
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

A snapshot of the next generation in storage

System Frameworks #WWDC16

Session 701

Introducing Apple File System

Eric Tamura Manager, Local File Systems
Dominic Giampaolo Senior Software Engineer, Storage / File Systems

What is Apple File System?

What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs

What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs

Apple File System

Introducing Apple File System (APFS)

Introducing Apple File System (APFS)

Next Generation File System

Introducing Apple File System (APFS)

Next Generation File System

Designed to scale from an
Apple Watch to a Mac Pro

Introducing Apple File System (APFS)

Next Generation File System

Designed to scale from an
Apple Watch to a Mac Pro

Designed to take advantage
of flash / SSD storage

Introducing Apple File System (APFS)

Next Generation File System

Designed to scale from an
Apple Watch to a Mac Pro

Designed to take advantage
of flash / SSD storage

Engineered with encryption
as a primary feature

What about HFS+ ?
Motivation

What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system

What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.

What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.
Designed in an era where floppies and HDDs were state of the art

What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.
Designed in an era where floppies and HDDs were state of the art
Single-threaded data structures

What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.
Designed in an era where floppies and HDDs were state of the art
Single-threaded data structures
Rigid data structures

Why a new file system?
Motivation

Why a new file system?
Motivation

Designed (and tuned) for Apple products and ecosystem

Why a new file system?
Motivation

Designed (and tuned) for Apple products and ecosystem
Scale file system footprint to support Apple Watch up to Mac Pro

Why a new file system?
Motivation

Why a new file system?
Motivation

Enhance security capabilities

Why a new file system?
Motivation

Enhance security capabilities
Add new features!

Current File System / Storage SW

Current File System / Storage SW

HFS (Standard)

Current File System / Storage SW

HFS (Standard)

HFS+

Current File System / Storage SW

HFS (Standard)

HFS+
HFS+J

HFSX (Case Sensitive)

Current File System / Storage SW

HFS (Standard)

HFS+
HFS+J

HFSX (Case Sensitive)
CoreStorage

Fusion Drive

CoreStorage Full Disk Crypto

Current File System / Storage SW

HFS (Standard)

HFS+
HFS+J

HFSX (Case Sensitive)
CoreStorage

Fusion Drive

iOS/tvOS/watchOS HFS+

iOS/tvOS/watchOS HFS+ Per-File Crypto

CoreStorage Full Disk Crypto

Current File System / Storage SW

APFS

What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs

What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

Improved File System Fundamentals

Improved File System Fundamentals

Flash / SSD-optimized

Improved File System Fundamentals

Flash / SSD-optimized
Crash-protected

Improved File System Fundamentals

Flash / SSD-optimized
Crash-protected
Modern 64-bit native fields

Improved File System Fundamentals

Flash / SSD-optimized
Crash-protected
Modern 64-bit native fields
Extensible design for data structure growth

Improved File System Fundamentals

Flash / SSD-optimized
Crash-protected
Modern 64-bit native fields
Extensible design for data structure growth
Optimized for Apple software ecosystem

Improved File System Fundamentals

Flash / SSD-optimized
Crash-protected
Modern 64-bit native fields
Extensible design for data structure growth
Optimized for Apple software ecosystem
Low-latency design

Improved File System Fundamentals

Flash / SSD-optimized
Crash-protected
Modern 64-bit native fields
Extensible design for data structure growth
Optimized for Apple software ecosystem
Low-latency design
Native encryption support

