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// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension { 
    override public func didReceive(_ request: UNNotificationRequest, 
            withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

        let fileURL = // ... 
 
        let attachment = UNNotificationAttachment(identifier: "image", 
                                                  url: fileURL, 
                                                  options: nil) 
 
        let content = request.content.mutableCopy as! UNMutableNotificationContent 
        content.attachments = [ attachment ] 

        contentHandler(content) 
    } 
}
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Local and remote notifications
Image, audio, video
Download in the service extension
• Limited processing time and size

Add attachment to notification
• File is moved and managed by the system
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// Minimal Content Extension 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    @IBOutlet var label: UILabel? 

     

    override func viewDidLoad() { 

        super.viewDidLoad() 

        // Do any required interface initialization here. 

    } 

     

    func didReceive(_ notification: UNNotification) { 

        label?.text = notification.request.content.body 

    } 

}
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// Minimal Content Extension 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    @IBOutlet var label: UILabel? 

     

    override func viewDidLoad() { 

        super.viewDidLoad() 

        // Do any required interface initialization here. 

    } 

     

    func didReceive(_ notification: UNNotification) { 

        label?.text = notification.request.content.body 
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// Extension Info.plist 

<plist version="1.0"> 
<dict> 

    // ... 

 <key>NSExtension</key> 
 <dict> 
  <key>NSExtensionAttributes</key> 
  <dict> 
   <key>UNNotificationExtensionCategory</key> 
        <string>event-invite</string> 
  </dict> 
      // ... 
 </dict> 
</dict> 
</plist> 



// Extension Info.plist 

<plist version="1.0"> 
<dict> 

    // ... 

 <key>NSExtension</key> 
 <dict> 
  <key>NSExtensionAttributes</key> 
  <dict> 
   <key>UNNotificationExtensionCategory</key> 
        <string>event-invite</string> 
  </dict> 
      // ... 
 </dict> 
</dict> 
</plist> 



// Extension Info.plist 

<plist version="1.0"> 
<dict> 

    // ... 

 <key>NSExtension</key> 
 <dict> 
  <key>NSExtensionAttributes</key> 
  <dict> 
   <key>UNNotificationExtensionCategory</key> 
   <array> 
    <string>event-invite</string> 
    <string>event-changed</string> 
   </array> 
  </dict> 
      // ... 
 </dict> 
</dict> 
</plist> 
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// Notification Content Extension 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    @IBOutlet var eventTitle: UILabel! 
    @IBOutlet var eventDate: UILabel! 
    @IBOutlet var eventLocation: UILabel! 
    @IBOutlet var eventMessage: UILabel! 
     
    func didReceive(_ notification: UNNotification) { 
        let content = notification.request.content 
         
        eventTitle.text = content.title 
        eventDate.text = content.subtitle 
        eventMessage.text = content.body 
         
        if let location = content.userInfo["location"] as? String { 
            eventLocation.text = location 
        } 
    } 
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// Extension Info.plist 

<key>NSExtensionAttributes</key> 
<dict> 
    <key>UNNotificationExtensionCategory</key> 
    <string>event-invite</string> 
    <key>UNNotificationExtensionDefaultContentHidden</key> 
    <true/> 
</dict> 



// Extension Info.plist 

<key>NSExtensionAttributes</key> 
<dict> 
    <key>UNNotificationExtensionCategory</key> 
    <string>event-invite</string> 
    <key>UNNotificationExtensionDefaultContentHidden</key> 
    <true/> 
</dict> 



// Notification Content Extension 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    override func viewDidLoad() { 
        super.viewDidLoad() 

        let size = view.bounds.size 
        preferredContentSize = CGSize(width: size.width, height: size.width / 2) 
    } 

    func didReceive(_ notification: UNNotification) { 
        // ... 
    } 

}



// Notification Content Extension 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
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// Extension Info.plist 

<key>NSExtensionAttributes</key> 
<dict> 
    <key>UNNotificationExtensionCategory</key> 
    <string>event-invite</string> 
    <key>UNNotificationExtensionDefaultContentHidden</key> 
    <true/> 
    <key>UNNotificationExtensionInitialContentSizeRatio</key> 
    <real>0.5</real> 
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// Extension Info.plist 

<key>NSExtensionAttributes</key> 
<dict> 
    <key>UNNotificationExtensionCategory</key> 
    <string>event-invite</string> 
    <key>UNNotificationExtensionDefaultContentHidden</key> 
    <true/> 
    <key>UNNotificationExtensionInitialContentSizeRatio</key> 
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</dict> 
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// Notification Content Extension Attachments 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
     
    @IBOutlet var eventImage: UIImageView! 

    func didReceive(_ notification: UNNotification) { 
        let content = notification.request.content 
         
        if let attachment = content.attachments.first { 
            if attachment.url.startAccessingSecurityScopedResource() { 
                eventImage.image = UIImage(contentsOfFile: attachment.url.path!) 
                attachment.url.stopAccessingSecurityScopedResource() 
            } 
        } 
    } 
}
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// Notification Content Extension Attachments 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
     
    @IBOutlet var eventImage: UIImageView! 

    func didReceive(_ notification: UNNotification) { 
        let content = notification.request.content 
         
        if let attachment = content.attachments.first { 
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Default Action Handling

Delivered to the app
Notification gets dismissed immediately
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Intercepting Action Response

Delivered to the extension
Can delay dismissal



// Intercepting notification action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
     
    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        server.postEventResponse(response.actionIdentifier) { 
            if response.actionIdentifier == "accept" { 
                eventResponse.text = "Going!" 
                eventResponse.textColor = UIColor.green() 
            } else if response.actionIdentifier == "decline" { 
                eventResponse.text = "Not going :(" 
                eventResponse.textColor = UIColor.red() 
            } 

            done(.dismiss) 
        } 
    } 
}
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}
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// Intercepting notification action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
     
