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UI Testing in Xcode 8.3

XCUISiriService
XCUIElement.Type.touchBar

Making Great SiriKit Experiences WWDC 2017
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XCTest in Xcode 9

Swift 4

Block-based test teardown
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UI Testing

XCUIElement.Type.statusItem
XCUIElement.waitForExistence()
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Xcode Server

Improved provisioning

CoreSimulator

Parallel testing

Localization control

What’s New in Signing in Xcode and Xcode Server WWDC 2017
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Async Testing

Opening documents

Work on background threads

Communicating with services and extensions

Network activity

Animations

UI test conditions
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XCTestCase APIs

Introduced in Xcode 6

Create expectations

Wait for them to be “fulfilled”



let document = UIDocument(fileURL: documentURL) 

let documentExpectation = expectation(description: "Document opened") 

document.open() { success in
    XCTAssert(success, "Failed to open file")
    documentExpectation.fulfill()
}

waitForExpectations(timeout: 10)
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let document = UIDocument(fileURL: documentURL) 

let documentExpectation = expectation(description: "Document opened") 

document.open() { success in
    XCTAssert(success, "Failed to open file")
    documentExpectation.fulfill()
}

waitForExpectations(timeout: 10)
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Limitations

Timeout is a test failure

Waiting requires test object

Hard to factor out

No nested waiting
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XCTWaiter

Extracted logic from XCTestCase

Explicit list of expectations

Calls back to XCTWaiterDelegate 

Returns XCTWaiter.Result

NEW



let document = UIDocument(fileURL: documentURL) 

let documentExpectation = expectation(description: "Document opened") 

document.open() { success in
    XCTAssert(success, "Failed to open file")
    documentExpectation.fulfill()
}

// Test case waits implicitly 
waitForExpectations(timeout: 10)
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// Test case waits implicitly 
waitForExpectations(timeout: 10)

// Test case waits explicitly 
wait(for: [documentExpectation], timeout: 10)

// Waiter instance delegates to test 
XCTWaiter(delegate: self).wait(for: [documentExpectation], timeout: 10)

// Waiter class returns result 
let result = XCTWaiter.wait(for: [documentExpectation], timeout: 10) 
if result == .timedOut { 
    // handling the timeout… 
}
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XCTestExpectation

Public initializer
• Decoupled from XCTestCase

Multiple fulfillments

Inverted behavior

Ordering enforcement

NEW
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Async Testing
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NEW



Async Testing

XCTWaiter manages expectations

XCTestExpectation has new features

Both decoupled from XCTestCase

NEW
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Launch

Terminate

XCUIApplication



Launch

Terminate

Queries

XCUIApplication
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Project configuration

Default initializer

Target Application

let targetApp = XCUIApplication()
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Multi-app Scenarios 

App groups

Settings

Extensions
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New initializers

Additions to XCUIApplication
NEW

init(bundleIdentifier: String) 
init(url: URL)

func activate()

var state: XCUIApplication.State { get }

Activate method

State property



let readerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Reader") 
let writerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Writer") 
         
readerApp.launch() 
// interact with first app 

writerApp.launch() 
// interact with second app 

readerApp.activate() 
// return to first app without relaunching
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let readerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Reader") 
let writerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Writer") 
         
readerApp.launch() 
// interact with first app 

writerApp.launch() 
// interact with second app 

readerApp.activate() 
// return to first app without relaunching



Warren Ma, Xcode Engineer
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Buttons, labels, etc.

Queries are used to find elements

User Interface Elements

let button = app.navigationBars.buttons["Done"]



Queries Use Accessibility Data
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Test process fetches atomic “snapshot”
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Test process fetches atomic “snapshot”

Snapshot

Queries Use Accessibility Data



Test process fetches atomic “snapshot”

Finds all matching elements

Queries Use Accessibility Data

Evaluate 
Query
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Performance Challenges 

Time and memory

Timeouts

Low memory reports



How can we improve 
snapshot performance?



