
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Session 708

#WWDC16

Advanced Notifications

Michele Campeotto
iOS Notifications

System Frameworks

Agenda

Notifications User Interface
Media Attachments
Customization

Notifications User Interface

Media Attachments

Media Attachments

Push
Payload

Media Attachments

Push
Payload

{  
 aps: {  
 alert: { … }, 
 mutable-content: 1 
 }  
 my-attachment: "https://example.com/photo.jpg" 
}

Media Attachments

Push
Payload

{  
 aps: {  
 alert: { … }, 
 mutable-content: 1 
 }  
 my-attachment: "https://example.com/photo.jpg" 
}

Media Attachments

Push
Payload

{  
 aps: {  
 alert: { … }, 
 mutable-content: 1 
 }  
 my-attachment: "https://example.com/photo.jpg" 
}

Media Attachments

Push
Payload

Service
Extension

Media Attachments

Push
Payload

Service
Extension

// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension {
 override public func didReceive(_ request: UNNotificationRequest,
 withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

 let fileURL = // ...
 
 let attachment = UNNotificationAttachment(identifier: "image",
 url: fileURL,
 options: nil) 
 
 let content = request.content.mutableCopy as! UNMutableNotificationContent 
 content.attachments = [attachment]

 contentHandler(content)
 }
}

// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension {
 override public func didReceive(_ request: UNNotificationRequest,
 withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

 let fileURL = // ...
 
 let attachment = UNNotificationAttachment(identifier: "image",
 url: fileURL,
 options: nil) 
 
 let content = request.content.mutableCopy as! UNMutableNotificationContent 
 content.attachments = [attachment]

 contentHandler(content)
 }
}

// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension {
 override public func didReceive(_ request: UNNotificationRequest,
 withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

 let fileURL = // ...
 
 let attachment = UNNotificationAttachment(identifier: "image",
 url: fileURL,
 options: nil) 
 
 let content = request.content.mutableCopy as! UNMutableNotificationContent 
 content.attachments = [attachment]

 contentHandler(content)
 }
}

// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension {
 override public func didReceive(_ request: UNNotificationRequest,
 withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

 let fileURL = // ...
 
 let attachment = UNNotificationAttachment(identifier: "image",
 url: fileURL,
 options: nil) 
 
 let content = request.content.mutableCopy as! UNMutableNotificationContent 
 content.attachments = [attachment]

 contentHandler(content)
 }
}

// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension {
 override public func didReceive(_ request: UNNotificationRequest,
 withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

 let fileURL = // ...
 
 let attachment = UNNotificationAttachment(identifier: "image",
 url: fileURL,
 options: nil) 
 
 let content = request.content.mutableCopy as! UNMutableNotificationContent 
 content.attachments = [attachment]

 contentHandler(content)
 }
}

// Adding an attachment to a user notification 

public class NotificationService: UNNotificationServiceExtension {
 override public func didReceive(_ request: UNNotificationRequest,
 withContentHandler contentHandler: (UNNotificationContent) -> Void) {  

 let fileURL = // ...
 
 let attachment = UNNotificationAttachment(identifier: "image",
 url: fileURL,
 options: nil) 
 
 let content = request.content.mutableCopy as! UNMutableNotificationContent 
 content.attachments = [attachment]

 contentHandler(content)
 }
}

Media Attachments

Media Attachments

Local and remote notifications

Media Attachments

Local and remote notifications
Image, audio, video

Media Attachments

Local and remote notifications
Image, audio, video
Download in the service extension

Media Attachments

Local and remote notifications
Image, audio, video
Download in the service extension
• Limited processing time and size

Media Attachments

Local and remote notifications
Image, audio, video
Download in the service extension
• Limited processing time and size

Add attachment to notification

Media Attachments

Local and remote notifications
Image, audio, video
Download in the service extension
• Limited processing time and size

Add attachment to notification
• File is moved and managed by the system

Custom User Interface

Custom User Interface

Custom User Interface

Notification content extension

Custom User Interface

Notification content extension
Custom views

Custom User Interface

Notification content extension
Custom views
No interaction

Custom User Interface

Notification content extension
Custom views
No interaction
Respond to notification actions

Notification Content Extension

// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var label: UILabel?