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

HFS Compatibility

HFS Compatibility

Support and replace HFS+ functionality*

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 2 - HFS+ Vol

LOLCAT.mp4

Partition 1 - HFS+ Vol

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 2 - HFS+ Vol

LOLCAT.mp4

Partition 1 - HFS+ Vol

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 2 - HFS+ Vol

LOLCAT.mp4

Partition 1 - HFS+ Vol

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

LOLCAT.mp4

Partition 1 - HFS+ Vol

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 2 - HFS+ Vol

Partition 1 - HFS+ Vol

LOLCAT.mp4

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 2 - HFS+ Vol

Partition 1 - HFS+ Vol

LOLCAT.mp4

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 1 - HFS+ Vol

LOLCAT.mp4

Space Sharing
GPT Header

Partition 0 - HFS+ Vol

Partition 1 - HFS+ Vol

LOLCAT.mp4

Space Sharing
GPT Header

Partition 0 - APFS Container
Volume 0

Space Sharing
GPT Header

Partition 0 - APFS Container
Volume 0

Volume 0

Space Sharing
GPT Header

Partition 0 - APFS Container
Volume 0

Volume 0

Space Sharing
GPT Header

Partition 0 - APFS Container
Volume 0

Volume 1

Volume 0

Space Sharing
GPT Header

Partition 0 - APFS Container
Volume 0

Volume 1

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

Cloning Files and Directories

~eric/TOP_SECRET_APFS.key

SSD

Cloning Files and Directories

~eric/TOP_SECRET_APFS.key

~eric/Archive/TOP_SECRET_APFS.key

SSD

Cloning Files and Directories

~eric/TOP_SECRET_APFS.key

~eric/Archive/TOP_SECRET_APFS.key

SSD

Cloning Files and Directories

~eric/TOP_SECRET_APFS.key

~eric/Archive/TOP_SECRET_APFS.key

SSD

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

File System Snapshots

SSD

~dbg/BikeRacing.key ~dbg/CoffeeOrigins.key

File System Snapshots

SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key ~dbg/CoffeeOrigins.key

File System Snapshots

SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key ~dbg/CoffeeOrigins.key

File System Snapshots

SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key ~dbg/CoffeeOrigins.key

File System Snapshots

SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key

Reverting to a Snapshot

SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key

Reverting to a Snapshot

SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key ~dbg/CoffeeOrigins.key

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

Fast Directory Sizing

Fast Directory Sizing

How much space does a directory hierarchy use?

Fast Directory Sizing

How much space does a directory hierarchy use?
Users would like to know the answer quickly

Fast Directory Sizing

Fast Directory Sizing

The file system could keep track of this…

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)
• Locking child -> parent is a locking order violation in file systems

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)
• Locking child -> parent is a locking order violation in file systems

APFS side-steps the problem!

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)
• Locking child -> parent is a locking order violation in file systems

APFS side-steps the problem!
• Store the size separately

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)
• Locking child -> parent is a locking order violation in file systems

APFS side-steps the problem!
• Store the size separately
• Use atomic operations to update the size

Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)
• Locking child -> parent is a locking order violation in file systems

APFS side-steps the problem!
• Store the size separately
• Use atomic operations to update the size
• Small incremental cost (extra records)

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

Atomic Safe-Save (rename)

~dbg/MakeMoneyFast.key

Atomic Safe-Save (rename)

~dbg/MakeMoneyFast.key /var/tmp/MakeMoneyFast.key

Atomic Safe-Save (rename)

~dbg/MakeMoneyFast.key /var/tmp/MakeMoneyFast.key

Atomic Safe-Save (rename)

~dbg/MakeMoneyFast.key

Non-Atomic Safe-Save (directory)

~dbg/ClutchConcertReview.rtfd

Non-Atomic Safe-Save (directory)

/var/tmp/ClutchConcertReview.rtfd~dbg/ClutchConcertReview.rtfd

Non-Atomic Safe-Save (directory)

/var/tmp/ClutchConcertReview.rtfd~dbg/ClutchConcertReview.rtfd

Non-Atomic Safe-Save (directory)

/var/tmp/ClutchConcertReview.rtfd~dbg/ClutchConcertReview.rtfd

Non-Atomic Safe-Save (directory)

~dbg/ClutchConcertReview.rtfd

Non-Atomic Safe-Save (directory)

~dbg/ClutchConcertReview.rtfd

Atomic Safe-Save (renamex_np)

~dbg/ClutchConcertReview.rtfd

Atomic Safe-Save (renamex_np)

/var/tmp/ClutchConcertReview.rtfd~dbg/ClutchConcertReview.rtfd

Atomic Safe-Save (renamex_np)

/var/tmp/ClutchConcertReview.rtfd~dbg/ClutchConcertReview.rtfd

Atomic Safe-Save (renamex_np)

/var/tmp/ClutchConcertReview.rtfd~dbg/ClutchConcertReview.rtfd

Atomic Safe-Save (renamex_np)

~dbg/ClutchConcertReview.rtfd

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

What is Apple File System?

Improved file system fundamentals
HFS compatibility
Space sharing
Cloning files and directories
Snapshots (and reversions)
Fast directory sizing
Atomic safe-save primitives
Encryption

Encryption (HFS+)

Encryption (HFS+)

HFS+ relies on CoreStorage to provide Full Disk Encryption on Macs

Encryption (HFS+)

HFS+ relies on CoreStorage to provide Full Disk Encryption on Macs
iOS uses an HFS+ variant that supports per-file keys in conjunction with 
accelerated AES hardware

Encryption (APFS)

Encryption (APFS)

APFS supports multiple levels of file system encryption

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)
• Multi-Key Encryption

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)
• Multi-Key Encryption

- Metadata Encryption

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)
• Multi-Key Encryption

- Metadata Encryption
- Per-File Encryption

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)
• Multi-Key Encryption

- Metadata Encryption
- Per-File Encryption
- Per-Extent Encryption

Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)
• Multi-Key Encryption

- Metadata Encryption
- Per-File Encryption
- Per-Extent Encryption

APFS unifies the file system encryption software across all of our platforms

Demo
Cloning and Snapshots / APFS on macOS 10.12

What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs

What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs

Enhanced APIs
Foundation / FileManager (Swift)

