#WWDC1/

Efficient Interaction with Frameworks
Performance case studies

Session 244

Philippe Hausler, Foundation
Donna Tom, TextKit

Frequently Occurring

Small Size Large Size

Infrequently Occurring

Frequently Occurring

Small Size Large Size

Infrequently Occurring

Frequently Occurring

Small Size Large Size

Infrequently Occurring

Frequently Occurring

Small Size Large Size

Infrequently Occurring

Frequently Occurring

measure!

Small Size Large Size

measure!

Infrequently Occurring

Improvements in Foundation
Bridges and how they affect your app

Strings, ranges, and text

Improvements in Foundation
Bridges and how they affect your app

Strings, ranges, and text

Improvements in Foundation
Bridges and how they affect your app

Strings, ranges, and text

Improvements in Foundation
Bridges and how they affect your app

Strings, ranges, and text

Improvements in Foundation

Improvements in Foundation

NSCalendar

Improvements in Foundation

NSCalendar

Internal locking improvements

Improvements in Foundation

NSCalendar
Internal locking improvements

NSOperation and NSOperationQueue

Improvements in Foundation

NSCalendar
Internal locking improvements
NSOperation and NSOperationQueue

Copy on write collections

Copy on Write Collections
There is a CoW level

What is copy on write?

How does it work?

How can | improve my code to work better and safer with it?

Copy on Write Collections
There is a CoW level

What is copy on write?

How does it work?

How can | improve my code to work better and safer with it?

return [_elements copyl;

Copy on Write Collections
Let's milk this joke a bit more

a = [NSMutableArray new] -

Copy on Write Collections
Let's milk this joke a bit more

a = [NSMutableArray new] -

Copy on Write Collections
Let's milk this joke a bit more

Copy on Write Collections
Let's milk this joke a bit more

Copy on Write Collections
Let's milk this joke a bit more

Copy on Write Collections
Let's milk this joke a bit more

Copy on Write Collections
Let's milk this joke a bit more

[a addObject:@"A"]

Copy on Write Collections
Let's milk this joke a bit more

[a addObject:@"A"]

Copy on Write Collections
Let's milk this joke a bit more

Copy on Write Collections
Let's milk this joke a bit more

//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here
Oproperty (strong) NSArray<Item *> *xitems;

//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here

= i < . - £ %
s R 0 & . . =L

o0 i G e R R O RS T R TR TR R o IO . °
At g B IS e ; e < . z. - NS s Sl by il
LU N \/ @ o \ — 1L avVv : Rt aitaslatlr b
. ‘e b S - o s » <P S el e e~ .
= sy DS - L)

//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here

& -08 S s £ - -
, 25 Sl d £ sl i 507y ‘ LTETN AR -2 il AN . e . F 2y . NN _ ®
g b e . E) ~ . - R . - 0 - . . B - - & = . g g 2 .
R e Y AELE P Y - ~a e = < R o &2 te S TS PR PN £ om []
&2 *. ‘ CJ \/ a L4 @ - . o s & 0 ATl m o e By WA o = _
Nt _ - o > B e Lo —ars ~
= — Sl - K

// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here

B
. ¥ig P, & - o dl£4 Va9 RAZ IR L i . @0 ¥y -2 =) . __g e PP, .) [)
el LAY S A £ g S S s o < . - . : A COEG P LT D) DO 7 _
P e e T e B 2 'a 2 < &y = S i. =\ =. R Sy ST 0T S TS R PE ~ FANAN o
o & y ui C) \/ - N S - . o &= = A S R S o - - -
N * . . - - - B Bl Lo —ac <
S D - K

// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

— (NSArray<Item *> *x)items {
NSMutableArray *items = [[NSMutableArray alloc] init];

[self buildItems:items];
// WARNING: Don't mutate this... 1t 1s declared as NSArray so 1t should be safe?

return items;

//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here

A
. wia P, & - o d £ Va9 RAZ IR L i . @0 ¥y -2 =) . __g e TP, .) [)
oot e A S 2.2 . g s . - - . § <R N s LT B D o O 7
R e 2% 8 S &y s N { B A ~. . T 0 o S e SN TS PR - LAY o
o & y ui C) \/ - N S - . o &= = A S R S o - - -
“ U . _ - o = B Pl Lo e b
S S - K

// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

— (NSArray<Item *> *x)items {
NSMutableArray *items = [[NSMutableArray alloc] init];