Optimization 1: Remote Queries 
Reduce serialization and transport overhead
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Reduce serialization and transport overhead
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Snapshot



Don’t fetch the snapshot

Transmit the query 

Evaluate remotely
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Don’t fetch the snapshot

Transmit the query 

Evaluate remotely

Return results

Optimization 1: Remote Queries 
Reduce serialization and transport overhead

Return Matches
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Remote Query Performance

Time Memory

30% 
Less Memory

20%  
Faster

Fetched Snapshot Remote Query



Optimization 2: Query Analysis 
Reduce snapshot size



Optimization 2: Query Analysis 
Reduce snapshot size

Minimal set of attributes



Optimization 2: Query Analysis 
Reduce snapshot size

Minimal set of attributes

Fetch others on demand
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Time Memory

Query Analysis Performance
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Time Memory

Query Analysis Performance

Full Snapshot Reduced Snapshot

35% 
Less Memory

50% 
Faster



Optimization 3: Eliminate Snapshots 
“First match” API

NEW
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Queries search entire tree 

First match halts early

Optimization 3: Eliminate Snapshots 
“First match” API

var firstMatch: XCUIElement { get }

NEW

let button = app.navigationBars.buttons["Done"].firstMatch
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Time Memory

First Match Performance

Match All First Match

No  
memory spike

Order of 
magnitude 

faster
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Match all detects ambiguity 

First match requires precision

First Match vs. Match All

app.buttons.firstMatch // not a good idea!! app.buttons.firstMatch // not a good idea!! 
app.buttons["Done"].firstMatch // better 
app.navigationBars.buttons["Done"].firstMatch // best

app.buttons.firstMatch // not a good idea!! 
app.buttons["Done"].firstMatch // better 
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Block-based NSPredicate

Prevents optimizations

No serialization
• Remote query 
• First match

No introspection
• Reduced snapshot
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Block-based NSPredicate

Replace block predicates
• Format string
• NSExpression

File enhancement requests!
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Faster in Xcode 9

Best on newest OS

UI Testing Performance

Time Memory
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Activities

Create structure for long tests

XCTContext.runActivity(named name: String, block: (XCTActivity))

NEW







// Compose and send a new message 
let composeView = writerApp.textViews["Compose message"] 
composeView.tap() 
composeView.typeText("Any good coffee places around McEnery? ☕ /cc @jane") 
writerApp.buttons["return"].tap() 
writerApp.buttons["send"].tap()



XCTContext.runActivity(named: "Compose coffee message") { _ in

}

// Compose and send a new message 
let composeView = writerApp.textViews["Compose message"] 
composeView.tap() 
composeView.typeText("Any good coffee places around McEnery? ☕ /cc @jane") 
writerApp.buttons["return"].tap() 
writerApp.buttons["send"].tap()
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Data from tests

Improved triage

Post-processing
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Attachments

Raw binary data

Strings

Property lists

Codable objects

Files

Images

NEW

XCTAttachment
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XCUIScreenshotProviding

NEW



Screenshots!

API for capturing on demand
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Screenshots!

API for capturing on demand
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Screenshots!

API for capturing on demand

XCUIElement.screenshot

XCUIScreen.screenshot

XCUIScreenshotProviding

NEW
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Attachment Lifetime Policies

Delete if test passes

Scheme option

XCTAttachment API



Honza Dvorsky, Xcode Engineer

•Demo 
•Activities, attachments, and screenshots
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What’s New in Testing?

Many new APIs!

Workflow and CI features

Performance improvements



More Information
https://developer.apple.com/wwdc17/409



Related Sessions

Engineering for Testability Hall 3 Friday 1:50PM

Localizing with Xcode 9 WWDC 2017

What’s New in Signing for Xcode and Xcode Server WWDC 2017

What’s New in Accessibility WWDC 2017

Advanced Testing and Continuous Integration WWDC 2016

UI Testing in Xcode WWDC 2015

Testing in Xcode 6 WWDC 2014



Labs

Source Control, Simulator, Testing, and  
Continuous Integration with Xcode Lab Technology Lab K Thu 4:10PM–6:00PM

Xcode Open Hours Technology Lab K Fri 1:50PM–4:00PM




