
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Developer Tools

Fred Riss, Clang Team
Ryan Govostes, Security Engineering and Architecture Team
Anna Zaks, Program Analysis Team

•Understanding Undefined Behavior
• Session 407

•What is undefined behavior?
•The compiler and undefined behavior
•Security implications
•Tools can help
•Swift is safer by default

•What Is Undefined Behavior?

“undefined behavior: 
behavior for which this International Standard
imposes no requirements.” 

•ISO C++14 Standard

What Can the Compiler Do with Undefined Behavior?

What Can the Compiler Do with Undefined Behavior?

Diagnose using warnings or errors

What Can the Compiler Do with Undefined Behavior?

Diagnose using warnings or errors

Act in a documented manner

What Can the Compiler Do with Undefined Behavior?

Diagnose using warnings or errors

Act in a documented manner

Produce unpredictable results

Signed integer overflow

Use of uninitialized values

Out-of-bounds array subscript

Misaligned access

Data races

Division by 0

NULL dereference

Shift amounts bigger than type

Invalid conversions

Type mismatchModification of a string literalShift by negative value

Access to an object past end of lifetime Missing return statement

C++ dynamic type violation

Invalid enum value

Undefined Behavior Is About Tradeoffs

Performance over safety

Some Undefined Behavior Examples
Use of an uninitialized variable

int uninitialized_variable(int arg) {
 int value;

 if (arg <= 0)
 value = 42;

 return arg + value;
}

Some Undefined Behavior Examples
Use of an uninitialized variable

int uninitialized_variable(int arg) {
 int value;

 if (arg <= 0)
 value = 42;

 return arg + value;
}

Some Undefined Behavior Examples
Use of an uninitialized variable

int uninitialized_variable(int arg) {
 int value;

 if (arg <= 0)
 value = 42;

 return arg + value;
}

Some Undefined Behavior Examples
Use of an uninitialized variable

int uninitialized_variable(int arg) {
 int value;

 if (arg <= 0)
 value = 42;

 return arg + value;
}

Some Undefined Behavior Examples
Use of an uninitialized variable

int uninitialized_variable(int arg) {
 int value;

 if (arg <= 0)
 value = 42;

 return arg + value;
}

 Variable value is used uninitialized whenever the ‘if’ condition is false

Compiler warnings

Some Undefined Behavior Examples
Use of an uninitialized variable

int uninitialized_variable(int arg) {
 int value;

 if (arg <= 0)
 value = 42;

 return arg + value;
}

 Variable value is used uninitialized whenever the ‘if’ condition is false

Compiler warnings Static analyzer

Some Undefined Behavior Examples
Misaligned pointers

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

Some Undefined Behavior Examples
Misaligned pointers

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

Some Undefined Behavior Examples
Misaligned pointers

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

Some Undefined Behavior Examples
Misaligned pointers

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

int a int b

buffer

Some Undefined Behavior Examples
Misaligned pointers

int a int b

buffer

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

Some Undefined Behavior Examples
Misaligned pointers

int a int b

buffer

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

Some Undefined Behavior Examples
Misaligned pointers

int a int b

buffer

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

Some Undefined Behavior Examples
Misaligned pointers

Undefined Behavior Sanitizer

char *serialize_misaligned(char *buffer, int a, int b) {
 *(int *)buffer = a;
 buffer += sizeof(a);
 *(int *)buffer = b;
 buffer += sizeof(b);
 return buffer;
} Keep this brace MM!

