System Frameworks

Advanced Notifications
Session /08

Michele Campeotto
iOS Notifications

© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

FWWDCT6

Agenda

Notifications User Interface
Media Attachments

Customization

Notifications User Interface

Media Attachments

Media Attachments

Meadia Attachments

Meadia Attachments

Meadia Attachments

Media Attachments

‘ — s

Media Attachments

e,
B A A R A A AR AR A A A AR AR S A A n

// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: '"image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [attachment]

contentHandler(content)

// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: '"image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [attachment]

contentHandler(content)

// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: '"image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [attachment]

contentHandler(content)

// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: 'image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [attachment]

contentHandler(content)

// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: '"image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [attachment]

contentHandler(content)

// Adding an attachment to a user notification
public class NotificationService: UNNotificationServiceExtension {
override public func didReceive(_ request: UNNotificationRequest,
withContentHandler contentHandler: (UNNotificationContent) —> Void) {
let fileURL = // ...
let attachment = UNNotificationAttachment(identifier: '"image",
url: fileURL,

options: nil)

Llet content = request.content.mutableCopy as! UNMutableNotificationContent

content.attachments = [attachment]

contentHandler(content)

Media Attachments

Media Attachments

L ocal and remote notifications

Media Attachments

L ocal and remote notifications

Image, audio, video

Media Attachments

L ocal and remote notifications
Image, audio, video

Download in the service extension

Media Attachments

L ocal and remote notifications
Image, audio, video
Download in the service extension

+ Limited processing time and size

Media Attachments

L ocal and remote notifications
Image, audio, video

Download in the service extension
+ Limited processing time and size

Add attachment to notification

Media Attachments

Local and remote notifications
Image, audio, video

Download in the service extension
+ Limited processing time and size
Add attachment to notification

- File is moved and managed by the system

Custom User Interface

Custom User Interface

Custom User Interface

Notification content extension

Custom User Interface

Notification content extension

Custom views

Custom User Interface

Notification content extension
Custom views

NO Interaction

Custom User Interface

Notification content extension
Custom views
NO Interaction

Respond to notification actions

Notification Content Extension

// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var label: UILabel?

override func viewDidLoad() {

super.viewDidLoad ()

// Do any required interface initialization here.

func didReceive(notification: UNNotification) {

label?.text = notification.request.content.body

// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var label: UILabel?

override func viewDidLoad() {

super.viewDidLoad ()

// Do any required interface initialization here.

func didReceive(notification: UNNotification) {

label?.text = notification.request.content.body

// Minimal Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var label: UILabel?

override func viewDidLoad() {

super.viewDidLoad ()

// Do any required interface initialization here.

func didReceive(notification: UNNotification) {

label?.text = notification.request.content.body

// Extension Info.plist

<plist version="1.0">
<dict>

[/ «u.

<key>NSExtension</key>
<dict>
<key>NSExtensionAttributes</key>
<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
</dict>
[/ s
</dict>
</dict>
</plist>

// Extension Info.plist

<plist version="1.0">
<dict>

[/ «us

<key>NSExtension</key>

<dict>
<key>NSExtensionAttributes</key>
<dict>

<key>UNNotificationExtensionCategory</key>
<string>event-invite</string>

</dict>
[/ ..
</dict>
</dict>
</plist>

// Extension Info.plist

<plist version="1.0">
<dict>

[/ «us

<key>NSExtension</key>

<dict>
<key>NSExtensionAttributes</key>
<dict>

<key>UNNotificationExtensionCategory</key>
<array>
<string>event—-invite</string>
<string>event—-changed</string>
</array>

</dict>
[/ .
</dict>

Custom Views

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventTitle: UILabel!
@IBOutlet var eventDate: UILabel!
@IBOutlet var eventLocation: UILabel!
@IBOutlet var eventMessage: UILabel!

func didReceive(notification: UNNotification) {

Llet content = notification.request.content

eventTitle.text = content.title
eventDate.text = content.subtitle

eventMessage.text = content.body

if let location = content.userInfo["location"] as? String {
eventlLocation.text = location

