
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC16

Session 702

Using StoreKit for In-App  
Purchases with Swift 3

Dana DuBois App Store Engineering Manager

System Frameworks

StoreKit

What’s New NEW

What’s New

APIs in Swift

NEW

What’s New

APIs in Swift
Subscriptions

NEW

Subscriptions

Subscriptions

Expanded categories

Subscriptions

Expanded categories
Increased proceeds

Subscriptions

Expanded categories
Increased proceeds
Territory pricing

Subscriptions

Expanded categories
Increased proceeds
Territory pricing
Preserve prices

Subscriptions

Expanded categories
Increased proceeds
Territory pricing
Preserve prices
Upgrades and downgrades

Subscriptions

Expanded categories
Increased proceeds
Territory pricing
Preserve prices
Upgrades and downgrades

Introducing Expanded Subscriptions  
in iTunes Connect Pacific Heights Tuesday 4:00PM

What’s New

APIs in Swift
Subscriptions

NEW

What’s New

APIs in Swift
Subscriptions
iMessage apps

NEW

iMessage Apps

iMessage Apps

iMessage extensions will support In-App Purchases

iMessage Apps

iMessage extensions will support In-App Purchases
Same StoreKit APIs

In-App Purchase Overview

In-App Purchase Overview

Digital content or service bought in app

In-App Purchase Overview

Digital content or service bought in app
Not for physical goods

Types of In-App Purchases

Types of In-App Purchases

Consumable products

Types of In-App Purchases

Consumable products
Non-consumable products

Types of In-App Purchases

Consumable products
Non-consumable products
Non-renewing subscriptions

Types of In-App Purchases

Consumable products
Non-consumable products
Non-renewing subscriptions
Auto-renewing subscriptions

Implementing In-App Purchases

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

The Payment Queue

The Payment Queue

The center of your In-App Purchase implementation
• The only source of truth for state

The Payment Queue

The center of your In-App Purchase implementation
• The only source of truth for state

Rely on the queue, and only the queue
• For transactions in progress
• Payment status updates
• Download status

The Payment Queue

The center of your In-App Purchase implementation
• The only source of truth for state

Rely on the queue, and only the queue
• For transactions in progress
• Payment status updates
• Download status

Any and all transactions in the queue are valid and real

// Start Observing the Payment Queue

import UIKit

import StoreKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 var window: UIWindow?

 func application(application: UIApplication, didFinishLaunchingWithOptions

 launchOptions: [NSObject: AnyObject]?) -> Bool {

 SKPaymentQueue.defaultQueue().add(self);

 return true

 }

// Start Observing the Payment Queue

import UIKit

import StoreKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 var window: UIWindow?

 func application(application: UIApplication, didFinishLaunchingWithOptions

 launchOptions: [NSObject: AnyObject]?) -> Bool {

 SKPaymentQueue.defaultQueue().add(self);

 return true

 }

// Start Observing the Payment Queue

import UIKit

import StoreKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 var window: UIWindow?

 func application(application: UIApplication, didFinishLaunchingWithOptions

 launchOptions: [NSObject: AnyObject]?) -> Bool {

 SKPaymentQueue.defaultQueue().add(self);

 return true

 }

// Start Observing the Payment Queue

import UIKit

import StoreKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate, SKPaymentTransactionObserver {

 var window: UIWindow?

 func application(application: UIApplication, didFinishLaunchingWithOptions

 launchOptions: [NSObject: AnyObject]?) -> Bool {

 SKPaymentQueue.defaultQueue().add(self);

 return true

 }

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

Load In-App Identifiers

Load In-App Identifiers

Options for storing the list of product identifiers

Load In-App Identifiers

Options for storing the list of product identifiers
• Baked-in product identifier

Load In-App Identifiers

Options for storing the list of product identifiers
• Baked-in product identifier
• Fetch from server

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)

request.delegate = self

request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)

request.delegate = self

request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)

request.delegate = self

request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)

request.delegate = self

request.start()

