
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Communicate your app’s needs to the networking layers

System Frameworks #WWDC16

Session 714

Networking for the Modern Internet

Stuart Cheshire Apple DEST

Topics

Update on ECN (Explicit Congestion Notification)
IPv6 and your applications
International text in networking
Cellular versus Wi-Fi
Network Quality of Service (QoS)

Explicit Congestion Notification
ECN Update

Recap from WWDC 2015

SQM (Smart Queue Management)
ECN (Explicit Congestion Notification)
Reduces delays and retransmissions
See Your App and Next Generation Networks from WWDC 2015

Your App and Next Generation Networks WWDC 2015

https://developer.apple.com/videos/wwdc/2015/?id=719

iOS 9 Launch Revealed Problem in Germany

One German ISP marked all packets “Congestion Experienced”
• Affected VPN connections
• Fixed by German ISP within a couple of weeks

No other problems reported anywhere else in the world

The Internet is now safe for ECN

In iOS 9.3 and OS X El Capitan v10.11.5, 5% of outgoing connections now request ECN
In Developer Seed, 100% of connections request ECN on Wi-Fi and three selected carriers

Ramping Up Usage of ECN

Web Sites Supporting ECN

September 2014: Alexa top million web sites supporting ECN: 56%
• Enabling Internet-Wide Deployment of Explicit Congestion Notification

June 2016: Alexa top million web sites supporting ECN: 70%
• http://ecn.ethz.ch/

June 2016: Alexa top million (IPv6 only) supporting ECN: 83%

http://ecn.ethz.ch/ecn-pam15.pdf
http://ecn.ethz.ch/

Time to Start Doing ECN Marking

Mark packets instead of dropping
• Reduce packet loss
• Reduce delays and wasted bandwidth due to retransmissions
• Better user experience
• More efficient use of network

IPv6 and Your Applications

IPv6 Logo courtesy of World IPv6 Launch and licensed under Creative Commons Attribution 3.0 Unported

http://www.worldipv6launch.org/downloads/
http://creativecommons.org/licenses/by/3.0/

6/6/2012
World IPv6 Launch 4 Years Ago Last Week

IPv6 Logo courtesy of World IPv6 Launch and licensed under Creative Commons Attribution 3.0 Unported

http://www.worldipv6launch.org/downloads/
http://creativecommons.org/licenses/by/3.0/

IPv6 Continues to Grow

In Belgium
Access to www.apple.com over IPv6

0%

10%

20%

30%

40%

50%

60%

70%

80%

Oct
20

14

Nov
 20

14

Ja
n 2

01
5

Mar
20

15

May
 20

15

Ju
n 2

01
5

Aug
 20

15

Oct
20

15

Nov
 20

15

Ja
n 2

01
6

Feb
 20

16

Mar
20

16

Apr
20

16

May
 20

16

On T-Mobile USA
Access to www.apple.com over IPv6

0%

10%

20%

30%

40%

50%

60%

70%

80%

Oct
20

14

Nov
 20

14

Ja
n 2

01
5

Mar
20

15

May
 20

15

Ju
n 2

01
5

Aug
 20

15

Oct
20

15

Nov
 20

15

Ja
n 2

01
6

Feb
 20

16

Mar
20

16

Apr
20

16

May
 20

16

On Verizon Wireless
Access to www.apple.com over IPv6

0%

10%

20%

30%

40%

50%

60%

70%

80%

Oct
20

14

Nov
 20

14

Ja
n 2

01
5

Mar
20

15

May
 20

15

Ju
n 2

01
5

Aug
 20

15

Oct
20

15

Nov
 20

15

Ja
n 2

01
6

Feb
 20

16

Mar
20

16

Apr
20

16

May
 20

16

Better for Carriers

LinkedIn
IPv6 Benefits for Mobile

10% IPv6
10–40% faster than IPv4

Page Load Time

IPv4

IPv6

Source: Zaid Ali Kahn, Senior Director, Global Infrastructure Architecture and Strategy at LinkedIn

• Cisco Ecole Polytechnique Networking Innovation and Research symposium, March 2016

• https://www.linkedin.com/pulse/ipv6-measurements-zaid-ali-kahn

• https://www.youtube.com/watch?v=FUtG89C8h_A

https://www.linkedin.com/pulse/ipv6-measurements-zaid-ali-kahn
https://www.youtube.com/watch?v=FUtG89C8h_A&index=13&list=PLphdWIg9YWByORM7t65J8mHaAzO7mXN6h