[self buildItems:items];
// The copy 1s completely safe here and also 1s nearly free so avoid bad things later

return [items copy];

//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here

A
. wia P, & - o d £ Va9 RAZ IR L i . @0 ¥y -2 =) . __g e TP, .) [)
oot e A S 2.2 . g s . - - . § <R N s LT B D o O 7
R e 2% 8 S &y s N { B A ~. . T 0 o S e SN TS PR - LAY o
o & y ui C) \/ - N S - . o &= = A S R S o - - -
“ U . _ - o = B Pl Lo e b
S S - K

// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

— (NSArray<Item *> *x)items {
NSMutableArray *items = [[NSMutableArray alloc] init];

[self buildItems:items];
// The copy 1s completely safe here and also 1s nearly free so avoid bad things later

return [items copy];

// This will copy
aNSArray as? [Any]

Data
The best type for dealing with bytes

Data is its own slice
Indexing is only a few instructions in optimized builds
Appending is dramatically faster

Replacing regions is faster too

//Subscripting Data

func findZeroByte(_ data: Data) —> Data.Index? {
for index 1n data.indices {
1if datalindex] == 0@ { return index }

¥

return nil

//Subscripting Data

func findZeroByte(_ data: Data) —> Data.Index? {
for index 1n data.indices {
1if datalindex] == © { return index }

¥

return nil

© Swift 3

Nanoseconds

O N PO OO DN PO ©

Samples

// Leveraging Data, Don’'t Believe the Lore

// Leveraging Data, Don’'t Believe the Lore

var bytes: [UInt8] = [@xcf, Oxfa, Oxed, Oxfel

// Leveraging Data, Don’'t Believe the Lore

var bytes: [UInt8] = [@xcf, Oxfa, Oxed, Oxfel
var bytes = Data(bytes: [Oxcf, Oxfa, Oxed, 0Oxfel)

// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = malloc(250).assumingMemoryBound(to: UInt8.self)
defer { free(buffer) 1}

// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = malloc(250).assumingMemoryBound(to: UInt8.self)
defer { free(buffer) 1}

var buffer = Data(count: 250) 0

// Leveraging Data, Don’'t Believe the Lore

bytes: [] = [@xcf, Oxfa, Oxed, 0Oxfel]
var bytes = Data(bytes: [Oxcf, Oxfa, Oxed, Oxfel) 0

buffer = (250). (to:
{ (buffer) }

var buffer = Data(count: 250) Q

// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = Data(count: 250) 0

let header = buffer.subdata(in: buffer.startIndex..<buffer.startIndex.advanced(by: 4))

// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = Data(count: 250) 0

let header = buffer.subdata(in: buffer.startIndex..<buffer.startIndex.advanced(by: 4))

let header

buffer[..<buffer.startIndex.advanced(by: 4)] 0

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging
* From a CF type to a NS type

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging
* From a CF type to a NS type
* From a NS type to a CF type

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging
* From a CF type to a NS type
* From a NS type to a CF type

e Zero cost at cast

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging

* From a CF type to a NS type
* From a NS type to a CF type
» Zero cost at cast

» Extra cost at usage

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data
Toll-free bridging Swift bridges

* From a CF type to a NS type
* From a NS type to a CF type
» Zero cost at cast

» Extra cost at usage

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging Swift bridges

* From a CF type to a NS type * From a reference type to a struct

* From a NS type to a CF type
e /ero cost at cast

» Extra cost at usage

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray *xarray = @[]; let data = NSData()
CFArrayGetCount((CFArrayRef)array); let d = data as? Data

Toll-free bridging Swift bridges

* From a CF type to a NS type * From a reference type to a struct
* From a NS type to a CF type * From a struct to a reference type

e Zero cost at cast

» Extra cost at usage

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()

CFArrayGetCount ((CFArrayRef)array); let d = data as? Data

Toll-free bridging Swift bridges

* From a CF type to a NS type * From a reference type to a struct
* From a NS type to a CF type * From a struct to a reference type
« Zero cost at cast e Cost is paid in advance

» Extra cost at usage

Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()

CFArrayGetCount ((CFArrayRef)array); let d = data as? Data

Toll-free bridging Swift bridges

* From a CF type to a NS type * From a reference type to a struct
* From a NS type to a CF type * From a struct to a reference type
« Zero cost at cast e Cost is paid in advance