// Fetch Product Info

let request = SKProductsRequest(productIdentifiers: identifierSet)

request.delegate = self

request.start()

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse)

{

 for product in response.products {

 // Localized title and description

 product.localizedTitle

 product.localizedDescription

 // Price and locale

 product.price

 product.priceLocale

 // Content size and version (hosted)

 product.downloadContentLengths

 product.downloadContentVersion

 }

}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse)

{

 for product in response.products {

 // Localized title and description

 product.localizedTitle

 product.localizedDescription

 // Price and locale

 product.price

 product.priceLocale

 // Content size and version (hosted)

 product.downloadContentLengths

 product.downloadContentVersion

 }

}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse)

{

 for product in response.products {

 // Localized title and description

 product.localizedTitle

 product.localizedDescription

 // Price and locale

 product.price

 product.priceLocale

 // Content size and version (hosted)

 product.downloadContentLengths

 product.downloadContentVersion

 }

}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse)

{

 for product in response.products {

 // Localized title and description

 product.localizedTitle

 product.localizedDescription

 // Price and locale

 product.price

 product.priceLocale

 // Content size and version (hosted)

 product.downloadContentLengths

 product.downloadContentVersion

 }

}

// Fetch Product Info

func productsRequest(_ request: SKProductsRequest, didReceive response: SKProductsResponse)

{

 for product in response.products {

 // Localized title and description

 product.localizedTitle

 product.localizedDescription

 // Price and locale

 product.price

 product.priceLocale

 // Content size and version (hosted)

 product.downloadContentLengths

 product.downloadContentVersion

 }

}

// Handle Events

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:

 [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchased:

 // Validate the purchase

 }

 }

}

// Handle Events

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:

 [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchased:

 // Validate the purchase

 }

 }

}

// Handle Events

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:

 [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchased:

 // Validate the purchase

 }

 }

}

// Handle Events

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:

 [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchased:

 // Validate the purchase

 }

 }

}

// Handle Events

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:

 [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchased:

 // Validate the purchase

 case .deferred:

 // Allow the user to continue to use the app

 // It may be some time before the transaction is updated

 // Do not get stuck in a modal “Purchasing...” state!

 }

 }

}

// Handle Events

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions:

 [SKPaymentTransaction]) {

 for transaction in transactions {

 switch transaction.transactionState {

 case .purchased:

 // Validate the purchase

 case .deferred:

 // Allow the user to continue to use the app

 // It may be some time before the transaction is updated

 // Do not get stuck in a modal “Purchasing...” state!

 }

 }

}

Testing Deferred Transactions

Testing Deferred Transactions

Create a mutable payment

Testing Deferred Transactions

Create a mutable payment
Set the simulatesAskToBuyInSandbox flag

Testing Deferred Transactions

Create a mutable payment
Set the simulatesAskToBuyInSandbox flag

let payment = SKMutablePayment(product: product)

payment.simulatesAskToBuyInSandbox = true

SKPaymentQueue.defaultQueue().add(payment)

Handling Errors

Handling Errors

Not all errors are equal

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary
• User canceling a payment will result in an error

Handling Errors

Not all errors are equal

Check the error code
• Don’t show an error alert unless necessary
• User canceling a payment will result in an error

Let StoreKit handle the transaction flow as much as possible
• Including asking for confirmation for purchase

Working with receipts
Validate the Purchase

Receipt Validation

Receipt Validation

On-device validation
• Unlock features and content within the app

Receipt Validation

On-device validation
• Unlock features and content within the app

Server-to-server validation
• Restrict access to downloadable content

Receipt Validation

On-device validation
• Unlock features and content within the app

Server-to-server validation
• Restrict access to downloadable content

Do not use online validation directly from the device!

