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Copy on Write Collections
There is a CoW level

What is copy on write?

How does it work?

How can | improve my code to work better and safer with it?

return [_elements copyl;
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//Leveraging Copy-on-write, Steer your code 1n the right direction

// WARNING: Don’t pass any NSMutableArrays into here
Oproperty (strong) NSArray<Item *> *xitems;
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Oproperty (copy) NSArray<Item %> *xitems;
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// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

— (NSArray<Item *> *x)items {
NSMutableArray *items = [[NSMutableArray alloc] init];

[self buildItems:items];
// WARNING: Don't mutate this... 1t 1s declared as NSArray so 1t should be safe?

return items;
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// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

— (NSArray<Item *> *x)items {
NSMutableArray *items = [[NSMutableArray alloc] init];

[self buildItems:items];
// The copy 1s completely safe here and also 1s nearly free so avoid bad things later

return [items copy];
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// WARNING: Don’t pass any NSMutableArrays into here
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// Coples are safer
Oproperty (copy) NSArray<Item %> *xitems;

— (NSArray<Item *> *x)items {
NSMutableArray *items = [[NSMutableArray alloc] init];

[self buildItems:items];
// The copy 1s completely safe here and also 1s nearly free so avoid bad things later

return [items copy];

// This will copy
aNSArray as? [Any]



Data
The best type for dealing with bytes

Data is its own slice
Indexing is only a few instructions in optimized builds
Appending is dramatically faster

Replacing regions is faster too



//Subscripting Data

func findZeroByte(_ data: Data) —> Data.Index? {
for index 1n data.indices {
1if datalindex] == 0@ { return index }

¥

return nil



//Subscripting Data

func findZeroByte(_ data: Data) —> Data.Index? {
for index 1n data.indices {
1if datalindex] == © { return index }

¥

return nil

© Swift 3

Nanoseconds

O N PO OO DN PO ©

Samples
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// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = malloc(250).assumingMemoryBound(to: UInt8.self)
defer { free(buffer) 1}

var buffer = Data(count: 250) 0




// Leveraging Data, Don’'t Believe the Lore

bytes: [ ] = [@xcf, Oxfa, Oxed, 0Oxfel]
var bytes = Data(bytes: [Oxcf, Oxfa, Oxed, Oxfel) 0

buffer = (250). (to:
{ (buffer) }

var buffer = Data(count: 250) Q




// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = Data(count: 250) 0

let header = buffer.subdata(in: buffer.startIndex..<buffer.startIndex.advanced(by: 4))



// Leveraging Data, Don’'t Believe the Lore

var bytes = Data(bytes: [@Oxcf, Oxfa, Oxed, Oxfel) 0

var buffer = Data(count: 250) 0

let header = buffer.subdata(in: buffer.startIndex..<buffer.startIndex.advanced(by: 4))

let header

buffer[..<buffer.startIndex.advanced(by: 4)] 0
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Bridges and How They Impact Your App

For whom the bridge tolls

NSArray xarray = @[]1; let data = NSData()

CFArrayGetCount ((CFArrayRef)array); let d = data as? Data

Toll-free bridging Swift bridges

* From a CF type to a NS type * From a reference type to a struct
* From a NS type to a CF type * From a struct to a reference type
« Zero cost at cast e Cost is paid in advance

» Extra cost at usage * Normal cost at usage



// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCHV(CFArrayGetTypeID(), CFIndex, (NSArray x)array, count);

return array—>count;



// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCHV(CFArrayGetTypeID(), CFIndex, (NSArray sx)array, count);

return array—>count;



// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
CF_OBJC_FUNCDISPATCHV(CFArrayGetTypeID(), CFIndex, (NSArray x)array, count);

return array—>count;



// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
if (CF_IS_OBJC(CFArrayGetTypeID(), array)
return [ (NSArray *x)obj count];

return array-—->count;



// CF Bridging

CFIndex CFArrayGetCount(CFArrayRef array) {
if (object_getClass(array) != CFClasses[CFArrayGetTypeID()])
return [ (NSArray *x)obj count];

return array-—->count;



// CF Bridging

NSArray sarray = @[]1;

CFArrayGetCount( (CFArrayRef)array);



// CF Bridging

NSArray xarray = @[]1;

CFArrayGetCount((CFArrayRef)array);
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// CF Bridging Small and Unknown Frequency

NSArray xarray = @[]1;

CFArrayGetCount( (CFArrayRef)array);




// Swift Bridging
extension Data : _ObjectiveCBridgeable {

public static func _conditionallyBridgeFromObjectiveC(_ 1nput: NSData, result: 1nout
Data?) -> Bool {
// We must copy the i1nput because 1t might be mutable
// just like storing a value type in ObjC
result = Data(referencing: input)

return true



// Swift Bridging
struct Data {
public init(referencing reference: NSData) {

_backing = DataStorage(immutableReference: reference.copy() as! NSData)

_sliceRange = 0..<reference.length



// Swift Bridging

let data = NSData()
let d = data as? Data
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let data = NSData()

let d = data as? Data




// Swift Bridging Usually small and infrequent...

let data = NSData()

let d = data as? Data
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let data = NSData()

let d = data as? Data
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// Swift Bridging Usually smII and inrequent...

s 3 C T

let data = NSData()
let d = data as? Data




Strings, Ranges, and Text

Donna Tom, TextKit
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Invest In performance
that matters to your users
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Runs Frequently

measure!