» Extra cost at usage * Normal cost at usage

// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCHV(CFArrayGetTypeID(), CFIndex, (NSArray x)array, count);

return array—>count;

// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCHV(CFArrayGetTypeID(), CFIndex, (NSArray sx)array, count);

return array—>count;

// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCHV(CFArrayGetTypeID(), CFIndex, (NSArray x)array, count);

return array—>count;

// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
if (CF_IS_OBJC(CFArrayGetTypeID(), array)
return [(NSArray *x)obj count];

return array-—->count;

// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
if (object_getClass(array) != CFClasses[CFArrayGetTypeID()])
return [(NSArray *x)obj count];

return array-—->count;

// CF Bridging

NSArray sarray = @[]1;

CFArrayGetCount((CFArrayRef)array);

// CF Bridging

NSArray xarray = @[]1;

CFArrayGetCount((CFArrayRef)array);

// CF Bridging Small and Unknown Frequency

NSArray xarray = @[]1;

CFArrayGetCount((CFArrayRef)array);

// CF Bridging Small and Unknown Frequency

NSArray xarray = @[]1;

CFArrayGetCount((CFArrayRef)array);

// Swift Bridging
extension Data : _ObjectiveCBridgeable {

public static func _conditionallyBridgeFromObjectiveC(_ 1nput: NSData, result: 1nout
Data?) -> Bool {
// We must copy the i1nput because 1t might be mutable
// just like storing a value type in ObjC
result = Data(referencing: input)

return true

// Swift Bridging
struct Data {
public init(referencing reference: NSData) {

_backing = DataStorage(immutableReference: reference.copy() as! NSData)

_sliceRange = 0..<reference.length

// Swift Bridging

let data = NSData()
let d = data as? Data

// Swift Bridging

let data = NSData()

let d = data as? Data

// Swift Bridging Usually small and infrequent...

let data = NSData()

let d = data as? Data

// Swift Bridging Usually small and infrequent...

let data = NSData()

let d = data as? Data

// Swift Bridging Usually smII and infrequent...

s 3

let data = NSData()
let d = data as? Data

// Swift Bridging Usually smII and inrequent...

s 3 C T

let data = NSData()
let d = data as? Data

// Swift Bridging Usually smII and inrequent...

s 3 C T

let data = NSData()
let d = data as? Data

Strings, Ranges, and Text

Donna Tom, TextKit

S EEICEVEVANEE

Invest In performance
that matters to your users

Frequently Occurring

measure!

Small Size Large Size

measure!

Infrequently Occurring

Runs Frequently

measure!

Short Length Long Length

measure!

Runs Infrequently

String bridging
Ranges

Text layout and rendering

String bridging
Ranges

Text layout and rendering

=xample 1: UlLabel

100% ()

Waffles

String Bridging
Example 1: UlLabel

// Swift

var text = label.text

String Bridging
Example 1: UlLabel

String Bridging
Example 1: UlLabel

String Bridging
Example 1: UlLabel

")_, prs
- ‘ -
,‘.---“‘ - - L]
PRECYTe & T L o
P~ _ - Y. e g
PP, @ - . ==
© 7 y =
U, = -

String Bridging
Example 1: UlLabel

var text = label.text

String Bridging
Example 1: UlLabel

Swift Framework

var text = label.text

String Bridging
Example 1: UlLabel

Swift Framework

var text = label.text

copy .

Runs Frequently

var text = label.text

Short Length Long Length

Runs Infrequently

Runs Frequently

var text = label.text

Short Length =y Long Length

=" . ol

Runs Infrequently

Runs Frequently

var text bel.text

Short Length — P Long Length

s, ' i

Runs Infrequently

=xample 2: NSTextStorage

YYY Y By 9:41 AM 100%

In considering the origin of species,
It is quite conceivable that a
naturalist, reflecting on the mutual
affinities of organic beings, on their
embryological relations, their
geographical distribution,
geological succession, and other
such facts, might come to the
conclusion that species had not
been independently created, but
had descended, like varieties, from
other species. Nevertheless, such
a conclusion, even if well founded,
would be unsatisfactory, until it
could be shown how the
Innumerable species, inhabiting
this world have been modified, so
as to acquire that perfection of
structure and coadaptation which
justly excites our admiration.
Naturalists continually refer to
external conditions, such as
climate, food, etc., as the only
possible cause of variation. In one
limited sense, as we shall hereafter
see, this may be true; but it is
preposterous to attribute to mere
external conditions, the structure,
for instance, of the woodpecker,