The Receipt

The Receipt

Trusted record of App and In-App Purchases

The Receipt

Trusted record of App and In-App Purchases
Stored on device

The Receipt

Trusted record of App and In-App Purchases
Stored on device
Issued by the App Store

The Receipt

Trusted record of App and In-App Purchases
Stored on device
Issued by the App Store
Signed and verifiable

The Receipt

Trusted record of App and In-App Purchases
Stored on device
Issued by the App Store
Signed and verifiable
For your app, on that device only

The Basics

Receipt

Certificates

Purchase Information

Signature

The Basics

Stored in the App Bundle
• API to get the path

Receipt

Certificates

Purchase Information

Signature

The Basics

Stored in the App Bundle
• API to get the path

Single file
• Purchase data
• Signature to check authenticity

Receipt

Certificates

Purchase Information

Signature

Standards

Receipt

Certificates

Purchase Information

Signature

Standards

Signing
• PKCS#7 Cryptographic Container

Receipt

Certificates

Purchase Information

Signature

Standards

Signing
• PKCS#7 Cryptographic Container

Data Encoding
• ASN.1

Receipt

Certificates

Purchase Information

Signature

Standards

Signing
• PKCS#7 Cryptographic Container

Data Encoding
• ASN.1

Options for verifying and reading
• OpenSSL, asn1c, etc.
• Create your own

Receipt

Certificates

Purchase Information

Signature

Getting Started

Getting Started

Locate the receipt using NSBundle API

Getting Started

Locate the receipt using NSBundle API

// Locate the file

let url = NSBundle.main().appStoreReceiptURL!

// Read the contents

let receipt = NSData(contentsOf: url)

Verification

Verification

Do not check the expiry date on the certificate

Verification

Do not check the expiry date on the certificate

Do evaluate trust up to Root CA

Receipt Payload

Receipt

Certificates

Purchase Information

Signature

Attribute

Attribute

Attribute

Type 2 Bundle Identifier

Type # Value

Type # Value

Receipt Payload

Series of attributes
• Type
• Value
• (Version)

Receipt

Certificates

Purchase Information

Signature

Attribute

Attribute

Attribute

Type 2 Bundle Identifier

Type # Value

Type # Value

Receipt
Purchase Information

Verify Application

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Receipt
Purchase Information

Verify Application

Check the Bundle Identifier

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Receipt
Purchase Information

Verify Application

Check the Bundle Identifier

Check the Bundle Version

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Receipt
Purchase Information

Verify Application

Check the Bundle Identifier

Check the Bundle Version

Use hardcoded values
• Not Info.plist values

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Verify Device

Receipt
Purchase Information

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Attribute

Attribute

Type 4 Opaque Value

Type 5 SHA-1 Hash

Verify Device

Attribute 5 is a SHA-1 hash of 3 key values
• Bundle ID
• Device Identifier
• Opaque Value

Receipt
Purchase Information

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Attribute

Attribute

Type 4 Opaque Value

Type 5 SHA-1 Hash

Verify Device

Attribute 5 is a SHA-1 hash of 3 key values
• Bundle ID
• Device Identifier
• Opaque Value

The App Store knows these at  
time of purchase

Receipt
Purchase Information

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Attribute

Attribute

Type 4 Opaque Value

Type 5 SHA-1 Hash

Verify Device

Attribute 5 is a SHA-1 hash of 3 key values
• Bundle ID
• Device Identifier
• Opaque Value

The App Store knows these at  
time of purchase
Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Attribute

Attribute

Type 4 Opaque Value

Type 5 SHA-1 Hash

Verify Device

Attribute 5 is a SHA-1 hash of 3 key values
• Bundle ID
• Device Identifier
• Opaque Value

The App Store knows these at  
time of purchase
Your app knows them at time of verification
Unique to your app on this device

