coming from the environment
Great for outdoor scenes
Reflections
Works with regular lights, too

Background Image

Image based lighting
Lighting

Light coming from the environment
Great for outdoor scenes
Reflections
Works with regular lights, too

Lighting Environment

Background Image

Light probes
Lighting

Custom tool adds light probes along a path
They can be placed and computed in Xcode
Essential for the inside
May be optional for an outside-only scene

Light probes
Lighting

Custom tool adds light probes along a path
They can be placed and computed in Xcode
Essential for the inside
May be optional for an outside-only scene

Light maps
Lighting

For the inside
Overrides IBL except for the specular component

let material = SCNMaterial()

material.selfIllumination.contents = "selfIllum.exr"

Normal maps
Lighting

Normal maps add detail to the models

let material = SCNMaterial()

material.normal.contents = "normal.png"

Ambient occlusion maps
Lighting

Ambient occlusion maps make global illumination more realistic

let material = SCNMaterial()

material.ambientOcclusion.contents = "ao.png"

Point lights
Lighting

One global dynamic light high above  
the scene
• Create shadows
• Improve global lighting

Materials

100% physically based materials!

Materials

Roughness

Normal

Materials

Diffuse

Metalness

Summary
Physically Based Rendering

Physically based shading
SceneKit APIs for materials and lights
Xcode integration
Showcase demo and sample code

HDR Camera and Effects

HDR Camera

HDR is short for High Dynamic Range
Float components
Low dynamic range: 8 bits per components
HDR extends that range
Tone mapped to LDR screens

HDR domain Screen (LDR)

HDR Camera

Needed for High Dynamic Range contents
Can also be used with normal contents but realistic light ranges

let camera = SCNCamera()

camera.wantsHDR = true

NEW

Tone mapping
HDR Camera

Converts from HDR to LDR
Automatic eye adaptation
Configurable (gray point, white point, min/max exposure)

camera.wantsExposureAdaptation = true

camera.averageGray = 0.5

camera.whitePoint = 0.5

camera.exposureOffset = 2.5

camera.minimumExposure = -20.0

camera.maximumExposure = 10.0

NEW

Default exposure
HDR Camera

Under exposure
HDR Camera

Over exposure
HDR Camera

Bloom
Effects

High-intensity lights and reflections
bleeding on the surrounding pixels
Simulates the effect of being blinded by
looking at a bright light

camera.bloomThreshold = 0.5

camera.bloomIntensity = 1.5

camera.bloomBlurRadius = 2.5

NEW

Bloom
Effects

Bloom
Effects

Motion blur
Effects

Smoothens camera movements
Some objects can be excluded from the motion blur

camera.motionBlurIntensity = 0.2

NEW

Motion blur
Effects

Motion blur
Effects

Use movability hint to exclude nodes from the motion blur

character.movabilityHint = .movable

NEW

Motion blur: Movability hint
Effects

Vignetting
Effects

Simulates the round shading aberrations of real camera lenses

camera.vignettingPower = 0.2

camera.vignettingIntensity = 1.2

NEW

Vignetting
Effects

Vignetting
Effects

Color fringe
Effects

Simulates the chromatic aberrations happening in real lenses

camera.colorFringeStrength = 0.2

camera.colorFringeIntensity = 0.8

NEW

Color fringe
Effects

Color fringe
Effects

Color correction
Effects

Saturation
• Easy black and white look
• Overblown colors

Contrast
• More intense look

camera.saturation = 0.0

camera.contrast = 2.0

NEW

Default
Effects

Desaturate
Effects

Saturate
Effects

Contrast
Effects

Color grading
Effects

camera.colorGrading = "colorProfile.png"

Changes the mood of the rendering by applying a color profile
• 3D color cube
• Lookup table
• Stored as a strip of square images:

NEW

Color grading
Effects

Color grading
Effects

Summary
HDR and Camera effects

Brand new HDR cameras and effects
• Configurable tone mapping and exposure
• Bloom
• Motion blur
• Vignetting
• Color fringe
• Saturation and contrast
• Color grading

I/O Improvements

Nick Porcino Model I/O Engineer

Polygons
Primitives

Easier to use
Automatic triangulation
Allow for much better subdivision
Opt-in when importing files

let loadingOptions = [.preserveOriginalTopology: true]

NEW

Faster
Better results

OpenSubdiv 3
Subdivision Surfaces

Quads

Triangles

Model I/O

3D data interchange
Model I/O

3D data interchange
• Between apps
• Between frameworks
• Standard file formats

Model I/O

Model I/O

A new open standard
Years of practical production technologies
Data types specialized for scenes
File layering enables concurrent workflows

Layers
Universal Scene Description

Classes
Universal Scene Description

Classes
Universal Scene Description

Variations
Universal Scene Description

Capabilities
Universal Scene Description

Capabilities
Universal Scene Description

Workflow
Universal Scene Description

Integration across the system

Model I/O
Universal Scene Description

Finder
Universal Scene Description

Preview
Universal Scene Description

Xcode
Universal Scene Description
Xcode
Universal Scene Description

SceneKit
Universal Scene Description

SceneKit
Universal Scene Description

Workflow
Universal Scene Description

Plugins
Seamless movement of 3D data
• Between people
• Content creation programs
• Apps

Plugins and open source information are available from http://openusd.org

Summary

SceneKit available on all platforms
Physically based rendering
HDR camera and effects
Support for USD files

More Information

https://developer.apple.com/wwdc16/609

Related Sessions

Visual Debugging with Xcode Presidio Wednesday 4:00PM

Working with Wide Color Mission Thursday 1:40PM

Game Technologies for Apple Watch Mission Friday 3:00PM

SceneKit Lab Graphics, Games,
and Media Lab A Thursday 3:00PM

Model I/O Lab Graphics, Games,
and Media Lab B Thursday 3:00PM

watchOS Graphics and Games Lab Graphics, Games,
and Media Lab B Friday 4:00PM

Labs