    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        server.postEventResponse(response.actionIdentifier) { 
            if response.actionIdentifier == "accept" { 
                eventResponse.text = "Going!" 
                eventResponse.textColor = UIColor.green() 
            } else if response.actionIdentifier == "decline" { 
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// Intercepting notification action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
     
    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        server.postEventResponse(response.actionIdentifier) { 
            if response.actionIdentifier == "accept" { 
                eventResponse.text = "Going!" 
                eventResponse.textColor = UIColor.green() 
            } else if response.actionIdentifier == "decline" { 
                eventResponse.text = "Not going :(" 
                eventResponse.textColor = UIColor.red() 
            } 

            done(.dismissAndForwardAction) 
        } 
    } 
}
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// Text Input Action 

private func makeEventExtensionCategory() -> UNNotificationCategory { 
    
    let commentAction = UNTextInputNotificationAction( 
            identifier: "comment", 
            title: "Comment", 
            options: [], 
            textInputButtonTitle: "Send", 
            textInputPlaceholder: "Type here…") 

    return UNNotificationCategory(identifier: "event-invite", 
                                  actions: [ acceptAction, declineAction, commentAction ], 
                                  minimalActions: [ acceptAction, declineAction ], 
                                  intentIdentifiers: [], 
                                  options: []) 
}



// Text Input Action 

private func makeEventExtensionCategory() -> UNNotificationCategory { 
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            textInputButtonTitle: "Send", 
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                                  actions: [ acceptAction, declineAction, commentAction ], 
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// Text Input Action 

private func makeEventExtensionCategory() -> UNNotificationCategory { 
    
    let commentAction = UNTextInputNotificationAction( 
            identifier: "comment", 
            title: "Comment", 
            options: [], 
            textInputButtonTitle: "Send", 
            textInputPlaceholder: "Type here…") 

    return UNNotificationCategory(identifier: "event-invite", 
                                  actions: [ acceptAction, declineAction, commentAction ], 
                                  minimalActions: [ acceptAction, declineAction ], 
                                  intentIdentifiers: [], 
                                  options: []) 
}



// Text Input Action 

private func makeEventExtensionCategory() -> UNNotificationCategory { 
    
    let commentAction = UNTextInputNotificationAction( 
            identifier: "comment", 
            title: "Comment", 
            options: [], 
            textInputButtonTitle: "Send", 
            textInputPlaceholder: "Type here…") 

    return UNNotificationCategory(identifier: "event-invite", 
                                  actions: [ acceptAction, declineAction, commentAction ], 
                                  minimalActions: [ acceptAction, declineAction ], 
                                  intentIdentifiers: [], 
                                  options: []) 
}





// Text input action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        if let textResponse = response as? UNTextInputNotificationResponse { 
            server.send(textResponse.userText) { 
                   done(.dismiss) 
            } 
        } 
    } 

} 



// Text input action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        if let textResponse = response as? UNTextInputNotificationResponse { 
            server.send(textResponse.userText) { 
                   done(.dismiss) 
            } 
        } 
    } 

} 



// Text input action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        if let textResponse = response as? UNTextInputNotificationResponse { 
            server.send(textResponse.userText) { 
                   done(.dismiss) 
            } 
        } 
    } 

} 



// Text input action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        if let textResponse = response as? UNTextInputNotificationResponse { 
            server.send(textResponse.userText) { 
                   done(.dismiss) 
            } 
        } 
    } 

} 



// Text input action response 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 

        if let textResponse = response as? UNTextInputNotificationResponse { 
            server.send(textResponse.userText) { 
                   done(.dismiss) 
            } 
        } 
    } 

} 









// Custom input accessory view 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
    override func canBecomeFirstResponder() -> Bool { 
        return true 
    } 
     
    override var inputAccessoryView: UIView { get { 
            return inputView 
        } 
    } 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 
        if response.actionIdentifier == "comment" { 
            becomeFirstResponder() 
            textField.becomeFirstResponder() 
        } 
    } 
}



// Custom input accessory view 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
    override func canBecomeFirstResponder() -> Bool { 
        return true 
    } 
     
    override var inputAccessoryView: UIView { get { 
            return inputView 
        } 
    } 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 
        if response.actionIdentifier == "comment" { 
            becomeFirstResponder() 
            textField.becomeFirstResponder() 
        } 
    } 
}



// Custom input accessory view 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
    override func canBecomeFirstResponder() -> Bool { 
        return true 
    } 
     
    override var inputAccessoryView: UIView { get { 
            return inputView 
        } 
    } 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 
        if response.actionIdentifier == "comment" { 
            becomeFirstResponder() 
            textField.becomeFirstResponder() 
        } 
    } 
}



// Custom input accessory view 

class NotificationViewController: UIViewController, UNNotificationContentExtension { 
    override func canBecomeFirstResponder() -> Bool { 
        return true 
    } 
     
    override var inputAccessoryView: UIView { get { 
            return inputView 
        } 
    } 

    func didReceive(_ response: UNNotificationResponse, 
        completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) { 
        if response.actionIdentifier == "comment" { 
            becomeFirstResponder() 
            textField.becomeFirstResponder() 
        } 
    } 
}





Summary

Attachments and custom UI
Attachments with service extension
Custom UI with content extension
• Media attachments
• User interaction



More Information

https://developer.apple.com/wwdc16/708



Related Sessions

Introduction to Notifications Pacific Heights Wednesday 9:00AM



Labs

Notifications Lab Frameworks Lab C Wednesday 11:00AM

Notifications Lab Graphics, Games, 
and Media Lab B Friday 9:00AM