Receipt
Purchase Information

Attribute

Attribute

Type 2 Bundle Identifier

Type 3 Bundle Version

Attribute

Attribute

Type 4 Opaque Value

Type 5 SHA-1 Hash

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Receipt

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Receipt

Type 1701 Quantity

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Receipt

Type 1701 Quantity

Type 1702 Product Identifier

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Receipt

Type 1701 Quantity

Type 1702 Product Identifier

Type 1703 Transaction Identifier

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Receipt

Type 1701 Quantity

Type 1702 Product Identifier

Type 1703 Transaction Identifier

Type 1704 Purchase Date

In-App Purchase Attributes

Attribute 5 is a SHA-1 hash of 3 key values

Your app knows them at time of verification

Receipt
Purchase Information

Attribute

Type 2 Bundle Identifier

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

Attribute

Type 17 In-App Purchase

In-App Purchase Receipt

Type 1701 Quantity

Type 1702 Product Identifier

Type 1703 Transaction Identifier

Type 1704 Purchase Date

Type 1708 Subscription Expiration Date

Receipt

Purchase Information

Switching to Subscriptions

Attribute

Type 19 Original Application Version

Receipt

Purchase Information

Original application version in the receipt

Switching to Subscriptions

Attribute

Type 19 Original Application Version

Receipt

Purchase Information

Original application version in the receipt
Know whether to treat the app as the paid
version, or the subscription version

Switching to Subscriptions

Attribute

Type 19 Original Application Version

Transaction Lifecycle

Transaction Lifecycle

Consumable and non-renewing subscriptions
• Will only appear once
• In the receipt issued at time of purchase
• Will not be present in subsequent receipts issued

Transaction Lifecycle

Consumable and non-renewing subscriptions
• Will only appear once
• In the receipt issued at time of purchase
• Will not be present in subsequent receipts issued

Non-consumable and auto-renewable subscriptions
• Always in the receipt
• Can be restored via StoreKit API

Receipt Refresh on iOS

Receipt Refresh on iOS

If the receipt doesn’t exist or is invalid, Refresh the receipt using StoreKit

Receipt Refresh on iOS

If the receipt doesn’t exist or is invalid, Refresh the receipt using StoreKit
Receipt refresh will require network

Receipt Refresh on iOS

If the receipt doesn’t exist or is invalid, Refresh the receipt using StoreKit
Receipt refresh will require network
Store sign-in will be required

Receipt Refresh on iOS

If the receipt doesn’t exist or is invalid, Refresh the receipt using StoreKit
Receipt refresh will require network
Store sign-in will be required
Avoid continuous loop of validate-and-refresh

Receipt Refresh on iOS

If the receipt doesn’t exist or is invalid, Refresh the receipt using StoreKit
Receipt refresh will require network
Store sign-in will be required
Avoid continuous loop of validate-and-refresh

let request = SKReceiptRefreshRequest()

request.delegate = self;

request.start()

Receipt Refresh on macOS

Receipt Refresh on macOS

If the receipt is invalid

Receipt Refresh on macOS

If the receipt is invalid
Exit with code 173 to refresh receipt

Receipt Refresh on macOS

If the receipt is invalid
Exit with code 173 to refresh receipt
Receipt refresh will require network

Receipt Refresh on macOS

If the receipt is invalid
Exit with code 173 to refresh receipt
Receipt refresh will require network
Store sign-in will be required

// Receipt is invalid

exit(173);

Receipt Refresh on macOS

If the receipt is invalid
Exit with code 173 to refresh receipt
Receipt refresh will require network
Store sign-in will be required

Server-to-Server Validation

Server-to-Server Validation

Allows your servers to validate the receipt before issuing content

Server-to-Server Validation

Allows your servers to validate the receipt before issuing content

Your app sends the receipt to your servers
• Your server sends the receipt to Apple’s server
• Never send the receipt directly from your app to Apple’s server

Server-to-Server Validation

Allows your servers to validate the receipt before issuing content

Your app sends the receipt to your servers
• Your server sends the receipt to Apple’s server
• Never send the receipt directly from your app to Apple’s server

Response is in JSON

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

Make Asset Available

Make Asset Available

Unlock functionality in your app

Make Asset Available

Unlock functionality in your app
Download additional content

On-Demand Resources

On-Demand Resources

Hosted on the App Store

On-Demand Resources

Hosted on the App Store
Can contain any data type except executable Swift, Objective-C, C, or C++ code