 Store of misaligned address 0x7fff5fbff646 for type 'int', which requires 4 byte alignment

 Store of misaligned address 0x7fff5fbff642 for type 'int', which requires 4 byte alignment

int lifetime_issue(int *value) {
 if (value == NULL) {
 int default_value = 42;
 value = &default_value;
 }
 return *value;
}

Some Undefined Behavior Examples
Access to an object past end of lifetime

int lifetime_issue(int *value) {
 if (value == NULL) {
 int default_value = 42;
 value = &default_value;
 }
 return *value;
}

Some Undefined Behavior Examples
Access to an object past end of lifetime

int lifetime_issue(int *value) {
 if (value == NULL) {
 int default_value = 42;
 value = &default_value;
 }
 return *value;
}

Some Undefined Behavior Examples
Access to an object past end of lifetime

int lifetime_issue(int *value) {
 if (value == NULL) {
 int default_value = 42;
 value = &default_value;
 }
 return *value;
}

Some Undefined Behavior Examples
Access to an object past end of lifetime

Thread 1: Use of out of scope stack memory

Address Sanitizer

•The Compiler and Undefined Behavior

Undefined Behavior Provides Information

Undefined Behavior Information

Signed integers cannot overflow x < x+1

Undefined Behavior Provides Information

Undefined Behavior Information

Signed integers cannot overflow x < x+1

Pointers are naturally aligned Can use vector instructions

Undefined Behavior Provides Information

Undefined Behavior Information

Signed integers cannot overflow x < x+1

Pointers are naturally aligned Can use vector instructions

NULL cannot be dereferenced A dereferenced pointer cannot be NULL

Undefined Behavior Provides Information

Undefined Behavior Information

Signed integers cannot overflow x < x+1

Pointers are naturally aligned Can use vector instructions

NULL cannot be dereferenced A dereferenced pointer cannot be NULL

Undefined Behavior Provides Information

The Compiler Executes an Optimization Pipeline

Analyze

Source code

.c, .m, .cpp, .mm

Optimize

Object file

.o
Intermediate representation

Compiler 2

Dereferencing NULL Might Not Always Crash

Source code

.c, .m, .cpp, .mm

Object file

.o
Dead Code
Elimination
Dead Code
Elimination

Compiler 2

Dereferencing NULL Might Not Always Crash

Source code

.c, .m, .cpp, .mm

Object file

.o
Dead Code
Elimination

int foo(int *P) {
 int var = *P;
 return 42;
} Keep the closing brace MM

Dead Code
Elimination

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Dereferencing NULL Might Not Always Crash

Dead Code
Elimination

int foo(int *P) {
 int var = *P;
 return 42;
} Keep the closing brace MM

int foo(int *P) {

 return 42;
} KeepM

Dead Code
Elimination

 int var = *P;

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Dereferencing NULL Might Not Always Crash

Dead Code
Elimination

int foo(int *P) {
 int var = *P;
 return 42;
} Keep the closing brace MM

int foo(int *P) {

 return 42;
} KeepM

Dead Code
Elimination

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep the closing brace MM

Redundant Null
Check Elimination
Redundant Null

Check Elimination

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep the closing brace MM

Redundant Null
Check Elimination
Redundant Null

Check Elimination

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

Redundant Null
Check Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM

 *P = 4;
} Keep the brace in MM

 if (P == NULL)
 return;

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep the closing brace MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

Redundant Null
Check Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM

 *P = 4;
} Keep the brace in MM

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep the closing brace MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM

 *P = 4;
} Keep the brace in MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

Dead Code
Elimination

 int unused = *P;
void contains_null_check(int *P) {

 …Hidden text for MM

 *P = 4;
} Keep closing brace in MM

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM

 *P = 4;
} Keep the brace in MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

Dead Code
Elimination

void contains_null_check(int *P) {

 …Hidden text for MM

 *P = 4;
} Keep closing brace in MM

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM

 *P = 4;
} Keep the brace in MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 1

void contains_null_check(int *P) {

 …Hidden text for MM

 *P = 4;
} Keep closing brace in MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 1

Dead Code
Elimination

Redundant Null
Check Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 1

void contains_null_check(int *P) {

 …Hidden text for MM

 *P = 4;
} Keep closing brace in MM

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Redundant Null
Check Elimination

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Dead Code
Elimination
Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Redundant Null
Check Elimination

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Redundant Null
Check Elimination