Automatically adopts our new cloning and safe-save behavior

 func copyItem(atPath srcPath: String, toPath dstPath: String) throws

 func replaceItem(at originalItemURL: URL, withItemAt newItemURL: URL,
 backupItemName backupItemName: String?, options options:
 FileManager.ItemReplacementOptions = [], resultingItemURL resultingURL:
 AutoreleasingUnsafeMutablePointer<NSURL?>?) throws

Enhanced APIs
libcopyfile
CoreOS library for copying deep hierarchies—supports cloning!
Slightly above the POSIX layer
New flags added

#include <copyfile.h>

int copyfile(const char *from, const char *to,
 copyfile_state_t state, copyfile_flags_t flags);

int fcopyfile(int from_fd, int to_fd, copyfile_state_t,
 copyfile_flags_t flags);

new flag bit: COPYFILE_CLONE
Equivalent to (COPYFILE_EXCL | COPYFILE_ACL |
 COPYFILE_STAT | COPYFILE_XATTR | COPYFILE_DATA)

New APIs
Safe-Save APIs

New system calls

#include <stdio.h>

int renamex_np(const char *, const char *, unsigned int)

int renameatx_np(int, const char *, int, const char *, unsigned int)

New APIs
Cloning APIs

New file/directory cloning system calls

#include <sys/attr.h>
#include <sys/clonefile.h>

int clonefileat(int, const char *, int, const char *, uint32_t);

int fclonefileat(int, int, const char *, uint32_t);

int clonefile(const char *, const char *, uint32_t);

Compatibility

apple.com

Compatibility

apple.com

hdiutil (disk image tool)

 hdiutil create -fs APFS -size 1GB foo.sparseimage

Compatibility

apple.com

hdiutil (disk image tool)

 hdiutil create -fs APFS -size 1GB foo.sparseimage

diskutil apfs …

 diskutil apfs createContainer /dev/disk1s1

 diskutil apfs addVolume disk1s1 APFS newAPFS

Compatibility

apple.com

hdiutil (disk image tool)

 hdiutil create -fs APFS -size 1GB foo.sparseimage

diskutil apfs …

 diskutil apfs createContainer /dev/disk1s1

 diskutil apfs addVolume disk1s1 APFS newAPFS

fsck_apfs (APFS File System Check/Repair)

Current Limitations of APFS in macOS Sierra

Current Limitations of APFS in macOS Sierra

Data volumes only

Current Limitations of APFS in macOS Sierra

Data volumes only
Time Machine backups with APFS

Current Limitations of APFS in macOS Sierra

Data volumes only
Time Machine backups with APFS
FileVault / Fusion Drive Support

Current Limitations of APFS in macOS Sierra

Data volumes only
Time Machine backups with APFS
FileVault / Fusion Drive Support
Case-sensitive

Compatibility

Compatibility

APFS cannot be shared over AFP (Use SMB instead)

Compatibility

APFS cannot be shared over AFP (Use SMB instead)
OS X Yosemite or earlier will not recognize Apple File System volumes

Developer Preview available
in macOS Sierra 10.12

Rollout Plan

Upgrading to APFS

Upgrading to APFS

Apple will provide an in-place upgrade path for HFS+ to APFS

Upgrading to APFS

Apple will provide an in-place upgrade path for HFS+ to APFS
User data remains in place

Upgrading to APFS

Apple will provide an in-place upgrade path for HFS+ to APFS
User data remains in place
Write the new APFS metadata into HFS+’s free space

Shipping in 2017

Summary

Summary

APFS will be the default file system for all Apple products in 2017

Summary

APFS will be the default file system for all Apple products in 2017
Ultra-modern, crash-protected, space-sharing

Summary

APFS will be the default file system for all Apple products in 2017
Ultra-modern, crash-protected, space-sharing
Supports cloning, snapshots, enhanced data security features

Summary

APFS will be the default file system for all Apple products in 2017
Ultra-modern, crash-protected, space-sharing
Supports cloning, snapshots, enhanced data security features
Tuned and designed for the Apple ecosystem

More Information

https://developer.apple.com/wwdc16/701

https://developer.apple.com/wwdc16/701

Takeaways

Takeaways

APFS is coming soon

Takeaways

APFS is coming soon
Please test your apps against APFS with the WWDC macOS build
(and run them on APFS)

Takeaways

APFS is coming soon
Please test your apps against APFS with the WWDC macOS build
(and run them on APFS)
Please report any bugs you encounter via bugreporter so we can investigate

Related Sessions

How iOS Security Really Works Nob Hill Tuesday 4:00PM

Labs

File Systems Lab Frameworks Lab C Tuesday 12:30 PM

