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•What is undefined behavior? 
•The compiler and undefined behavior 
•Security implications  
•Tools can help 
•Swift is safer by default



•What Is Undefined Behavior?



“undefined behavior: 
behavior for which this International Standard 
imposes no requirements.” 

•ISO C++14 Standard
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What Can the Compiler Do with Undefined Behavior?

Diagnose using warnings or errors

Act in a documented manner

Produce unpredictable results



Signed integer overflow

Use of uninitialized values

Out-of-bounds array subscript

Misaligned access

Data races

Division by 0

NULL dereference

Shift amounts bigger than type

Invalid conversions

Type mismatchModification of a string literalShift by negative value

Access to an object past end of lifetime Missing return statement

C++ dynamic type violation

Invalid enum value



Undefined Behavior Is About Tradeoffs

Performance over safety



Some Undefined Behavior Examples 
Use of an uninitialized variable

int uninitialized_variable(int arg) { 
    int value; 
   
    if (arg <= 0) 
        value = 42; 
  
    return arg + value; 
} 
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Some Undefined Behavior Examples 
Use of an uninitialized variable

int uninitialized_variable(int arg) { 
    int value; 
   
    if (arg <= 0) 
        value = 42; 
  
    return arg + value; 
} 

    Variable value is used uninitialized whenever the ‘if’ condition is false

Compiler warnings Static analyzer



Some Undefined Behavior Examples 
Misaligned pointers

char *serialize_misaligned(char *buffer, int a, int b) { 
    *(int *)buffer = a; 
    buffer += sizeof(a); 
    *(int *)buffer = b; 
    buffer += sizeof(b); 
    return buffer; 
} Keep this brace MM! 
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Misaligned pointers

int a int b

buffer

char *serialize_misaligned(char *buffer, int a, int b) { 
    *(int *)buffer = a; 
    buffer += sizeof(a); 
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    return buffer; 
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Some Undefined Behavior Examples 
Misaligned pointers

Undefined Behavior Sanitizer

char *serialize_misaligned(char *buffer, int a, int b) { 
    *(int *)buffer = a; 
    buffer += sizeof(a); 
    *(int *)buffer = b; 
    buffer += sizeof(b); 
    return buffer; 
} Keep this brace MM! 

      Store of misaligned address 0x7fff5fbff646 for type 'int', which requires 4 byte alignment

      Store of misaligned address 0x7fff5fbff642 for type 'int', which requires 4 byte alignment



int lifetime_issue(int *value) { 
    if (value == NULL) { 
        int default_value = 42; 
        value = &default_value; 
    } 
    return *value; 
}

Some Undefined Behavior Examples 
Access to an object past end of lifetime 



int lifetime_issue(int *value) { 
    if (value == NULL) { 
        int default_value = 42; 
        value = &default_value; 
    } 
    return *value; 
}

Some Undefined Behavior Examples 
Access to an object past end of lifetime 



int lifetime_issue(int *value) { 
    if (value == NULL) { 
        int default_value = 42; 
        value = &default_value; 
    } 
    return *value; 
}

Some Undefined Behavior Examples 
Access to an object past end of lifetime 



int lifetime_issue(int *value) { 
    if (value == NULL) { 
        int default_value = 42; 
        value = &default_value; 
    } 
    return *value; 
}

Some Undefined Behavior Examples 
Access to an object past end of lifetime 

Thread 1: Use of out of scope stack memory

Address Sanitizer



•The Compiler and Undefined Behavior



Undefined Behavior Provides Information 
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The Compiler Executes an Optimization Pipeline

Analyze

Source code 

.c, .m, .cpp, .mm 

Optimize

Object file 

.o 
Intermediate representation
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Redundant Null 
Check Elimination

void contains_null_check(int *P) { 
    int unused = *P; 
    …Hidden text for MM 
  
    
    *P = 4; 
} Keep the brace in MM

    if (P == NULL)
        return;

Dead Code 
Elimination

void contains_null_check(int *P) { 
    int unused = *P; 
    …Hidden text for MM 
    if (P == NULL) 
        return; 
    *P = 4; 
} Keep the closing brace MM
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Let’s Experiment: A Very Simple Optimization Pipeline 
A surprising result 

void contains_null_check(int *P) { 
    int unused = *P; 
    … 
    if (P == NULL) 
        return; 
    *P = 4; 
} Keep brace during MM

Compiler 1

void contains_null_check(int *P) { 
   
    … 
  
    
    *P = 4; 
} Keep closing brace in MM

void contains_null_check(int *P) { 
  
    … 
    if (P == NULL) 
        return; 
    *P = 4; 
}

void contains_null_check(int *P) { 
    int unused = *P; 
    … 
    if (P == NULL) 
        return; 
    *P = 4; 
} Keep brace during MM

Compiler 2
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Issues with Undefined Behavior

Undefined behavior is unpredictable

Consequences can affect the whole program

Bugs may be dormant



Ryan Govostes, Security Engineering and Architecture Team

•Security Implications of 
•Undefined Behavior





Private Keys

Passwords

Application State

E-mails

Business Documents

Photos



Undefined behavior is at the heart 
of many security vulnerabilities
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Examples of Security Vulnerabilities