Dead Code
Elimination

Dead Code
Elimination

void contains_null_check(int *P) {  
 
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep the brace MM

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

 int unused = *P;

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Redundant Null
Check Elimination

Dead Code
Elimination

Dead Code
Elimination

void contains_null_check(int *P) {  
 
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep the brace MM

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Redundant Null
Check Elimination

Dead Code
Elimination

Redundant Null
Check Elimination

void contains_null_check(int *P) {  
 
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep the brace MM

Source code

.c, .m, .cpp, .mm

Object file

.o Compiler 2

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Redundant Null
Check Elimination

Dead Code
Elimination

Redundant Null
Check Elimination

void contains_null_check(int *P) {

 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep me MM!

void contains_null_check(int *P) {  
 
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep the brace MM

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Redundant Null
Check Elimination

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 2

void contains_null_check(int *P) {

 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep me MM!

Compiler 2

Source code

.c, .m, .cpp, .mm

Object file

.o

Let’s Experiment: A Very Simple Optimization Pipeline
Compiler 2

Redundant Null
Check Elimination

Dead Code
Elimination

void contains_null_check(int *P) {
 int unused = *P;
 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 2

void contains_null_check(int *P) {

 …Hidden text for MM
 if (P == NULL)
 return;
 *P = 4;
} Please keep me MM!

Let’s Experiment: A Very Simple Optimization Pipeline
A surprising result

void contains_null_check(int *P) {

 …
 if (P == NULL)
 return;
 *P = 4;
}

void contains_null_check(int *P) {
 int unused = *P;
 …
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 2

Let’s Experiment: A Very Simple Optimization Pipeline
A surprising result

void contains_null_check(int *P) {
 int unused = *P;
 …
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 1

void contains_null_check(int *P) {

 …

 *P = 4;
} Keep closing brace in MM

void contains_null_check(int *P) {

 …
 if (P == NULL)
 return;
 *P = 4;
}

void contains_null_check(int *P) {
 int unused = *P;
 …
 if (P == NULL)
 return;
 *P = 4;
} Keep brace during MM