Facebook
IPv6 Benefits for Mobile

45% IPv6
15%–30% faster than IPv4

HTTP Request Time

IPv4

IPv6

Source: Paul Saab, Facebook engineer

• Networking @Scale, May 2016

• https://code.facebook.com/posts/1192894270727351/ipv6-it-s-time-to-get-on-board/

• https://code.facebook.com/posts/1036362693099725/networking-scale-may-2016-recap/

https://code.facebook.com/posts/1192894270727351/ipv6-it-s-time-to-get-on-board/
https://code.facebook.com/posts/1036362693099725/networking-scale-may-2016-recap/

Better for Users

Supporting IPv6-Only Networks

https://developer.apple.com/news/?id=05042016a

At WWDC 2015 we announced the transition to IPv6-only 
network services in iOS 9. Starting June 1, 2016 all apps 
submitted to the App Store must support IPv6-only networking. 
Most apps will not require any changes because IPv6 is 
already supported by NSURLSession and CFNetwork APIs.

If your app uses IPv4-specific APIs or hard-coded IP addresses, you 
will need to make some changes. Learn how to ensure compatibility 
by reading Supporting IPv6 DNS64/NAT64 Networks 
and watching Your App and Next Generation Networks.

https://developer.apple.com/news/?id=05042016a
https://developer.apple.com/library/prerelease/mac/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html#//apple_ref/doc/uid/TP40010220-CH213-SW1
https://developer.apple.com/videos/wwdc/2015/?id=719

No Detectable Change 
in App Acceptance Rate

What To Do if Your App Was Rejected

Test your app for yourself on your own NAT64 network
• Review Your App and Next Generation Networks presentation from WWDC 2015
• Test here on WWDC NAT64 network and come talk to us at the WWDC labs

Use address-family agnostic APIs
• Use higher-layer Foundation APIs like NSURLSession and CFNetwork
• Avoid low-level BSD sockets and third-party networking libraries, 

which lack these capabilities

Use hostnames, not literal addresses

Your App and Next Generation Networks WWDC 2015

https://developer.apple.com/videos/play/wwdc2015/719/

Client on IPv4-only network
IPv4-Only Server

NAT
IPv4 IPv4

Client on IPv6 + NAT64 network
IPv4-Only Server

NAT64

IPv6

IPv4

Client on IPv6 + NAT64 network, using literal IPv4 address
Dual-Stack Server

NAT64
IPv4

IPv6 IPv6

literal IPv4 address

Client on IPv6 + NAT64 network, using hostname
Dual-Stack Server

NAT64
IPv4

IPv6 IPv6

hostname

Using Literal IPv4 Addresses

Literal IPv4 addresses supported in selected APIs
• High-level APIs like NSURLSession and CFSocketStream
• The getaddrinfo() call, for low-level APIs like BSD sockets

- Need to use getaddrinfo() if using UDP

Using literal IPv4 addresses will prevent direct IPv6 connection to a dual-stack server

// Using getaddrinfo() with Literal IPv4 Addresses

struct addrinfo hints = {

 .ai_family = PF_UNSPEC,

 .ai_socktype = SOCK_STREAM,

 .ai_flags = AI_DEFAULT

};

struct addrinfo *res0;

getaddrinfo("192.0.2.1", "https", &hints, &res0); // Error checking omitted for brevity!

for (struct addrinfo *res = res0; res; res = res->ai_next) {

 int s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);

 connect(s, res->ai_addr, res->ai_addrlen); // More error checking omitted!

 // Do some stuff ...

}

freeaddrinfo(res0);

Ideally, devices should support IPv6
If not, alternative is for device to support IPv4 link-local (RFC 3927)

If device doesn’t support IPv6 and can’t do IPv4 link-local:
• Inform App Review when you submit your app
• This is not grounds for rejection
• Probably is grounds for putting one of these on the device

All off-link communication from your app must still be compatible with IPv6 and NAT64

Connecting to Devices on the Local Link

Legacy IP logo courtesy of Phil Benchoff at Virginia Tech

http://www.internetsociety.org/deploy360/blog/2013/07/the-legacy-ip-only-ipv6-horse-and-buggy-stickers-how-to-get-copies/

IPv6 Best Practices

Support IPv4 and IPv6 end to end
• Address-family agnostic clients
• Dual-stack servers

Use names, not addresses
• Lets DNS64 work
• Lets clients connect directly to dual-stack servers

Using literal IPv4 addresses
• Works in selected APIs
• Prevents direct IPv6 communication to a dual-stack server

International Text in Networking

International Text in Networking

Latin Alphabet (Polish) Małgorzata@example.club

Greek Alphabet δοκιμή@παράδειγμα.δοκιμή

Traditional Chinese Characters @ .

