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In 2014 Apple introduced Activity Tracing
We also introduced the concept of Faults and Errors
We recognize that Apple has several logging APIs
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Goals

One common, efficient logging mechanism for both user and kernel mode
Maximize information collected while minimizing observer effect
• Compressing data
• Deferring work and data collection
• Managing log message lifecycle

We want as much logging on all the time as possible
Design privacy into the system
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Improved categorization and filtering of log messages
Logging system collects caller information for you
New builtin type specifiers - simplifies log message preparation
New Console application and command-line tool
Supported on macOS, iOS, tvOS, watchOS, and Simulators
Support for Objective-C, C++ and C 
Swift support in upcoming seed
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Adoption

If you want to use the new Unified Logging system
• Build with the macOS 10.12, iOS 10.0, tvOS 10.0 or watchOS 3.0 SDK
• Legacy APIs (NSLog, asl_log_message, syslog…) redirected into new system
• Log data will be in new format and location

If you don’t want to use the new Unified Logging system
• Build with macOS10.11, iOS 9.0, tvOS 9.0 and watchOS 2.0 SDK
• No changes
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NEWSubsystems and Categories

Log messages can be associated with a subsystem and category
Can be used to control how log messages are filtered and displayed
A subsystem can contain multiple categories
You can use as many subsystems and categories as needed

Subsystem Category

com.your-company.your-application setup, inprogress, teardown

com.your-company.test.your-application test

Example:
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Logging Behavior

Each log message has a level determined by the API used
• Three basic levels—Default, Info, Debug
• Two special levels—Fault, Error

Each basic level has two characteristics that can be set for system, subsystem, or category
• Is is enabled? (Default messages are always enabled)
• Is it stored to disk or memory?

The levels are hierarchical
• So setting Debug to go to disk implies that Info will also go to disk

Behavior can be customized by installing profiles or, on macOS, via log command

NEW
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Standard Behavior

Message Level Enabled Destination

DEFAULT LEVEL ALWAYS DISK

INFO LEVEL YES MEMORY

DEBUG LEVEL NO N/A

ERROR ALWAYS DISK

FAULT ALWAYS DISK

NEW
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Prevent accidental logging of Personally Identifiable Information (PII)
Dynamic strings, collections, arrays, etc. are assumed to be private

NEW
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Faults and Errors

We do extra work saving additional information on Fault or Error 
Errors represent issues discovered within a given application/library
Faults represent more global problems in the system
Faults and Error log information is captured into a separate set of log files

NEW
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Architecture

Process A logd

Compressor

Process B

Profile can change routing and rules for given applications or subsystems

4 k4 kBuffer
Memory Only Buffer

Regular Log Data

Fault and Error Log Data

Others“Live” log stream

Compressed Log Filesdiagnosticd

BufferBufferBufferBufferCompressed Buffer

4 k4 kBuffer
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Console demo
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API Destination Description

os_log Disk Default logging level that is always captured

os_log_info Memory Additional information (defaults to memory-only buffers)

os_log_debug Off Debug level content (off-by default)

os_log_error Disk Process local error

os_log_fault Disk System-level error (usually involves multiple processes)

os_log_create n/a Create a log object for custom behaviors

Summary of New APIs NEW
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Built-in Type Formatters NEW

We all spend too much code converting binary information to strings to log

Built-in decoding for common values
"%{time_t}d" or "%{errno}d"
Arbitrary binary data using a new format type
"%.*P"

Built-in decoding for binary-types
“%{uuid_t}.16P"



Example Type Formatters

Type Format String Example Output
time_t %{time_t}d 2016-01-12 19:41:37

timeval %{timeval}.*P 2016-01-12 19:41:37.774236

timespec %{timespec}.*P 2016-01-12 19:41:37.774236823

errno %{errno}d Broken pipe

uuid_t %{uuid_t}.16P 
%{uuid_t}.*P 10742E39-0657-41F8-AB99-878C5EC2DCAA

sockaddr %{network:sockaddr}.*P fe80::f:86ff:fee9:5c16 
17.43.23.87

in_addr %{network:in_addr}d 17.43.23.87

in6_addr %{network:in6_addr}.16P fe80::f:86ff:fee9:5c16

NEW
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Per Parameter Privacy

Privacy is handled on a parameter by parameter basis
Scalars and static strings are assumed to be public
Dynamic strings, collections,  and objects are assumed to be private

NEW

Can be overridden on a per-parameter basis

"%{public}@" or "%{private}d"
Combine privacy and formatting

"%{public, uuid_t}.16P”
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/* 

 * Log Message Simplification 

 */

// Old way:

if (LogLevelEnabled(info)) {

    uuid_string_t uuid_str;

    uuid_unparse_upper(uuid, uuid_str);

    char *addr_desc = _convert_sockaddr(&sa);