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any required interface initialization here.

 }

 func didReceive(_ notification: UNNotification) {

 label?.text = notification.request.content.body

 }

}

// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var label: UILabel?

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any required interface initialization here.

 }

 func didReceive(_ notification: UNNotification) {

 label?.text = notification.request.content.body

 }

}

// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var label: UILabel?

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any required interface initialization here.

 }

 func didReceive(_ notification: UNNotification) {

 label?.text = notification.request.content.body

 }

}

// Extension Info.plist

<plist version="1.0">
<dict>

 // ...

 <key>NSExtension</key>
 <dict>
 <key>NSExtensionAttributes</key>
 <dict>
 <key>UNNotificationExtensionCategory</key>
 <string>event-invite</string>
 </dict>
 // ...
 </dict>
</dict>
</plist>

// Extension Info.plist

<plist version="1.0">
<dict>

 // ...

 <key>NSExtension</key>
 <dict>
 <key>NSExtensionAttributes</key>
 <dict>
 <key>UNNotificationExtensionCategory</key>
 <string>event-invite</string>
 </dict>
 // ...
 </dict>
</dict>
</plist>

// Extension Info.plist

<plist version="1.0">
<dict>

 // ...

 <key>NSExtension</key>
 <dict>
 <key>NSExtensionAttributes</key>
 <dict>
 <key>UNNotificationExtensionCategory</key>
 <array>
 <string>event-invite</string>
 <string>event-changed</string>
 </array>
 </dict>
 // ...
 </dict>
</dict>
</plist>

Custom Views

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventTitle: UILabel!
 @IBOutlet var eventDate: UILabel!
 @IBOutlet var eventLocation: UILabel!
 @IBOutlet var eventMessage: UILabel!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 eventTitle.text = content.title
 eventDate.text = content.subtitle
 eventMessage.text = content.body

 if let location = content.userInfo["location"] as? String {
 eventLocation.text = location
 }
 }
}

// Extension Info.plist

<key>NSExtensionAttributes</key>
<dict>
 <key>UNNotificationExtensionCategory</key>
 <string>event-invite</string>
 <key>UNNotificationExtensionDefaultContentHidden</key>
 <true/>
</dict>

// Extension Info.plist

<key>NSExtensionAttributes</key>
<dict>
 <key>UNNotificationExtensionCategory</key>
 <string>event-invite</string>
 <key>UNNotificationExtensionDefaultContentHidden</key>
 <true/>
</dict>

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 override func viewDidLoad() {
 super.viewDidLoad()

 let size = view.bounds.size
 preferredContentSize = CGSize(width: size.width, height: size.width / 2)
 }

 func didReceive(_ notification: UNNotification) {
 // ...
 }

}

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 override func viewDidLoad() {
 super.viewDidLoad()

 let size = view.bounds.size
 preferredContentSize = CGSize(width: size.width, height: size.width / 2)
 }

 func didReceive(_ notification: UNNotification) {
 // ...
 }

}

// Extension Info.plist

<key>NSExtensionAttributes</key>
<dict>
 <key>UNNotificationExtensionCategory</key>
 <string>event-invite</string>
 <key>UNNotificationExtensionDefaultContentHidden</key>
 <true/>
 <key>UNNotificationExtensionInitialContentSizeRatio</key>
 <real>0.5</real>
</dict>

// Extension Info.plist

<key>NSExtensionAttributes</key>
<dict>
 <key>UNNotificationExtensionCategory</key>
 <string>event-invite</string>
 <key>UNNotificationExtensionDefaultContentHidden</key>
 <true/>
 <key>UNNotificationExtensionInitialContentSizeRatio</key>
 <real>0.5</real>
</dict>

Custom Notification UI

Custom Notification UI

Presentation size
UNNotificationExtensionInitialContentSizeRatio

Custom Notification UI

Presentation size
UNNotificationExtensionInitialContentSizeRatio

Default content
UNNotificationExtensionDefaultContentHidden

Custom Notification UI

Presentation size
UNNotificationExtensionInitialContentSizeRatio

Default content
UNNotificationExtensionDefaultContentHidden

Media Attachments

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventImage: UIImageView!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 if let attachment = content.attachments.first {
 if attachment.url.startAccessingSecurityScopedResource() {
 eventImage.image = UIImage(contentsOfFile: attachment.url.path!)
 attachment.url.stopAccessingSecurityScopedResource()
 }
 }
 }
}