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventTitle: UILabel!
@IBOutlet var eventDate: UILabel!
@IBOutlet var eventLocation: UILabel!
@IBOutlet var eventMessage: UILabel!

func didReceive(notification: UNNotification) {

Llet content = notification.request.content

eventTitle.text = content.title
eventDate.text = content.subtitle

eventMessage.text = content.body

if let location = content.userInfo["location"] as? String {
eventlLocation.text = location

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventTitle: UILabel!
@IBOutlet var eventDate: UILabel!
@IBOutlet var eventLocation: UILabel!
@IBOutlet var eventMessage: UILabel!

func didReceive(notification: UNNotification) {

Llet content = notification.request.content

eventTitle.text = content.title
eventDate.text = content.subtitle

eventMessage.text = content.body

if let location = content.userInfo["location"] as? String {

eventLocation.text = location

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventTitle: UILabel!
@IBOutlet var eventDate: UILabel!
@IBOutlet var eventLocation: UILabel!
@IBOutlet var eventMessage: UILabel!

func didReceive(notification: UNNotification) {

Llet content = notification.request.content

eventTitle.text = content.title
eventDate.text = content.subtitle

eventMessage.text = content.body

if let location = content.userInfo["location"] as? String {

eventLocation.text = location

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventTitle: UILabel!
@IBOutlet var eventDate: UILabel!
@IBOutlet var eventLocation: UILabel!
@IBOutlet var eventMessage: UILabel!

func didReceive(notification: UNNotification) {

Llet content = notification.request.content

eventTitle.text = content.title
eventDate.text = content.subtitle

eventMessage.text = content.body

if let location = content.userInfo["location"] as? String {

eventLocation.text = location

The Bash

Thursday, June 16, 7pm
Bill Graham Civic

Have you heard the rumors? | can’t believe
who's playing this year!

The Bash

Thursday, June 16, 7pm

Have you heard the rumors? | can't
believe who's playing this year!

Accept

Decline

DEMO LEMURS

The Bash
Thursday, June 16, 7pm

The Bash

Thursday, June 16, 7pm
Have you heard the rumors? | can’t
believe who's playing this year!

Decline

DEMO LEMURS

The Bash

Thursday, June 16, 7pm
Bill Graham Civic

Have you heard the rumors? | can’t believe
who's playing this year!

The Bash

Thursday, June 16, 7pm

Have you heard the rumors? | can't
believe who's playing this year!

Accept

Decline

v,

// Extension Info.plist

<key>NSExtensionAttributes</key>

<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
<key>UNNotificationExtensionDefaultContentHidden</key>
<true/>

</dict>

// Extension Info.plist

<key>NSExtensionAttributes</key>

<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
<key>UNNotificationExtensionDefaultContentHidden</key>
<true/>

</dict>

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

override func viewDidLoad() {

super.viewDidLoad ()
let size = view.bounds.size

preferredContentSize = CGSize(width: size.width, height: size.width / 2)

func didReceive(notification: UNNotification) {
/] e

// Notification Content Extension

class NotificationViewController: UIViewController, UNNotificationContentExtension {

override func viewDidLoad() {

super.viewDidLoad ()
let size = view.bounds.size

preferredContentSize = CGSize(width: size.width, height: size.width / 2)

func didReceive(notification: UNNotification) {
/] e

// Extension Info.plist

<key>NSExtensionAttributes</key>

<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
<key>UNNotificationExtensionDefaultContentHidden</key>
<true/>
<key>UNNotificationExtensionInitialContentSizeRatio</key>
<real>0@.5</real>

</dict>

// Extension Info.plist

<key>NSExtensionAttributes</key>

<dict>
<key>UNNotificationExtensionCategory</key>
<string>event—-invite</string>
<key>UNNotificationExtensionDefaultContentHidden</key>
<true/>
<key>UNNotificationExtensionInitialContentSizeRatio</key>
<real>0@.5</real>

</dict>

Custom Notification Ul

The Bash
Thursday, June 16, 7pm
Bill Graham Civic

Have you heard the rumors? | can’t believe
who's playing this year!

The Bash

Thursday, June 16, 7pm

Have you heard the rumors? | can't
believe who's playing this year!