Compiler 2

Compiler Behavior Changes More Often Than You Think

Compiler Behavior Changes More Often Than You Think

Compiler Behavior Changes More Often Than You Think

Compiler Behavior Changes More Often Than You Think

Issues with Undefined Behavior

Issues with Undefined Behavior

Undefined behavior is unpredictable

Issues with Undefined Behavior

Undefined behavior is unpredictable

Consequences can affect the whole program

Issues with Undefined Behavior

Undefined behavior is unpredictable

Consequences can affect the whole program

Bugs may be dormant

Ryan Govostes, Security Engineering and Architecture Team

•Security Implications of
•Undefined Behavior

Private Keys

Passwords

Application State

E-mails

Business Documents

Photos

Undefined behavior is at the heart 
of many security vulnerabilities

Examples of Security Vulnerabilities

Examples of Security Vulnerabilities

Buffer overflow

Examples of Security Vulnerabilities

Buffer overflow

Use of uninitialized variable

Examples of Security Vulnerabilities

Buffer overflow

Use of uninitialized variable

Use-after-free

Examples of Security Vulnerabilities

Buffer overflow

Use of uninitialized variable

Use-after-free

Double free

Examples of Security Vulnerabilities

Buffer overflow

Use of uninitialized variable

Use-after-free

Double free

Race condition

Defend Your Users

Build secure apps

Protect your reputation

Framework bugs are inherited

•Tools Can Help

How Address Sanitizer “Saved”
macOS Yosemite

CFString

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

CFString

Character Buffer

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

Character Buffer

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

Character Buffer

/ U s e r s / t i m / L i b r a

r y / C a c h e s / c o m . a p

p l e . h y p e r c a r d / s t

a r t u p . d b

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

Character Buffer

/ U s e r s / t i m / L i b r a

r y / C a c h e s / c o m . a p

p l e . h y p e r c a r d / s t

a r t u p . d b NUL

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

Character Buffer

/ U s e r s / t i m / L i b r a

r y / C a c h e s / c o m . a p

p l e . h y p e r c a r d / s t

a r t u p . d b

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

Character Buffer

/ U s e r s / t i m / L i b r a

r y / C a c h e s / c o m . a p

p l e . h y p e r c a r d / s t

a r t u p . d b NUL

/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString

Character Buffer

/ U s e r s / t i m / L i b r a

r y / C a c h e s / c o m . a p

p l e . h y p e r c a r d / s t

a r t u p . d b NUL

/Library/Caches /com.apple.hypercard /startup.db/Users/tim

.

CFString

Character Buffer

/ U s e r s / j a p / L i

b r a r y / C a c h e s / c o m

. a p p l e . h y p e r c a r d

/ s t a r t u p d b NUL

/Users/jappleseed4

elp

/Library/Caches /com.apple.hypercard /startup.db

e

r

CFString

Character Buffer

/ U s e r s / j a p

/ L i b ra y / C a c h e s

/ c o m . a p p l e . h y p e r

c a r d / s t a r t u p . d b NUL

/Users/jappleseed4

elp es

d

/Library/Caches /com.apple.hypercard /startup.db

r

CFString

Character Buffer

/ U s e r s / j a p

/ L i b a r y / C a c h e

s / c o m . a p p l e . h y p e

r c a r d / s t a r t u p . d b NUL

/Users/jappleseed4

elp es

d 4

/Library/Caches /com.apple.hypercard /startup.db

e

r

CFString

Character Buffer

/ U s e r s / j a p

/ L i b a r y / C a c h e

s / c o m . a p p l e . h y p e

r c a r d / s t a r t u p . d b NUL

/Users/jappleseed4

elp es

d 4

/Library/Caches /com.apple.hypercard /startup.db

e

Tools for Addressing Undefined Behavior

Tools for Addressing Undefined Behavior

Compiler

Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Address Sanitizer

Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Address Sanitizer

Thread Sanitizer

Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Address Sanitizer

Thread Sanitizer

Undefined Behavior Sanitizer

Trust the Compiler

Pay attention to compiler warnings

Every release of Xcode has better warnings

Modernize your project (Editor → Validate Settings)

Trust the Compiler

Pay attention to compiler warnings

Every release of Xcode has better warnings

Modernize your project (Editor → Validate Settings)

What’s New in LLVM Hall 2 Thursday 4:10PM

Run the Static Analyzer

Explores your code

Analyze during every build

Analyze in Continuous Integration

Run the Static Analyzer

Explores your code

Analyze during every build

Analyze in Continuous Integration

Use the Runtime Sanitizers

Use the Runtime Sanitizers

Tool Undefined Behavior

Use the Runtime Sanitizers

Tool Undefined Behavior

Address Sanitizer buffer overflow, use-after-free, double free, use after end of scope

Use the Runtime Sanitizers

Tool Undefined Behavior

Address Sanitizer buffer overflow, use-after-free, double free, use after end of scope

Thread Sanitizer data race

Use the Runtime Sanitizers

Tool Undefined Behavior

Address Sanitizer buffer overflow, use-after-free, double free, use after end of scope

Thread Sanitizer data race

Undefined Behavior Sanitizer misaligned pointer, null pointer dereference,  
integer overflow, type mismatch, and more NEW

Turn on Sanitizers
Edit scheme – diagnostics tab

Turn on Sanitizers
Edit scheme – diagnostics tab

Finding Bugs Using Xcode Runtime Tools WWDC17

Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Address Sanitizer

Thread Sanitizer

Undefined Behavior Sanitizer

Language

Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Address Sanitizer

Thread Sanitizer

Undefined Behavior Sanitizer

Language

Use Safe Language Features

Prefer safe constructs
• Automatic Reference Counting
• C++ smart pointers (std::shared_ptr, std::unique_ptr)
• Bounds-checked containers (NSArray)