Short Length Long Length
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String Bridging
Example 1: UlLabel

// Swift

var text = label.text
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String Bridging
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var text = label.text



String Bridging
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Swift Framework

var text = label.text




String Bridging
Example 1: UlLabel

Swift Framework

var text = label.text

copy .




Runs Frequently
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Runs Frequently

var text = label.text

Short Length =y Long Length
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Runs Frequently

var text bel.text

Short Length — P Long Length
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=xample 2: NSTextStorage
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In considering the origin of species,
It is quite conceivable that a
naturalist, reflecting on the mutual
affinities of organic beings, on their
embryological relations, their
geographical distribution,
geological succession, and other
such facts, might come to the
conclusion that species had not
been independently created, but
had descended, like varieties, from
other species. Nevertheless, such
a conclusion, even if well founded,
would be unsatisfactory, until it
could be shown how the
Innumerable species, inhabiting
this world have been modified, so
as to acquire that perfection of
structure and coadaptation which
justly excites our admiration.
Naturalists continually refer to
external conditions, such as
climate, food, etc., as the only
possible cause of variation. In one
limited sense, as we shall hereafter
see, this may be true; but it is
preposterous to attribute to mere
external conditions, the structure,
for instance, of the woodpecker,
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for instance, of the woodpecker,
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var text = textView.textStorage.string
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Example 2: NSTextStorage

Swift Framework

var text = textView.textStorage.string

copy!



String Bridging
Example 2: NSTextStorage

var text = textView.textStorage.mutableString



String Bridging
Example 2: NSTextStorage

Swift Framework

var text = textView.textStorage.mutableString

no copy!
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Runs Frequently

var text = textView.textStorage.string
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Runs Frequently

var tex extView.textStorage.string

Short Length —_— Long Length

1 MB?

Runs Infrequently



LA CxtView. textStorage.string

Short Length

1GB?

Runs Frequently

Runs Infrequently
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String Ranges
Example 1: Working with NSAttributedString

"What a W' !

let nsstring = string as NSString

let nsrange = nsstring.rangeOfString("&")




String Ranges
Example 1: Working with NSAttributedString

"What a ﬂ' !

var attributedString = NSMutableAttributedString(string: string)
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String Ranges
Example 1: Working with NSAttributedString

"What a B

range: NSRange(backgroundRange, 1n: string))




Working with NSRegularExpression



// String Ranges: Working with NSRegularExpression

<html>
<body>
<div>
<span>Hello</span> <b>Swift<span>test</span></b>
</div>
</body>
</html>



// String Ranges: Working with NSRegularExpression

extension String {
func rangeFromNSRange(nsRange : NSRange) —> Range<Index>? A
guard nsRange.location != NSNotFound else { return nil }
let fromlé = utflé.startIndex.advanced(by: nsRange.location)
let tolé = fromlé.advanced(by: nsRange.length)
1f let from = Index(fromlé, within: self),
let to = Index(tolé, within: self) {
return from..<to

h

return nil



// Improved String Ranges: Working with NSRegularExpression

import Foundation

func findTags(in string:String) -> [Range<String.Index>]1 {
var found = [Range<String.Index>1()
let re = try! NSRegularExpression(pattern: "<([a-z][a-z0-9]1x)/?>")
for match in re.matches(in: string,
range: NSRange(string.startIndex..<string.endIndex, 1n: string)) {
found.append(Range(match.rangeAt (1), in: string)!)
}

return found



// Improved String Ranges: Working with NSRegularExpression

import Foundation

func findTags(in string:String) -> [Range<String.Index>]1 {
var found = [Range<String.Index>1()
let re = try! NSRegularExpression(pattern: "<([a-z]l[a-z0-9]1x)/?>")
for match in re.matches(in: string,
range: NSRange(string.startIndex..<string.endIndex, 1n: string)) {
found.append(Range(match.rangeAt(1), in: string)!)
}

return found
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40 I0S localizations
35 macOS localizations

39 watchOS localizations

40 tvOS localizations

More than 300 other languages
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Attributes Screen Size Precomposed Characters Ligature RTL Stroke  Fringing
Hyphenation  Writing Direction WIdOWS Glyph Dilation  Grapheme Cluster Gamma
Decomposed Characters Even-0dd Script  Ttextmatrix  Uncached
Tightening Orphans Tracking Truncation Spacing Orientation Glyph Bounds
Font Leading PatternFill LTR  FontSmoothing LoOcale Flippedness Fonts Margin

Kerning Shadow EM  Non-Zero Language Unicode Glyph Bounds Emoji

Anti—AIiasing Glyph Substitution  Line Height ~ Ascenders Clipping Legibility
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A Tale of Two Labels
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Postmortem
Example: A Tale of Two Labels

Initial conditions qualified for fast rendering
Input change forced rendering to slower path

App used older layout practices
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Higher-level strategies
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What You Can Do

Higher-level strategies

Use standard label controls

X

faster rendering with
NSTextField in macOS 10.13



What You Can Do

Higher-level strategies

Use modern layout practices



What You Can Do

Lower-level tips

Set rendering attributes for attributed strings




What You Can Do

Lower-level tips

Specify alignment and writing direction if known




What You Can Do

Lower-level tips

Use clipping line break mode for single line labels




Summary

Frequently Occurring

measure!

Small Size Large Size

measure!

Infrequently Occurring



More Information
https://developer.apple.com/wwdc1//244
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