Custom Notification Ul

Presentation size

UNNotificationExtensionInitialContentSizeRatio

The Bash
Thursday, June 16, 7pm
Bill Graham Civic

Have you heard the rumors? | gan’t believe
who's playing this year!

The Bash

Thursday, June 16, 7pm

Have you heard the rumors? | can't
believe who's playing this year!

Custom Notification Ul

DEMO LEMURS

Presentation size B

Thursday, June 16, 7pm
Bill Graham Civic

UNNotificationExtensionInitialContentSizeRatio

Have you heard the rumors? | can’t believe
who's playing this year!

Default content

UNNotificationExtensionDefaultContentHidden

The Bash

Thursday, June 16, 7pm

Have you heard the rumors? | can't
believe who's playing this year!

Decline

\

Custom Notification Ul

Presentation size

The Bash
Thursday, June 16, 7pm

Dl Granam CIVIC

UNNotificationExtensionInitialContentSizeRatio I
Default content

UNNotificationExtensionDefaultContentHidden

Decline

Comment

Media Attachments

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventImage: UIImageView!

func didReceive(notification: UNNotification) {
Llet content = notification.request.content

if let attachment = content.attachments.first {

if attachment.url.startAccessingSecurityScopedResource() {
eventImage.image = UIImage(contentsOfFile: attachment.url.path!)

attachment.url.stopAccessingSecurityScopedResource()

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventImage: UIImageView!

func didReceive(notification: UNNotification) {
Llet content = notification.request.content

if let attachment = content.attachments.first {

if attachment.url.startAccessingSecurityScopedResource() {
eventImage.image = UIImage(contentsOfFile: attachment.url.path!)

attachment.url.stopAccessingSecurityScopedResource()

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventImage: UIImageView!

func didReceive(notification: UNNotification) {
Llet content = notification.request.content

if let attachment = content.attachments.first {

if attachment.url.startAccessingSecurityScopedResource() {
eventImage.image = UIImage(contentsOfFile: attachment.url.path!)

attachment.url.stopAccessingSecurityScopedResource()

// Notification Content Extension Attachments

class NotificationViewController: UIViewController, UNNotificationContentExtension {

@IBOutlet var eventImage: UIImageView!

func didReceive(notification: UNNotification) {
Llet content = notification.request.content

if let attachment = content.attachments.first {

if attachment.url.startAccessingSecurityScopedResource() {
eventImage.image = UIImage(contentsOfFile: attachment.url.path!)

attachment.url.stopAccessingSecurityScopedResource()

ACtIONS

Default Action Handling

Default Action Handling

Delivered to the app

Notification gets dismissed immediately

Intercepting Action Response

Intercepting Action Response

Delivered to the extension

Can delay dismissal

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismiss)

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,
completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismiss)

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismiss)

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismiss)

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismiss)

// Intercepting notification action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

server.postEventResponse(response.actionIdentifier) A
if response.actionIdentifier == "accept" A
eventResponse.text = "Going!'"
eventResponse.textColor = UIColor.green()
} else if response.actionIdentifier == "decline" {

eventResponse.text = "Not going : ("

eventResponse.textColor = UIColor.red()

done(.dismissAndForwardAction)

lext Input Action

// Text Input Action
private func makeEventExtensionCategory() —> UNNotificationCategory A

let commentAction = UNTextInputNotificationAction(
identifier: "comment",
title: "Comment",
options: [1,
textInputButtonTitle: "Send",
textInputPlaceholder: "Type here..'")

return UNNotificationCategory(identifier: "event-invite",
actions: [acceptAction, declineAction, commentAction],

minimalActions: [acceptAction, declineAction],
intentIdentifiers: [],

options: [1])

// Text Input Action
private func makeEventExtensionCategory() —> UNNotificationCategory A

let commentAction = UNTextInputNotificationAction(
identifier: "comment",
title: "Comment",
options: [1,
textInputButtonTitle: "Send",
textInputPlaceholder: "Type here..'")

return UNNotificationCategory(identifier: "event-invite",
actions: [acceptAction, declineAction, commentAction],

minimalActions: [acceptAction, declineAction],
intentIdentifiers: [],

options: [1])