Japanese Characters @ .

Cyrillic Characters чебурашка@ящик-с-апельсинами.рф

International Text in Networking

Some Unicode Terminology

Unicode A set of integer code points in the range 1 – 1,114,111 (1 – 0x10FFFF) 
where each code point represents (with some exceptions) 
a human-meaningful visual “character”

UTF-32 Each Unicode integer code point stored using 
a single 32-bit integer (so endianness matters)

UTF-16 Each Unicode integer code point encoded using 
one or two 16-bit integers (so endianness matters)

UTF-8 Each Unicode integer code point encoded using 
one to four 8-bit integers in a specified order (so no endianness problems)

UTF-8 History

Designed by Ken Thompson on a placemat in a New Jersey diner one night in 1992

Source: Rob Pike https://www.cl.cam.ac.uk/~mgk25/unicode.html#history

https://www.cl.cam.ac.uk/~mgk25/unicode.html#history

UTF-8 Syntax

Code points 0x00 – 0x7F same as ASCII
• Code points 0x00 – 0x7F encoded using 

octet values 0x00 – 0x7F
• So all current 7-bit ASCII files are also valid UTF-8

- With the same meaning

Higher code points use multi-octet sequences
• Multi-octet sequences use octet values 0x80 – 0xF4
• Existing files already assigning other meanings to octet values 0x80 - 0xFF 

(e.g. ISO 8859-1) are not automatically compatible

0 X X X X X X X

UTF-8 Multi-Octet Sequences

First octet of  
2,3,4-octet sequences

Single octet ASCII character 
(Code points 1–127)

Continuation octets of 
multi-octet sequences

11 0 X X X X X

111 0 X X X X

1111 0 X X X

0 X X X X X X X 1 0 X X X X X X

UTF-8 Multi-Octet Sequences

00080 – 007FF

00800 – 0FFFF

00000 – 0007F

10000 – and up

0 X X X X X X X

11 0 X X X X X

111 0 X X X X

1111 0 X X X

1 0 X X X X X X

1 0 X X X X X X

1 0 X X X X X X

1 0 X X X X X X

1 0 X X X X X X 1 0 X X X X X X

UTF-8 Properties

No mid-string zero octets
Stateless character boundary detection
• Robust to insertions, deletions, errors, etc.

Strong heuristic detection
• e.g., any solitary octet with top bit set signals text as not valid UTF-8

Byte-wise, sorts same order as raw Unicode

RFC 2277, January 1998
IETF Policy on Character Sets and Languages

Protocols MUST be able

to use the UTF-8 charset

Percentage of UTF-8 Web Pages

February 2012

80%
Source: Google

June 2016

87%
Source: W3Techs

The W3C strongly recommends that content authors should only use the UTF-8
encoding for their documents.
• Source: W3C: Who uses Unicode?

https://googleblog.blogspot.com/2012/02/unicode-over-60-percent-of-web.html
https://w3techs.com/technologies/details/en-utf8/all/all
http://www.w3.org/International/questions/qa-who-uses-unicode

Used for IDNs (Internationalized Domain Names)
Punycode

A method of encoding a string of Unicode integer code  
points using only the following octet values:
• 0x61 – 0x7A
• 0x30 – 0x39
• 0x2D
i.e., octet values that, if (mis)interpreted as US ASCII, 
correspond to the following US ASCII characters:
• Letters a – z
• Digits 0 – 9
• Hyphen

Example
Punycode

78 6E 2D 2D 6F 6E 71 75 78 6B 31 68 6F 39 73 71
75 79 32 67 61 72 31 35 72 2E 78 6E 2D 2D 75 63
30 61 74 76 2E 78 6E 2D 2D 6A 36 77 31 39 33 67

xn--onquxk1ho9squy2gar15r.xn--uc0atv.xn--j6w193g

ASCII

. .