Use Safe Language Features

Prefer safe constructs
• Automatic Reference Counting
• C++ smart pointers (std::shared_ptr, std::unique_ptr)
• Bounds-checked containers (NSArray)

Consider using Swift

Anna Zaks, Program Analysis Team

•Swift Is Safer by Default

“Undefined behavior is the enemy of safety”

Safety Enforced on Many Levels

 C Language Family Swift

 Null pointer dereferences Stricter type system - Optionals

 Use of uninitialized variables Definite initialization

 Buffer and integer overflows Runtime checks

 Use-after-free ARC (Automatic Reference Counting)

Safety Enforced on Many Levels

Optionals
Answer to NULL pointer dereferences

Non-optional and optional are different kinds of types

Optionals
Answer to NULL pointer dereferences

Cake?Cake

 func receivePackage() -> Cake?
 …

 guard let cake = receivePackage() else {
 // The cake is a lie.
 return
 }
 print("Jump with joy! Eat \(cake.kind)!")

Optionals
Answer to NULL pointer dereferences

Need to check before using

Optionals
Do not abuse forced unwrap

Optionals
Do not abuse forced unwrap

Optional return type, means the API can return nil

 cake = receivePackage()!

Optionals
Do not abuse forced unwrap

Optional return type, means the API can return nil

Use forced unwrap only if:
• You can guarantee the value is never nil
• Cannot encode this in the type system
• For example: loading an image asset from the app bundle

 cake = receivePackage()!

Optionals
Implicitly-unwrapped optional (Cake!)

Compiler does not enforce that value is checked before use

Optionals
Implicitly-unwrapped optional (Cake!)

Compiler does not enforce that value is checked before use

Safer than a pointer type in C
• Defined behavior
• Guaranteed to stop on nil

Optionals
Implicitly-unwrapped optional (Cake!)

Compiler does not enforce that value is checked before use

Safer than a pointer type in C
• Defined behavior
• Guaranteed to stop on nil

Useful for delayed initialization

Optionals
Implicitly-unwrapped optional (Cake!)

Compiler does not enforce that value is checked before use

Safer than a pointer type in C
• Defined behavior
• Guaranteed to stop on nil

Useful for delayed initialization

May come from Objective-C APIs

Optionals
Implicitly-unwrapped optional (Cake!)

Optionals
Nullability annotations for safer ecosystem

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces
- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces
- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces
- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces
- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces

Apple APIs are annotated for nullability

- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces

Apple APIs are annotated for nullability

Use nullability on your Objective-C code!

- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Optionals
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces

Apple APIs are annotated for nullability

Use nullability on your Objective-C code!

Find nullability inconsistencies with tools
• Static Analyzer, -Wnullability, Undefined Behavior Sanitizer

- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C

func ancestorShared(with view: NSView) -> NSView? // Swift

Definite Initialization
Answer to use of uninitialized variables

Checks that all values are initialized before use

Definite Initialization
Answer to use of uninitialized variables

Checks that all values are initialized before use

Definite Initialization
Answer to use of uninitialized variables

var myInstance: MyClass

if x > 42 {
 myInstance = MyClass(intValue: 13)
} else {
 myInstance = MyClass(floatValue: 92.3)
}

// myInstance has been initialized on all branches leading here!
myInstance.printIt()

Checks that all values are initialized before use

Definite Initialization
Answer to use of uninitialized variables

var myInstance: MyClass

if x > 42 {
 myInstance = MyClass(intValue: 13)
} else {
 myInstance = MyClass(floatValue: 92.3)
}

// myInstance has been initialized on all branches leading here!
myInstance.printIt()

Checks that all values are initialized before use

Definite Initialization
Answer to use of uninitialized variables

var myInstance: MyClass

if x > 42 {
 myInstance = MyClass(intValue: 13)
} else {
 myInstance = MyClass(floatValue: 92.3)
}

// myInstance has been initialized on all branches leading here!
myInstance.printIt()