// Text Input Action
private func makeEventExtensionCategory() —> UNNotificationCategory A

let commentAction = UNTextInputNotificationAction(
identifier: "comment",
title: "Comment",
options: [1,
textInputButtonTitle: "Send",
textInputPlaceholder: "Type here..')

return UNNotificationCategory(identifier: "event-invite",
actions: [acceptAction, declineAction, commentAction],

minimalActions: [acceptAction, declineAction],
intentIdentifiers: [],

options: [1])

// Text Input Action
private func makeEventExtensionCategory() —> UNNotificationCategory A

let commentAction = UNTextInputNotificationAction(
identifier: "comment",
title: "Comment",
options: [1,
textInputButtonTitle: "Send",
textInputPlaceholder: "Type here..'")

return UNNotificationCategory(identifier: "event-invite",
actions: [acceptAction, declineAction, commentAction],

minimalActions: [acceptAction, declineAction],
intentIdentifiers: [],

options: [1])

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

if let textResponse = response as? UNTextInputNotificationResponse {
server.send(textResponse.userText) A

done(.dismiss)

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

if let textResponse = response as? UNTextInputNotificationResponse {
server.send(textResponse.userText) A

done(.dismiss)

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

if let textResponse = response as? UNTextInputNotificationResponse {
server.send(textResponse.userText) A

done(.dismiss)

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

if let textResponse = response as? UNTextInputNotificationResponse {
server.send(textResponse.userText) A

done(.dismiss)

// Text input action response

class NotificationViewController: UIViewController, UNNotificationContentExtension {

func didReceive(response: UNNotificationResponse,

completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {

if let textResponse = response as? UNTextInputNotificationResponse {
server.send(textResponse.userText) A

done(.dismiss)

The Bash
Thursday, June 16, 7pm
Bill Graham Civic

. ')'

Have you heard the rumors? | can’t believe
who's playing this year!

QWER T Y U O P

A S D F G H J K L

2 Z X|ICIVIBINIMI

a— \ ‘ - i'.: " Al "' (‘_\
DEMO LEMURS

The Bash

Thursday, June 16, 7pm
Bill Graham Civic

- - @‘/ - -
= Sl e T, i —
N e e AN S _ |

Have you heard the rumors? | can’t believe
who's playing this year!

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
override func canBecomeFirstResponder() —> Bool {

return true

override var inputAccessoryView: UIView { get {

return inputView

func didReceive(_ response: UNNotificationResponse,
completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {
if response.actionIdentifier == "comment" {
becomeFirstResponder()

textField.becomeFirstResponder()

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
override func canBecomeFirstResponder() —> Bool {

return true

override var inputAccessoryView: UIView { get {

return inputView

func didReceive(_ response: UNNotificationResponse,
completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {
if response.actionIdentifier == "comment" {
becomeFirstResponder()

textField.becomeFirstResponder()

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
override func canBecomeFirstResponder() —> Bool {

return true

override var inputAccessoryView: UIView { get {

return inputView

func didReceive(_ response: UNNotificationResponse,
completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {
if response.actionIdentifier == "comment" {
becomeFirstResponder()

textField.becomeFirstResponder()

// Custom input accessory view

class NotificationViewController: UIViewController, UNNotificationContentExtension {
override func canBecomeFirstResponder() —> Bool {

return true

override var inputAccessoryView: UIView { get {

return inputView

func didReceive(_ response: UNNotificationResponse,
completionHandler done: (UNNotificationContentExtensionResponseOption) —> Void) {
if response.actionIdentifier == "comment" {
becomeFirstResponder()

textField.becomeFirstResponder()

Summary

Attachments and custom Ul
Attachments with service extension
Custom Ul with content extension

- Media attachments

- User Interaction

More Information

https://developer.apple.com/wwdc16/708

Related Sessions

Introduction to Notifications Pacific Heights ~ Wednesday 9:00AM

| abs

Notifications Lab Frameworks Lab C Wednesday 11:00AM

: - Graphics, Games, . .
Notifications Lab o Modialap B TTiday 9:00AM

