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// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: '"image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [ attachment ]

contentHandler(content)
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Local and remote notifications
Image, audio, video

Download in the service extension
+ Limited processing time and size
Add attachment to notification

- File is moved and managed by the system
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// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var label: UILabel?

override func viewDidLoad() {

super.viewDidLoad ()

// Do any required interface initialization here.

func didReceive( notification: UNNotification) {

label?.text = notification.request.content.body
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// Extension Info.plist

<plist version="1.0">
<dict>

[/ «u.

<key>NSExtension</key>
<dict>
<key>NSExtensionAttributes</key>
<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
</dict>
[/ s
</dict>
</dict>
</plist>
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// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventTitle: UILabel!
@IBOutlet var eventDate: UILabel!
@IBOutlet var eventLocation: UILabel!
@IBOutlet var eventMessage: UILabel!

func didReceive( notification: UNNotification) {

Llet content = notification.request.content

eventTitle.text = content.title
eventDate.text = content.subtitle

eventMessage.text = content.body

if let location = content.userInfo["location"] as? String {
eventlLocation.text = location
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// Extension Info.plist

<key>NSExtensionAttributes</key>

<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
<key>UNNotificationExtensionDefaultContentHidden</key>
<true/>

</dict>



// Extension Info.plist

<key>NSExtensionAttributes</key>

<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
<key>UNNotificationExtensionDefaultContentHidden</key>
<true/>

</dict>



// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

override func viewDidLoad() {

super.viewDidLoad ()
let size = view.bounds.size

preferredContentSize = CGSize(width: size.width, height: size.width / 2)

func didReceive( notification: UNNotification) {
/] e
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<dict>
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// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventImage: UIImageView!

func didReceive( notification: UNNotification) {
Llet content = notification.request.content

if let attachment = content.attachments.first {

if attachment.url.startAccessingSecurityScopedResource() {
eventImage.image = UIImage(contentsOfFile: attachment.url.path!)

attachment.url.stopAccessingSecurityScopedResource()
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Default Action Handling

Delivered to the app

Notification gets dismissed immediately
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Intercepting Action Response

Delivered to the extension

Can delay dismissal



// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive( response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismiss)
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// Intercepting notification action response
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// Text Input Action
private func makeEventExtensionCategory() —> UNNotificationCategory A

let commentAction = UNTextInputNotificationAction(
identifier: "comment",
title: "Comment",
options: [1,
textInputButtonTitle: "Send",
textInputPlaceholder: "Type here..'")

return UNNotificationCategory(identifier: "event-invite",
actions: [ acceptAction, declineAction, commentAction ],

minimalActions: [ acceptAction, declineAction ],
intentIdentifiers: [],

options: [1])
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// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive( response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

if let textResponse = response as? UNTextInputNotificationResponse {
server.send(textResponse.userText) A

done(.dismiss)
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// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
override func canBecomeFirstResponder() —> Bool {

return true

override var inputAccessoryView: UIView { get {

return inputView

func didReceive(_ response: UNNotificationResponse,
completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {
if response.actionIdentifier == "comment" {
becomeFirstResponder()

textField.becomeFirstResponder()
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Summary

Attachments and custom Ul
Attachments with service extension
Custom Ul with content extension

- Media attachments

- User Interaction



More Information

https://developer.apple.com/wwdc16/708



Related Sessions

Introduction to Notifications Pacific Heights ~ Wednesday 9:00AM



| abs

Notifications Lab Frameworks Lab C Wednesday 11:00AM

: - Graphics, Games, . .
Notifications Lab o Modialap B TTiday 9:00AM