YYY Y By 9:41 AM 100%

In considering the origin of species,
It is quite conceivable that a
naturalist, reflecting on the mutual
affinities of organic beings, on their
embryological relations, their
geographical distribution,
geological succession, and other
such facts, might come to the
conclusion that species had not
been independently created, but
had descended, like varieties, from
other species. Nevertheless, such
a conclusion, even if well founded,
would be unsatisfactory, until it
could be shown how the
Innumerable species, inhabiting
this world have been modified, so
as to acquire that perfection of
structure and coadaptation which
justly excites our admiration.
Naturalists continually refer to
external conditions, such as
climate, food, etc., as the only
possible cause of variation. In one
limited sense, as we shall hereafter
see, this may be true; but it is
preposterous to attribute to mere
external conditions, the structure,
for instance, of the woodpecker,

String Bridging
Example 2: NSTextStorage

// Swift

var text = textView.textStorage.string

String Bridging
Example 2: NSTextStorage

// Swift

var text = textView.textStorage.string

String Bridging
Example 2: NSTextStorage

I
TLEER

String Bridging
Example 2: NSTextStorage

String Bridging
Example 2: NSTextStorage

String Bridging
Example 2: NSTextStorage

var text = textView.textStorage.string

String Bridging
Example 2: NSTextStorage

Swift Framework

var text = textView.textStorage.string

copy!

String Bridging
Example 2: NSTextStorage

var text = textView.textStorage.mutableString

String Bridging
Example 2: NSTextStorage

Swift Framework

var text = textView.textStorage.mutableString

no copy!

Runs Frequently

var text = textView.textStorage.string

Short Length Long Length

Runs Infrequently

Runs Frequently

var text = textView.textStorage.string

Short Length " — Long Length

Runs Infrequently

Runs Frequently

var text = textView.textStorage.string

g 4
R\ ol

-y R .

\ .
\ \. K
L\ 0., % -
TRE 52
~ ._‘) P Fe
S OR - g
. N - % -
- R Y o .
- PP oy LAY

Short Length —_ Long Length

Runs Infrequently

Runs Frequently

var tex extView.textStorage.string

Short Length —_— Long Length

1 MB?

Runs Infrequently

LA CxtView. textStorage.string

Short Length

1GB?

Runs Frequently

Runs Infrequently

Long Length

String bridging
Ranges

Text layout and rendering

D
"Ranges ¥

Visible

Components

j -

Visible ﬁ Q
Components |
Unicode

Ox1F926 Ox1F3FB 0Ox200D 0x2640 OxFEOF
Scalar Value

Visible a Q
Components
L
Unicode OX1F926 OX1F3FB 0x200D 0x2640 OXFEOF
Scalar Value
Unicode EMOJI MODIFIER FITZPATRICK ZERO WIDTH VARIATION
Name FACE PALM TYPE-1-2 JOINER FEMALE SIGN SELECTOR-16

Visible e Q
T

Components S

Jnicode OX1F926 OX1F3FB 0x200D 0x2640 OXFEOF
Scalar Value

Unicode EMOJI MODIFIER FITZPATRICK ZERO WIDTH VARIATION

Name FACE PALM TYPE-1-2 JOINER FEMALE SIGN SELECTOR-16

UTF-16 OxD83E 0xDD26 0xD83C OxDFFB 0x200D 0x2640 OXFEOF

Working with NSAttributedString

String Ranges
Example 1: Working with NSAttributedString

"What a ﬂ' !

String Ranges
Example 1: Working with NSAttributedString

"What a W' !

let nsstring = string as NSString

let nsrange = nsstring.rangeOfString("&")

String Ranges
Example 1: Working with NSAttributedString

"What a ﬂ' !

var attributedString = NSMutableAttributedString(string: string)

String Ranges
Example 1: Working with NSAttributedString

"What a B

String Ranges
Example 1: Working with NSAttributedString

"What a B

range: NSRange(backgroundRange, 1n: string))