Checks that all values are initialized before use

Definite Initialization
Answer to use of uninitialized variables

var myInstance: MyClass

if x > 42 {
 myInstance = MyClass(intValue: 13)
} else {
 myInstance = MyClass(floatValue: 92.3)
}

// myInstance has been initialized on all branches leading here!
myInstance.printIt()

Checks that all values are initialized before use

Definite Initialization
Answer to use of uninitialized variables

var myInstance: MyClass

if x > 42 {
 myInstance = MyClass(intValue: 13)
} else {
 myInstance = MyClass(floatValue: 92.3)
}

// myInstance has been initialized on all branches leading here!
myInstance.printIt()

Runtime Checks
Answer to buffer and integer overflows

Runtime Checks
Answer to buffer and integer overflows

Execution ends on Array and Int overflows

Runtime Checks
Answer to buffer and integer overflows

Execution ends on Array and Int overflows

Runtime checking is better than undefined behavior
• Predictable
• Provides security guarantees

Runtime Checks
Answer to buffer and integer overflows

Execution ends on Array and Int overflows

Runtime checking is better than undefined behavior
• Predictable
• Provides security guarantees

Integer wrapping behavior with &+, &-, &*

Does undefined behavior exist in Swift?

Unsafe Types

Need interoperability with C APIs

Unsafe Types

Need interoperability with C APIs

UnsafePointer<T>, UnsafeMutableRawBufferPointer

Unsafe Types

Need interoperability with C APIs

UnsafePointer<T>, UnsafeMutableRawBufferPointer

Unsafe Types

Need interoperability with C APIs

UnsafePointer<T>, UnsafeMutableRawBufferPointer

Use Address Sanitizer

Unsafe Types

Exclusive Memory Accesses
Enforcement in Swift 4

func have(_ x: inout Cake, andEat y: inout Cake)

Exclusive Memory Accesses
Enforcement in Swift 4

have(&cake, andEat: &cake)

func have(_ x: inout Cake, andEat y: inout Cake)

Triple Chocolate Delight

x y

Exclusive Memory Accesses
Enforcement in Swift 4

have(&cake, andEat: &cake)

func have(_ x: inout Cake, andEat y: inout Cake)

Triple Chocolate Delight

x y

Exclusive Memory Accesses
Enforcement in Swift 4

Similar to restrict in C but with different default behavior

have(&cake, andEat: &cake)

func have(_ x: inout Cake, andEat y: inout Cake)

Triple Chocolate Delight

x y

Exclusive Memory Accesses
Enforcement in Swift 4

What’s New in Swift WWDC 2017

Similar to restrict in C but with different default behavior

Enforcement of Exclusive Memory Accesses
Options considered

Declare to be undefined behavior (like C)

Provide language guarantees

Enforcement of Exclusive Memory Accesses
Intricate balancing act

Enforce a slightly stricter language rule

Enforcement at compile time

Enforcement at run time

Guarantee exclusive access within a thread

Enforcement of Exclusive Memory Accesses
Proposed solution

Enforcement of Exclusive Access Across Threads

Too expensive to check by default

Access races can lead to memory corruption in Swift

Thread Sanitizer catches most violations

Enforcement of Exclusive Access Across Threads

Too expensive to check by default

Access races can lead to memory corruption in Swift

Thread Sanitizer catches most violations

Finding Bugs Using Xcode Runtime Tools WWDC17

Summary

C languages rely on undefined behavior

Leads to unpredictability and security issues

Swift is safer by default

Use tools to make your code safe and reliable

More Information
https://developer.apple.com/wwdc17/407

Related Sessions

Finding Bugs Using Xcode Runtime Tools WWDC17

What’s New in Swift WWDC17

What’s New in LLVM Hall 2 Thursday 4:10PM

Labs

Performance Profiling and Runtime Analysis Tools Lab Technology Lab K Thur 1:00PM – 4:10PM

LLVM Compiler, Objective-C, and C++ Lab Technology Lab E Fri 9:00AM – 11:00AM