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventImage: UIImageView!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 if let attachment = content.attachments.first {
 if attachment.url.startAccessingSecurityScopedResource() {
 eventImage.image = UIImage(contentsOfFile: attachment.url.path!)
 attachment.url.stopAccessingSecurityScopedResource()
 }
 }
 }
}

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventImage: UIImageView!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 if let attachment = content.attachments.first {
 if attachment.url.startAccessingSecurityScopedResource() {
 eventImage.image = UIImage(contentsOfFile: attachment.url.path!)
 attachment.url.stopAccessingSecurityScopedResource()
 }
 }
 }
}

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 @IBOutlet var eventImage: UIImageView!

 func didReceive(_ notification: UNNotification) {
 let content = notification.request.content

 if let attachment = content.attachments.first {
 if attachment.url.startAccessingSecurityScopedResource() {
 eventImage.image = UIImage(contentsOfFile: attachment.url.path!)
 attachment.url.stopAccessingSecurityScopedResource()
 }
 }
 }
}

Actions

Default Action Handling

Default Action Handling

Delivered to the app
Notification gets dismissed immediately

Intercepting Action Response

Intercepting Action Response

Delivered to the extension
Can delay dismissal

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 server.postEventResponse(response.actionIdentifier) {
 if response.actionIdentifier == "accept" {
 eventResponse.text = "Going!"
 eventResponse.textColor = UIColor.green()
 } else if response.actionIdentifier == "decline" {
 eventResponse.text = "Not going :("
 eventResponse.textColor = UIColor.red()
 }

 done(.dismiss)
 }
 }
}

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 server.postEventResponse(response.actionIdentifier) {
 if response.actionIdentifier == "accept" {
 eventResponse.text = "Going!"
 eventResponse.textColor = UIColor.green()
 } else if response.actionIdentifier == "decline" {
 eventResponse.text = "Not going :("
 eventResponse.textColor = UIColor.red()
 }

 done(.dismiss)
 }
 }
}

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 server.postEventResponse(response.actionIdentifier) {
 if response.actionIdentifier == "accept" {
 eventResponse.text = "Going!"
 eventResponse.textColor = UIColor.green()
 } else if response.actionIdentifier == "decline" {
 eventResponse.text = "Not going :("
 eventResponse.textColor = UIColor.red()
 }

 done(.dismiss)
 }
 }
}

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 server.postEventResponse(response.actionIdentifier) {
 if response.actionIdentifier == "accept" {
 eventResponse.text = "Going!"
 eventResponse.textColor = UIColor.green()
 } else if response.actionIdentifier == "decline" {
 eventResponse.text = "Not going :("
 eventResponse.textColor = UIColor.red()
 }

 done(.dismiss)
 }
 }
}

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 server.postEventResponse(response.actionIdentifier) {
 if response.actionIdentifier == "accept" {
 eventResponse.text = "Going!"
 eventResponse.textColor = UIColor.green()
 } else if response.actionIdentifier == "decline" {
 eventResponse.text = "Not going :("
 eventResponse.textColor = UIColor.red()
 }

 done(.dismiss)
 }
 }
}

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 server.postEventResponse(response.actionIdentifier) {
 if response.actionIdentifier == "accept" {
 eventResponse.text = "Going!"
 eventResponse.textColor = UIColor.green()
 } else if response.actionIdentifier == "decline" {
 eventResponse.text = "Not going :("
 eventResponse.textColor = UIColor.red()
 }

 done(.dismissAndForwardAction)
 }
 }
}

Text Input Action

// Text Input Action

private func makeEventExtensionCategory() -> UNNotificationCategory {

 let commentAction = UNTextInputNotificationAction(
 identifier: "comment",
 title: "Comment",
 options: [],
 textInputButtonTitle: "Send",
 textInputPlaceholder: "Type here…")

 return UNNotificationCategory(identifier: "event-invite",
 actions: [acceptAction, declineAction, commentAction],
 minimalActions: [acceptAction, declineAction],
 intentIdentifiers: [],
 options: [])
}