Buffer overflow

Use of uninitialized variable

Use-after-free

Double free

Race condition



Defend Your Users

Build secure apps 

Protect your reputation 

Framework bugs are inherited



•Tools Can Help



How Address Sanitizer “Saved” 
macOS Yosemite



CFString



/Users/tim /Library/Caches /com.apple.hypercard /startup.db

CFString
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Tools for Addressing Undefined Behavior

Compiler

Static Analyzer

Address Sanitizer

Thread Sanitizer

Undefined Behavior Sanitizer
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Modernize your project (Editor → Validate Settings)



Trust the Compiler

Pay attention to compiler warnings 

Every release of Xcode has better warnings 

Modernize your project (Editor → Validate Settings)

What’s New in LLVM Hall 2 Thursday 4:10PM
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Use the Runtime Sanitizers

Tool Undefined Behavior

Address Sanitizer buffer overflow, use-after-free, double free, use after end of scope

Thread Sanitizer data race

Undefined Behavior Sanitizer misaligned pointer, null pointer dereference,  
integer overflow, type mismatch, and more NEW
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Turn on Sanitizers 
Edit scheme – diagnostics tab

Finding Bugs Using Xcode Runtime Tools WWDC17
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Use Safe Language Features

Prefer safe constructs 
• Automatic Reference Counting 
• C++ smart pointers (std::shared_ptr, std::unique_ptr) 
• Bounds-checked containers (NSArray)

Consider using Swift



Anna Zaks, Program Analysis Team

•Swift Is Safer by Default



“Undefined behavior is the enemy of safety”



Safety Enforced on Many Levels



            C Language Family             Swift

              Null pointer dereferences             Stricter type system - Optionals

              Use of uninitialized variables             Definite initialization

              Buffer and integer overflows             Runtime checks

              Use-after-free             ARC (Automatic Reference Counting)

Safety Enforced on Many Levels



Optionals 
Answer to NULL pointer dereferences



Non-optional and optional are different kinds of types

Optionals 
Answer to NULL pointer dereferences

Cake?Cake



  func receivePackage() -> Cake? 
  … 

  guard let cake = receivePackage() else { 
    // The cake is a lie. 
    return 
  } 
  print("Jump with joy! Eat \(cake.kind)!") 

Optionals 
Answer to NULL pointer dereferences

Need to check before using
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Optionals 
Do not abuse forced unwrap

Optional return type, means the API can return nil

Use forced unwrap only if: 
• You can guarantee the value is never nil 
• Cannot encode this in the type system 
• For example: loading an image asset from the app bundle

  cake = receivePackage()!



Optionals 
Implicitly-unwrapped optional (Cake!)
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Compiler does not enforce that value is checked before use   

Safer than a pointer type in C 
• Defined behavior  
• Guaranteed to stop on nil

Useful for delayed initialization

May come from Objective-C APIs

Optionals 
Implicitly-unwrapped optional (Cake!)
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Optionals 
Nullability annotations for safer ecosystem

Nullability in C languages affects Swift interfaces

Nullability in C languages affects Swift interfaces

Apple APIs are annotated for nullability

Use nullability on your Objective-C code!

Find nullability inconsistencies with tools 
•  Static Analyzer, -Wnullability, Undefined Behavior Sanitizer

- (nullable NSView *)ancestorSharedWithView:(nonnull NSView *)aView; // Objective-C 

func ancestorShared(with view: NSView) -> NSView? // Swift
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Runtime Checks 
Answer to buffer and integer overflows

Execution ends on Array and Int overflows

Runtime checking is better than undefined behavior  
• Predictable 
• Provides security guarantees

Integer wrapping behavior with &+, &-, &*



Does undefined behavior exist in Swift?
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Need interoperability with C APIs

UnsafePointer<T>, UnsafeMutableRawBufferPointer

Use Address Sanitizer

Unsafe Types
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have(&cake, andEat: &cake) 

func have(_ x: inout Cake, andEat y: inout Cake)

Triple Chocolate Delight

x y

Exclusive Memory Accesses 
Enforcement in Swift 4

What’s New in Swift WWDC 2017

Similar to restrict in C but with different default behavior
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Options considered

Declare to be undefined behavior (like C) 

Provide language guarantees
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Enforce a slightly stricter language rule 

Enforcement at compile time 

Enforcement at run time 

Guarantee exclusive access within a thread

Enforcement of Exclusive Memory Accesses 
Proposed solution
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Enforcement of Exclusive Access Across Threads

Too expensive to check by default 

Access races can lead to memory corruption in Swift 

Thread Sanitizer catches most violations 

Finding Bugs Using Xcode Runtime Tools WWDC17





Summary

C languages rely on undefined behavior 

Leads to unpredictability and security issues 

Swift is safer by default 

Use tools to make your code safe and reliable 



More Information
https://developer.apple.com/wwdc17/407



Related Sessions

Finding Bugs Using Xcode Runtime Tools WWDC17

What’s New in Swift WWDC17

What’s New in LLVM Hall 2 Thursday 4:10PM



Labs

Performance Profiling and Runtime Analysis Tools Lab Technology Lab K Thur 1:00PM – 4:10PM

LLVM Compiler, Objective-C, and C++ Lab Technology Lab E Fri 9:00AM – 11:00AM