Punycode

Comparison
UTF-8

E7 9B B8 E4 BF A1 E9 9B B6 E5 8F AF E4 BB A5 E6
88 90 E7 9C 9F 2E E7 B5 84 E7 B9 94 2E E9 A6 99
E6 B8 AF

. .

UTF-8

Automatically supported in Bonjour and DNS APIs
Punycode

iOS 9 and OS X El Capitan
% ping . .  
ping: cannot resolve . . : Unknown host

UTF-8 input

But they didn’t put the name into the DNS as UTF-8

iOS 9 and OS X El Capitan
% ping . .  
ping: cannot resolve . . : Unknown host

iOS 10 and macOS Sierra
% ping . .  
ping xn--onquxk1ho9squy2gar15r.xn--uc0atv.xn--j6w193g (118.143.31.90): 56 data bytes

Automatically supported in Bonjour and DNS APIs
Punycode

UTF-8 input

UTF-8 automatically converted to Punycode encoding 
(and then (mis)displayed as if it were ASCII)

Automatically supported in Bonjour and DNS APIs
Punycode

Punycode is quite restrictive
• Doesn’t support spaces—e.g., “Living Room Apple TV”
• Need to use UTF-8 for that

Bonjour and DNS APIs decide automatically
• Will try UTF-8 first
• If that fails, converts to Punycode and tries again
• Algorithm described in RFC 6763

Supports both rich-text UTF-8 Bonjour names and Punycode-encoded names

Email Addresses

On sign-up forms in apps on on the web, don’t try to validate email address input
Accept what the user enters
Only reasonable restriction is that email address needs an @ sign
Send validation email to confirm address is “live”

Internationalized Domain Names
Framework https://tools.ietf.org/html/rfc5890
IDNA Protocol https://tools.ietf.org/html/rfc5891
Unicode Code Points https://tools.ietf.org/html/rfc5892
Right-To-Left Scripts https://tools.ietf.org/html/rfc5893

Email Address Internationalization
Framework https://tools.ietf.org/html/rfc6530
SMTP Extension https://tools.ietf.org/html/rfc6531
Email Headers https://tools.ietf.org/html/rfc6532
Delivery Status and Disposition Notification https://tools.ietf.org/html/rfc6533
IMAP Support for UTF-8 https://tools.ietf.org/html/rfc6855
POP3 Support for UTF-8 https://tools.ietf.org/html/rfc6856

Read if you’re 
writing an email 
client or server

UTF-8 is the new ASCII
International Text Best Practices

Use UTF-8 for everything
Don’t worry about Punycode
Be liberal about what strings you accept

Wi-Fi Assist is your friend
Cellular versus Wi-Fi

Wi-Fi Assist

Wi-Fi

Cell

Global per-application control
Express Intent — Control Cellular Networking

Global per-application control
Express Intent — Control Cellular Networking

Preflight checks can be misleading
Per-Connection Control

SCNetworkReachabilityGetFlags(r, &flags)

let isReachable = flags.contains(.reachable)

let isCell = flags.contains(.iswwan)

if isReachable && !isCell {

// Should go over WiFi, but does it really?

dataTask?.resume()

}

Per-Connection Control
Express Intent to control cellular data usage

NEW

1. Perform a network download/upload without preflight checks

Per-Connection Control
Express Intent to control cellular data usage

1. Perform a network download/upload without preflight checks
2. If session may be data intensive, request no cellular usage

var asset: AVURLAsset = AVURLAsset(url: contentURL,

 options:[AVURLAssetAllowsCellularAccessKey: false])

let configuration = NSURLSessionConfiguration.defaultSessionConfiguration()

configuration.allowsCellularAccess = false

let session = NSURLSession(configuration: configuration, delegate: self, delegateQueue: nil)

• NSURLSession API

NEW

• CoreMedia API

Per-Connection Control
Express Intent to control cellular data usage

NEW

1. Perform a network download/upload without preflight checks
2. If session may be data intensive, request no cellular usage
3. Should the session fail

Ask if user wants to use mobile data
or… just wait

Per-Connection Control
Express Intent to control cellular data usage

NEW

1. Perform a network download/upload without preflight checks
2. If session may be data intensive, request no cellular usage
3. Should the session fail
4. Continuously listen to better route events and repeat 1, 2, 3 (subject to app context)

func urlSession(session: NSURLSession, betterRouteDiscoveredFor

 streamTask: NSURLSessionStreamTask) {

 // Good news: WiFi associated once again!