// Text Input Action

private func makeEventExtensionCategory() -> UNNotificationCategory {

 let commentAction = UNTextInputNotificationAction(
 identifier: "comment",
 title: "Comment",
 options: [],
 textInputButtonTitle: "Send",
 textInputPlaceholder: "Type here…")

 return UNNotificationCategory(identifier: "event-invite",
 actions: [acceptAction, declineAction, commentAction],
 minimalActions: [acceptAction, declineAction],
 intentIdentifiers: [],
 options: [])
}

// Text Input Action

private func makeEventExtensionCategory() -> UNNotificationCategory {

 let commentAction = UNTextInputNotificationAction(
 identifier: "comment",
 title: "Comment",
 options: [],
 textInputButtonTitle: "Send",
 textInputPlaceholder: "Type here…")

 return UNNotificationCategory(identifier: "event-invite",
 actions: [acceptAction, declineAction, commentAction],
 minimalActions: [acceptAction, declineAction],
 intentIdentifiers: [],
 options: [])
}

// Text Input Action

private func makeEventExtensionCategory() -> UNNotificationCategory {

 let commentAction = UNTextInputNotificationAction(
 identifier: "comment",
 title: "Comment",
 options: [],
 textInputButtonTitle: "Send",
 textInputPlaceholder: "Type here…")

 return UNNotificationCategory(identifier: "event-invite",
 actions: [acceptAction, declineAction, commentAction],
 minimalActions: [acceptAction, declineAction],
 intentIdentifiers: [],
 options: [])
}

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 if let textResponse = response as? UNTextInputNotificationResponse {
 server.send(textResponse.userText) {
 done(.dismiss)
 }
 }
 }

}

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 if let textResponse = response as? UNTextInputNotificationResponse {
 server.send(textResponse.userText) {
 done(.dismiss)
 }
 }
 }

}

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 if let textResponse = response as? UNTextInputNotificationResponse {
 server.send(textResponse.userText) {
 done(.dismiss)
 }
 }
 }

}

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 if let textResponse = response as? UNTextInputNotificationResponse {
 server.send(textResponse.userText) {
 done(.dismiss)
 }
 }
 }

}

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {

 if let textResponse = response as? UNTextInputNotificationResponse {
 server.send(textResponse.userText) {
 done(.dismiss)
 }
 }
 }

}

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
 override func canBecomeFirstResponder() -> Bool {
 return true
 }

 override var inputAccessoryView: UIView { get {
 return inputView
 }
 }

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {
 if response.actionIdentifier == "comment" {
 becomeFirstResponder()
 textField.becomeFirstResponder()
 }
 }
}

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
 override func canBecomeFirstResponder() -> Bool {
 return true
 }

 override var inputAccessoryView: UIView { get {
 return inputView
 }
 }

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {
 if response.actionIdentifier == "comment" {
 becomeFirstResponder()
 textField.becomeFirstResponder()
 }
 }
}

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
 override func canBecomeFirstResponder() -> Bool {
 return true
 }

 override var inputAccessoryView: UIView { get {
 return inputView
 }
 }

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {
 if response.actionIdentifier == "comment" {
 becomeFirstResponder()
 textField.becomeFirstResponder()
 }
 }
}

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
 override func canBecomeFirstResponder() -> Bool {
 return true
 }

 override var inputAccessoryView: UIView { get {
 return inputView
 }
 }

 func didReceive(_ response: UNNotificationResponse,
 completionHandler done: (UNNotificationContentExtensionResponseOption) -> Void) {
 if response.actionIdentifier == "comment" {
 becomeFirstResponder()
 textField.becomeFirstResponder()
 }
 }
}

Summary

Attachments and custom UI
Attachments with service extension
Custom UI with content extension
• Media attachments
• User interaction

More Information

https://developer.apple.com/wwdc16/708

Related Sessions

Introduction to Notifications Pacific Heights Wednesday 9:00AM

Labs

Notifications Lab Frameworks Lab C Wednesday 11:00AM

Notifications Lab Graphics, Games,
and Media Lab B Friday 9:00AM