On-Demand Resources

Hosted on the App Store
Can contain any data type except executable Swift, Objective-C, C, or C++ code
Available on iOS and tvOS

On-Demand Resources

Hosted on the App Store
Can contain any data type except executable Swift, Objective-C, C, or C++ code
Available on iOS and tvOS

Optimizing On-Demand Resources Mission Thursday 10:00AM

Hosted In-App Purchase Content

Hosted In-App Purchase Content

Hosted on Apple’s servers

Hosted In-App Purchase Content

Hosted on Apple’s servers
Scalable and reliable

Hosted In-App Purchase Content

Hosted on Apple’s servers
Scalable and reliable
Downloads in background

Hosted In-App Purchase Content

Hosted on Apple’s servers
Scalable and reliable
Downloads in background
Up to 2GB per in-app purchasable product

Hosted In-App Purchase Content

Hosted on Apple’s servers
Scalable and reliable
Downloads in background
Up to 2GB per in-app purchasable product
Supported on iOS, tvOS, and macOS

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions

 [SKPaymentTransaction]) {

 for transaction in transactions {

 if transaction.downloads.count > 0 {

 SKPaymentQueue.defaultQueue().start(transaction.downloads)

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions

 [SKPaymentTransaction]) {

 for transaction in transactions {

 if transaction.downloads.count > 0 {

 SKPaymentQueue.defaultQueue().start(transaction.downloads)

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions

 [SKPaymentTransaction]) {

 for transaction in transactions {

 if transaction.downloads.count > 0 {

 SKPaymentQueue.defaultQueue().start(transaction.downloads)

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions

 [SKPaymentTransaction]) {

 for transaction in transactions {

 if transaction.downloads.count > 0 {

 SKPaymentQueue.defaultQueue().start(transaction.downloads)

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedTransactions transactions

 [SKPaymentTransaction]) {

 for transaction in transactions {

 if transaction.downloads.count > 0 {

 SKPaymentQueue.defaultQueue().start(transaction.downloads)

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedDownloads downloads: [SKDownload]) {

 for download in downloads {

 download.progress

 download.timeRemaining

 download.error

 if download.downloadState == .finished {

 download.contentURL

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedDownloads downloads: [SKDownload]) {

 for download in downloads {

 download.progress

 download.timeRemaining

 download.error

 if download.downloadState == .finished {

 download.contentURL

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedDownloads downloads: [SKDownload]) {

 for download in downloads {

 download.progress

 download.timeRemaining

 download.error

 if download.downloadState == .finished {

 download.contentURL

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedDownloads downloads: [SKDownload]) {

 for download in downloads {

 download.progress

 download.timeRemaining

 download.error

 if download.downloadState == .finished {

 download.contentURL

 }

 }

}

// Hosted Content

func paymentQueue(_ queue: SKPaymentQueue, updatedDownloads downloads: [SKDownload]) {

 for download in downloads {

 download.progress

 download.timeRemaining

 download.error

 if download.downloadState == .finished {

 download.contentURL

 }

 }

}

Self-Hosted Content

Self-Hosted Content

Use background download APIs

Self-Hosted Content

Use background download APIs
• Content is downloaded even when your app is not active

Self-Hosted Content

Use background download APIs
• Content is downloaded even when your app is not active
• NSURLConnection is deprecated

// Self-Hosted Content

let config = NSURLSessionConfiguration.backgroundSessionConfiguration(withIdentifier:

 "MyBackgroundSession")

let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

let request = NSURLRequest(url: myURL)

let downloadTask = session.downloadTask(with: request)

downloadTask.resume()

// Self-Hosted Content

let config = NSURLSessionConfiguration.backgroundSessionConfiguration(withIdentifier:

 "MyBackgroundSession")

let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

let request = NSURLRequest(url: myURL)

let downloadTask = session.downloadTask(with: request)

downloadTask.resume()

