
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

A snapshot of the next generation in storage

System Frameworks #WWDC16

Session 701

Introducing Apple File System

Eric Tamura Manager, Local File Systems 
Dominic Giampaolo Senior Software Engineer, Storage / File Systems



What is Apple File System?



What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs



What is Apple File System?

Introduction / Motivation

New Features

Demo

New APIs



Apple File System



Introducing Apple File System (APFS)



Introducing Apple File System (APFS)

Next Generation File System



Introducing Apple File System (APFS)

Next Generation File System

Designed to scale from an 
Apple Watch to a Mac Pro



Introducing Apple File System (APFS)

Next Generation File System

Designed to scale from an 
Apple Watch to a Mac Pro

Designed to take advantage 
of flash / SSD storage



Introducing Apple File System (APFS)

Next Generation File System

Designed to scale from an 
Apple Watch to a Mac Pro

Designed to take advantage 
of flash / SSD storage

Engineered with encryption 
as a primary feature



What about HFS+ ?
Motivation



What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system



What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.



What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.
Designed in an era where floppies and HDDs were state of the art



What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.
Designed in an era where floppies and HDDs were state of the art
Single-threaded data structures 



What about HFS+ ?
Motivation

Currently shipping HFS+ as primary file system
… but its original design is over 30 years old.
Designed in an era where floppies and HDDs were state of the art
Single-threaded data structures 
Rigid data structures
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Designed (and tuned) for Apple products and ecosystem
Scale file system footprint to support Apple Watch up to Mac Pro
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Motivation

Enhance security capabilities
Add new features!
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HFS (Standard)

HFS+
HFS+J

HFSX (Case Sensitive)
CoreStorage

Fusion Drive

iOS/tvOS/watchOS HFS+

iOS/tvOS/watchOS HFS+ Per-File Crypto

CoreStorage Full Disk Crypto
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Flash / SSD-optimized
Crash-protected
Modern 64-bit native fields
Extensible design for data structure growth
Optimized for Apple software ecosystem
Low-latency design 
Native encryption support
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Space Sharing
GPT Header

Partition 0 - APFS Container
Volume 0

Volume 1
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SSD

Snapshot FS: /Volumes/Users/dbg

~dbg/BikeRacing.key ~dbg/CoffeeOrigins.key
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Fast Directory Sizing

How much space does a directory hierarchy use?
Users would like to know the answer quickly
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Fast Directory Sizing

The file system could keep track of this…
But keeping track in the file system has one main issue:
• How do you safely update your parent and its parent (and so on…)
• Locking child -> parent is a locking order violation in file systems

APFS side-steps the problem!
• Store the size separately
• Use atomic operations to update the size
• Small incremental cost (extra records)
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Encryption (HFS+)

HFS+ relies on CoreStorage to provide Full Disk Encryption on Macs
iOS uses an HFS+ variant that supports per-file keys in conjunction with 
accelerated AES hardware
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Encryption (APFS)

APFS supports multiple levels of file system encryption
• No encryption
• One key per Volume (metadata and data)
• Multi-Key Encryption 

- Metadata Encryption
- Per-File Encryption
- Per-Extent Encryption

APFS unifies the file system encryption software across all of our platforms 



Demo
Cloning and Snapshots / APFS on macOS 10.12
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Enhanced APIs
Foundation / FileManager (Swift)

Automatically adopts our new cloning and safe-save behavior 

  func copyItem(atPath srcPath: String, toPath dstPath: String) throws 

  func replaceItem(at originalItemURL: URL, withItemAt newItemURL: URL,  
      backupItemName backupItemName: String?, options options:  
      FileManager.ItemReplacementOptions = [], resultingItemURL resultingURL:    
      AutoreleasingUnsafeMutablePointer<NSURL?>?) throws 



Enhanced APIs
libcopyfile
CoreOS library for copying deep hierarchies—supports cloning!
Slightly above the POSIX layer
New flags added

#include <copyfile.h> 

int copyfile(const char *from, const char *to,  
    copyfile_state_t state, copyfile_flags_t flags); 

int fcopyfile(int from_fd, int to_fd, copyfile_state_t,  
    copyfile_flags_t flags); 

new flag bit: COPYFILE_CLONE 
Equivalent to (COPYFILE_EXCL | COPYFILE_ACL |  
     COPYFILE_STAT | COPYFILE_XATTR | COPYFILE_DATA) 



New APIs
Safe-Save APIs

New system calls

#include <stdio.h> 

int renamex_np(const char *, const char *, unsigned int) 

int renameatx_np(int, const char *, int, const char *, unsigned int) 



New APIs
Cloning APIs

New file/directory cloning system calls

#include <sys/attr.h> 
#include <sys/clonefile.h> 

int clonefileat(int, const char *, int, const char *, uint32_t); 

int fclonefileat(int, int, const char *, uint32_t); 

int clonefile(const char *, const char *, uint32_t); 



Compatibility

apple.com



Compatibility

apple.com

hdiutil  (disk image tool)

    hdiutil create -fs APFS -size 1GB foo.sparseimage



Compatibility

apple.com

hdiutil  (disk image tool)

    hdiutil create -fs APFS -size 1GB foo.sparseimage

diskutil apfs …

    diskutil apfs createContainer /dev/disk1s1

    diskutil apfs addVolume disk1s1 APFS newAPFS



Compatibility

apple.com

hdiutil  (disk image tool)

    hdiutil create -fs APFS -size 1GB foo.sparseimage

diskutil apfs …

    diskutil apfs createContainer /dev/disk1s1

    diskutil apfs addVolume disk1s1 APFS newAPFS

fsck_apfs (APFS File System Check/Repair)
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Current Limitations of APFS in macOS Sierra

Data volumes only
Time Machine backups with APFS
FileVault / Fusion Drive Support
Case-sensitive 
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Compatibility

APFS cannot be shared over AFP (Use SMB instead)
OS X Yosemite or earlier will not recognize Apple File System volumes



Developer Preview available
in macOS Sierra 10.12



Rollout Plan
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Upgrading to APFS

Apple will provide an in-place upgrade path for HFS+ to APFS 
User data remains in place 
Write the new APFS metadata into HFS+’s free space
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Summary

APFS will be the default file system for all Apple products in 2017
Ultra-modern, crash-protected, space-sharing
Supports cloning, snapshots, enhanced data security features
Tuned and designed for the Apple ecosystem



More Information

https://developer.apple.com/wwdc16/701

https://developer.apple.com/wwdc16/701
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Takeaways

APFS is coming soon
Please test your apps against APFS with the WWDC macOS build                                    
(and run them on APFS)  
Please report any bugs you encounter via bugreporter so we can investigate



Related Sessions

How iOS Security Really Works Nob Hill Tuesday 4:00PM



Labs

File Systems Lab Frameworks Lab C Tuesday 12:30 PM