    NSLog(@"%s (%s:%d) - fd: %d, uuid: %s, IP: %s”, 

__PRETTY_FUNCTION__, __FILE__, __LINE__, fd, uuid_st, addr_desc);

    free(addr_desc);

}

// New way:

os_log_info(OS_LOG_DEFAULT,

            "fd: %d, uuid: %{uuid_t}.16P, IP: %{network:sockaddr}.*P”,

                fd, uuid, sa->sa_len, &sa);
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/*
 * Example Code 
 */

os_log_t general_log = os_log_create("com.apple.logging.example", "general");
os_log_t time_log = os_log_create("com.apple.logging.example", "timestamp");

os_log(general_log, "running example code”);

os_log_info(general_log, "processing file %{public}s”, filename);

int fd = open(filename, O_RDONLY);
if (fd < 0) {
    os_log_error(general_log, "Cannot open file %{public}s - %{errno}d", filename, errno);
    . . . 
}

struct stat sb;
if (fstat(fd, &sb) < 0) {
    os_log_fault(general_log, "Failed to fstat %{public}s - %{errno}d", filename, errno);
    . . . 
}

os_log_info(time_log,  
"status for file %{public}s, atime:%{timespec}.*P, mtime:%{timespec}.*P, ctime:%
{timespec}.*P",

     filename,
     sizeof(struct timespec), &sb.st_atimespec,
     sizeof(struct timespec), &sb.st_mtimespec,
     sizeof(struct timespec), &sb.st_ctimespec);
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Activities are now objects that can be stored and re-used
• Direct control of activity relationships during creation

New API to auto-scope activities within your code



Improved Activity APIs

os_activity_create Creates a new activity object

os_activity_scope Makes an execution block a part of an activity

os_activity_apply Invokes a block scoped to a given activity

os_activity_label_useraction Label an activity as a user action (UI-based activities)

NEW
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/*
 * New Activity API Example
 */

os_activity_t init_activity = os_activity_create("Init", OS_ACTIVITY_CURRENT, 
OS_ACTIVITY_FLAG_DEFAULT);

os_activity_t verify_activity = os_activity_create("Verify", init_activity, 
OS_ACTIVITY_FLAG_DEFAULT);

if (isReady) {
    os_activity_scope(verify_activity);
    // All of the following work is done under “verification activity scope”
    . . .
}
    // This is not part of that activity

os_activity_apply(init_activity, ^{
    // do some work based on the “init_activity”
    . . .
});
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View live content from a system
Open log archives
New Activity centric view of logging and tracing
Advanced filtering and searching
Device support

NEW
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Stream live log messages

$ log stream
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But… in the meantime

$ xcrun simctl spawn booted log show system_logs.logarchive

NEW
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Logging Etiquette

Ensure messages contain only information useful for debugging
Let us do the formatting for you—leverage built-in formatters
Avoid creating wrapper functions for os_log* APIs
Log only what you need from collections (Dictionaries, Arrays, etc.)
Avoid logging in tight code loops
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Using os_log Family of APIs

Use os_log  to log critical details to help debug issues
Use os_log_info for additional info that will be captured during error or fault
Use os_log_debug for high-volume debugging during development
Use os_log_error to cause additional information capture from app
Use os_log_fault to cause additional information capture from system
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Using sysdiagnose

sysdiagnose is the preferred method to capture data for bug reports
• Unified Logging data in system_logs.archive

You can use key-chord to trigger
sysdiagnose on Apple Watch will trigger on both Apple Watch and iPhone
Transfer from device using iTunes
This is the file to send to Apple (either Radar or Developer Technical Support)

NEW



Key-chords for sysdiagnose NEW

Mac OS Shift + Control + Option + Command + Period (.)

iOS Volume Up + Volume Down + Power 
Slight vibration on iPhone to indicate start

watchOS Press and hold Digital Crown + Side Button for 1 second 
A screen shot is triggered if not held long enough.  Slight haptic to indicate start.

tvOS Play/Pause + Volume Down 
On older remote controls for Apple TV, must be held for 5 seconds
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Deprecation of Legacy logging APIs

All ASL logging APIs are superseded by the new APIs
New APIs for searching new log data will not be made public this release
• No equivalent asl_search functionality



os_activity_start Use os_activity_create and os_activity_scope / os_activity_apply

os_activity_end Use os_activity_create and os_activity_scope / os_activity_apply

os_activity_set_breadcrumb Use os_activity_label_useraction

os_trace_with_payload Use os_log*

Deprecated Activity APIs
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Summary

The new Unified Logging system is
• Faster
• Easier to use
• Gives you more control

But requires using new APIs and new tools



Related Sessions

Fix Bugs Faster Using Activity Tracing WWDC 2014



More Information

https://developer.apple.com/wwdc16/721