// Self-Hosted Content

let config = NSURLSessionConfiguration.backgroundSessionConfiguration(withIdentifier:

 "MyBackgroundSession")

let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

let request = NSURLRequest(url: myURL)

let downloadTask = session.downloadTask(with: request)

downloadTask.resume()

// Self-Hosted Content

let config = NSURLSessionConfiguration.backgroundSessionConfiguration(withIdentifier:

 "MyBackgroundSession")

let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

let request = NSURLRequest(url: myURL)

let downloadTask = session.downloadTask(with: request)

downloadTask.resume()

// Self-Hosted Content

let config = NSURLSessionConfiguration.backgroundSessionConfiguration(withIdentifier:

 "MyBackgroundSession")

let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

let request = NSURLRequest(url: myURL)

let downloadTask = session.downloadTask(with: request)

downloadTask.resume()

// Self-Hosted Content

func urlSession(_ session: NSURLSession,

 downloadTask: NSURLSessionDownloadTask,

 didWriteData bytesWritten: Int64,

 totalBytesWritten: Int64,

 totalBytesExpectedToWrite: Int64) {

 // Do something with progress

}

// Self-Hosted Content

func urlSession(_ session: NSURLSession,

 downloadTask: NSURLSessionDownloadTask,

 didWriteData bytesWritten: Int64,

 totalBytesWritten: Int64,

 totalBytesExpectedToWrite: Int64) {

 // Do something with progress

}

// Self-Hosted Content

func application(_ application: UIApplication,

 handleEventsForBackgroundURLSession identifier: String,

 completionHandler: () -> Void) {

 let config = NSURLSessionConfiguration.

 backgroundSessionConfiguration(withIdentifier: identifier)

 let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

 self.completionHandler = completionHandler // call when done

}

// Self-Hosted Content

func application(_ application: UIApplication,

 handleEventsForBackgroundURLSession identifier: String,

 completionHandler: () -> Void) {

 let config = NSURLSessionConfiguration.

 backgroundSessionConfiguration(withIdentifier: identifier)

 let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

 self.completionHandler = completionHandler // call when done

}

// Self-Hosted Content

func application(_ application: UIApplication,

 handleEventsForBackgroundURLSession identifier: String,

 completionHandler: () -> Void) {

 let config = NSURLSessionConfiguration.

 backgroundSessionConfiguration(withIdentifier: identifier)

 let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

 self.completionHandler = completionHandler // call when done

}

// Self-Hosted Content

func application(_ application: UIApplication,

 handleEventsForBackgroundURLSession identifier: String,

 completionHandler: () -> Void) {

 let config = NSURLSessionConfiguration.

 backgroundSessionConfiguration(withIdentifier: identifier)

 let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

 self.completionHandler = completionHandler // call when done

}

// Self-Hosted Content

func application(_ application: UIApplication,

 handleEventsForBackgroundURLSession identifier: String,

 completionHandler: () -> Void) {

 let config = NSURLSessionConfiguration.

 backgroundSessionConfiguration(withIdentifier: identifier)

 let session = NSURLSession(configuration: config, delegate: self, delegateQueue: queue)

 self.completionHandler = completionHandler // call when done

}

In-App Purchase Process

Load In-App
Identifiers

Fetch
Product Info

Show  
In-App UI

Make
Purchase

Process
Transaction

Make Asset
Available

Finish
Transaction

Finish the Transaction

Finish the Transaction

When the content is downloaded, finish the transaction

Finish the Transaction

When the content is downloaded, finish the transaction
• Otherwise, the payment will stay in the queue

Finish the Transaction

When the content is downloaded, finish the transaction
• Otherwise, the payment will stay in the queue
• If downloading Apple-hosted content, wait until after the download completes

Finish the Transaction

When the content is downloaded, finish the transaction
• Otherwise, the payment will stay in the queue
• If downloading Apple-hosted content, wait until after the download completes

SKPaymentQueue.defaultQueue().finishTransaction(transaction)

Restore Completed Transactions

Restore Completed Transactions

Restoring transactions allows the user to restore
• Non-consumable in-app purchases
• Auto-renewing subscriptions

Restore Completed Transactions

Restoring transactions allows the user to restore
• Non-consumable in-app purchases
• Auto-renewing subscriptions

Consumables and non-renewable subscriptions
• You must persist the state!