Working with NSRegularExpression

// String Ranges: Working with NSRegularExpression

<html>
<body>
<div>
Hello Swifttest
</div>
</body>
</html>

// String Ranges: Working with NSRegularExpression

extension String {
func rangeFromNSRange(nsRange : NSRange) —> Range<Index>? A
guard nsRange.location != NSNotFound else { return nil }
let fromlé = utflé.startIndex.advanced(by: nsRange.location)
let tolé = fromlé.advanced(by: nsRange.length)
1f let from = Index(fromlé, within: self),
let to = Index(tolé, within: self) {
return from..<to

h

return nil

// Improved String Ranges: Working with NSRegularExpression

import Foundation

func findTags(in string:String) -> [Range<String.Index>]1 {
var found = [Range<String.Index>1()
let re = try! NSRegularExpression(pattern: "<([a-z][a-z0-9]1x)/?>")
for match in re.matches(in: string,
range: NSRange(string.startIndex..<string.endIndex, 1n: string)) {
found.append(Range(match.rangeAt (1), in: string)!)
}

return found

// Improved String Ranges: Working with NSRegularExpression

import Foundation

func findTags(in string:String) -> [Range<String.Index>]1 {
var found = [Range<String.Index>1()
let re = try! NSRegularExpression(pattern: "<([a-z]l[a-z0-9]1x)/?>")
for match in re.matches(in: string,
range: NSRange(string.startIndex..<string.endIndex, 1n: string)) {
found.append(Range(match.rangeAt(1), in: string)!)
}

return found

String bridging
Ranges

Text layout and rendering

Text Is hard

40 I0S localizations

40 I0S localizations

35 macOS localizations

40 10S localizations
35 macOS localizations

39 watchQOS localizations

40 I0S localizations
35 macOS localizations

39 watchQOS localizations

40 tvOS localizations

40 I0S localizations
35 macOS localizations

39 watchOS localizations

40 tvOS localizations

More than 300 other languages

Line Breaking cCursor Positioning Bldirectional bynamic Type Shaping Metrics

Attributes Screen Size Precomposed Characters Ligature RTL Stroke Fringing
Hyphenation Writing Direction WIdOWS Glyph Dilation Grapheme Cluster Gamma
Decomposed Characters Even-0dd Script Ttextmatrix Uncached
Tightening Orphans Tracking Truncation Spacing Orientation Glyph Bounds
Font Leading PatternFill LTR FontSmoothing LoOcale Flippedness Fonts Margin

Kerning Shadow EM Non-Zero Language Unicode Glyph Bounds Emoji

Anti—AIiasing Glyph Substitution Line Height ~ Ascenders Clipping Legibility
Linear Blending Selection Letterpress Optical Alignment Exclusion Paths Encoding

Letterpress Bounding Boxes AccCesSibility Descenders Attachments Baselines

Example:
A Tale of Two Labels

Millennium Park
Loop

Millennium Park
Loop

Tribune Tower
Near North Side

Union Park
West Loop

Rookery Building

Millennium Park
Loop

Tribune Tower
Near North Side

Union Park
West Loop

Rookery Building

LR

SR

LR

RZI 17

 '

Runs Frequently

Short Length Long Length

Runs Infrequently

Runs Frequently

B, . X s
iw. . | -
—..

measure!

Short Length R Long Length

Runs Infrequently

Postmortem
Example: A Tale of Two Labels

Initial conditions qualified for fast rendering

Postmortem
Example: A Tale of Two Labels

Initial conditions qualified for fast rendering

Input change forced rendering to slower path

Postmortem
Example: A Tale of Two Labels

Initial conditions qualified for fast rendering
Input change forced rendering to slower path

App used older layout practices

What You Can Do

Higher-level strategies

What You Can Do

Higher-level strategies

Use standard label controls

What You Can Do

Higher-level strategies

Use standard label controls

X

faster rendering with
NSTextField in macOS 10.13

What You Can Do

Higher-level strategies

Use modern layout practices

What You Can Do

Lower-level tips

Set rendering attributes for attributed strings

What You Can Do

Lower-level tips

Specify alignment and writing direction if known

What You Can Do

Lower-level tips

Use clipping line break mode for single line labels

Summary

Frequently Occurring

measure!

Small Size Large Size

measure!

Infrequently Occurring

More Information
https://developer.apple.com/wwdc1//244

Related Sessions

Understanding Swift Performance WWDC 2016
What's New in Cocoa WWDC 2017/
What's New in Foundation WWDC 2017
Modernizing Grand Central Dispatch Usage WWDC 2017
Cocoa Development Tips WWDC 2017
Writing Energy Efficient Apps WWDC 2017

Labs

Cocoa Lab Technology Lab B Fri 1:50PM-3:20PM