}

Interface Selection Best Practices

Don’t assume that if you’re “on Wi-Fi” now your next connection will also be “on Wi-Fi”
• Network conditions change second to second

Express what you want to the networking layers
• Don’t just hope for the best

Network Service Type
Networking Quality of Service (QoS)

In August of 2015, Apple and Cisco announced a partnership 
to create a fast lane for iOS business apps.

With iOS 10 we are introducing new Quality of Service features 
to optimize enterprise iOS apps with Cisco networks.

Best Effort

Spectrum of characteristics
Network Service Types

Delay

Throughput

Background

Telephony

Best Effort

Spectrum of characteristics
Network Service Types

Delay

Throughput

Background

Telephony
SQM + ECN

Network Service Type API

NSURLSession and CFNetwork
• Network Service Types
• Available in iOS 5, OS X 10.7, and later

Socket option to select the Network Service Type
• SO_NET_SERVICE_TYPE

Don’t try to use old IP Type Of Service (TOS) bits
• Incompatible interpretation between different Wi-Fi driver vendors
• No consistent interpretation on the network

NEW

NSURLSession and CFNetwork Service Types

stream.setProperty(NSStreamNetworkServiceTypeVoice, forKey: NSStreamNetworkServiceType)

stream.setProperty(NSStreamNetworkServiceTypeVideo, forKey: NSStreamNetworkServiceType)

stream.setProperty(NSStreamNetworkServiceTypeBackground, forKey: NSStreamNetworkServiceType)

Network Service Types Socket Option

int st = NET_SERVICE_TYPE_BK_SYS;

setsockopt(socketfd, SOL_SOCKET, SO_NET_SERVICE_TYPE, (void *)&st, sizeof(st));

// NET_SERVICE_TYPE_BE Best effort

// NET_SERVICE_TYPE_BK_SYS Background system initiated

// NET_SERVICE_TYPE_VI Interactive Video

// NET_SERVICE_TYPE_VO Interactive Voice

Link-Layer QoS Marking

Controls packet queuing and scheduling on network interface
For Wi-Fi also selects the WMM (Wireless Multimedia) Access Category
• AC_BK Background
• AC_BE Best Effort (default)
• AC_VI Video
• AC_VO Voice

IP-Layer DSCP QoS Marking

Recognizes Cisco Fast Lane network and 
sets Differentiated Services Code Point (DSCP) marking appropriately
Useful for:
• Telephony apps
• Backup and other bulk upload apps

Details to Remember

Outbound queue selection and Wi-Fi–layer QoS Marking is supported on all devices
• Only applies to outbound packets

IP-Layer DSCP QoS Marking:
• Only for outbound packets
• Only on enterprise networks with compatible Cisco equipment
• Only applies to iOS (not macOS, tvOS, watchOS)
• Only supported on Wi-Fi, not Ethernet
• Only for apps that the network administrator allows

Network Service Type Best Practices

Choose Network Service Type wisely
• Most traffic should be Best Effort
• Large transfers, not time-critical, should be Background (e.g., backup)

Network Service Type is not a priority level
Network Service Type selects
• Low throughput, low delay
• High throughput, higher delay (default)
• Scavenger traffic (only use idle capacity that otherwise would be wasted)

Summary

We’re ready for Smart Queue Management and Explicit Congestion Notification
• Call to action to ISPs and mobile carriers

Support IPv6
• Both clients and servers

Support international text
• UTF-8 is the new ASCII

Express intent to networking layers
• Express when you don’t want cellular
• Express when you want low throughput and low latency

More Information

https://developer.apple.com/wwdc16/714

Related Sessions

711 NSURLSession: New Features and Best Practices Presidio Thursday 10:00AM

706 What’s New in Security Nob Hill Tuesday 5:00PM

201 Internationalization Best Practices Mission Tuesday 9:00AM

232 What’s New in International User Interfaces Nob Hill Friday 9:00AM

710 What’s New in HomeKit Nob Hill Wednesday 5:00PM

504 What’s New in HTTP Live Streaming Mission Wednesday 3:00PM

234 What’s New in ResearchKit Nob Hill Friday 10:00AM

Networking Lab 1 Frameworks Lab B Thursday 4-6 PM

Cisco Wi-Fi Networking Lab Fort Mason Friday 12-2 PM

Networking Lab 2 Frameworks Lab D Friday 2-5 PM

Labs