Restore Completed Transactions

SKPaymentQueue.defaultQueue().restoreCompletedTransactions()

Restore Completed Transactions

SKPaymentQueue.defaultQueue().restoreCompletedTransactions()

Restore Completed Transactions

Observe the queue

SKPaymentQueue.defaultQueue().restoreCompletedTransactions()

Restore Completed Transactions

Observe the queue

func paymentQueueRestoreCompletedTransactionsFinished(_ queue: SKPaymentQueue) {…}

func paymentQueue(_ queue: SKPaymentQueue,

restoreCompletedTransactionsFailedWithError error: NSError) {…}

SKPaymentQueue.defaultQueue().restoreCompletedTransactions()

Restore Completed Transactions

Observe the queue

func paymentQueueRestoreCompletedTransactionsFinished(_ queue: SKPaymentQueue) {…}

func paymentQueue(_ queue: SKPaymentQueue,

restoreCompletedTransactionsFailedWithError error: NSError) {…}

Inspect the receipt and unlock content and features accordingly

Tips for Passing App Review

Restore Button

Restore Button

You must have a Restore button

Restore Button

You must have a Restore button

Should be used only for
• Non-consumables
• Auto-renewable subscriptions

Restore Button

You must have a Restore button

Should be used only for
• Non-consumables
• Auto-renewable subscriptions

Restore and Purchase should be separate buttons

Auto-Renewable Subscriptions

Auto-Renewable Subscriptions

You must indicate a privacy policy URL

Auto-Renewable Subscriptions

You must indicate a privacy policy URL
Auto-renewable subscription must be in marketing text

Auto-Renewable Subscriptions

You must indicate a privacy policy URL
Auto-renewable subscription must be in marketing text
After subscribing, the latest issue must become downloadable

Auto-Renewable Subscriptions

You must indicate a privacy policy URL
Auto-renewable subscription must be in marketing text
After subscribing, the latest issue must become downloadable
Paid subscription must provide non-free content

Non-Renewing Subscriptions

Non-Renewing Subscriptions

Asking users to register should be optional
• Unless you offer account-based features

Purchases

Purchases

Purchases must work!

Summary

Summary

Always observe the Payment Queue

Summary

Always observe the Payment Queue
Fetch localized product information from the App Store

Summary

Always observe the Payment Queue
Fetch localized product information from the App Store
Display pricing using the product’s price locale

Summary

Always observe the Payment Queue
Fetch localized product information from the App Store
Display pricing using the product’s price locale
Use the receipt to validate your purchases

Summary

Always observe the Payment Queue
Fetch localized product information from the App Store
Display pricing using the product’s price locale
Use the receipt to validate your purchases
Make the content available

Summary

Always observe the Payment Queue
Fetch localized product information from the App Store
Display pricing using the product’s price locale
Use the receipt to validate your purchases
Make the content available
Finish the transaction

Summary

Always observe the Payment Queue
Fetch localized product information from the App Store
Display pricing using the product’s price locale
Use the receipt to validate your purchases
Make the content available
Finish the transaction
Allow the user to restore complete transactions

More Information

https://developer.apple.com/wwdc16/702

Introducing Expanded  
Subscriptions in iTunes Connect Pacific Heights Tuesday 4:00PM

Optimizing On-Demand Resources Mission Thursday 10:00AM

Related Sessions

Labs

In-App Purchase/Subscriptions Lab 1 Frameworks Lab B Wednesday 9:00AM

In-App Purchase/Subscriptions Lab 2 Graphics, Games, and
Media Lab A Friday 9:00AM

