
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Wil Addario-Turner, Xcode Engineer

•What’s New in Testing
• Session 409

Developer Tools

What’s new in testing?

•Enhancements

•Enhancements
•Async testing

•Enhancements
•Async testing
•Multi-app testing

•Enhancements
•Async testing
•Multi-app testing
•UI testing performance

•Enhancements
•Async testing
•Multi-app testing
•UI testing performance
•Activities, attachments, and screenshots

•Enhancements

UI Testing in Xcode 8.3

UI Testing in Xcode 8.3

XCUISiriService

Making Great SiriKit Experiences WWDC 2017

UI Testing in Xcode 8.3

XCUISiriService
XCUIElement.Type.touchBar

Making Great SiriKit Experiences WWDC 2017

XCTest in Xcode 9

XCTest in Xcode 9

Swift 4

XCTest in Xcode 9

Swift 4

Block-based test teardown

UI Testing

UI Testing

XCUIElement.Type.statusItem

UI Testing

XCUIElement.Type.statusItem
XCUIElement.waitForExistence()

xcodebuild

xcodebuild

CoreSimulator

xcodebuild

CoreSimulator

Parallel testing

Localization

Localization

•Xcode Server

Xcode Server

Xcode Server

Xcode Server

Xcode Server

Xcode Server

Improved provisioning

What’s New in Signing in Xcode and Xcode Server WWDC 2017

Xcode Server

Improved provisioning

CoreSimulator

What’s New in Signing in Xcode and Xcode Server WWDC 2017

Xcode Server

Improved provisioning

CoreSimulator

Parallel testing

What’s New in Signing in Xcode and Xcode Server WWDC 2017

Xcode Server

Improved provisioning

CoreSimulator

Parallel testing

Localization control

What’s New in Signing in Xcode and Xcode Server WWDC 2017

•Enhancements
•Async testing
•Multi-app testing
•UI testing performance
•Activities, attachments, and screenshots

Async Testing

Async Testing

Opening documents

Async Testing

Opening documents

Work on background threads

Async Testing

Opening documents

Work on background threads

Communicating with services and extensions

Async Testing

Opening documents

Work on background threads

Communicating with services and extensions

Network activity

Async Testing

Opening documents

Work on background threads

Communicating with services and extensions

Network activity

Animations

Async Testing

Opening documents

Work on background threads

Communicating with services and extensions

Network activity

Animations

UI test conditions

XCTestCase APIs

XCTestCase APIs

Introduced in Xcode 6

XCTestCase APIs

Introduced in Xcode 6

Create expectations

XCTestCase APIs

Introduced in Xcode 6

Create expectations

Wait for them to be “fulfilled”

let document = UIDocument(fileURL: documentURL)

let documentExpectation = expectation(description: "Document opened")

document.open() { success in
 XCTAssert(success, "Failed to open file")
 documentExpectation.fulfill()
}

waitForExpectations(timeout: 10)

let document = UIDocument(fileURL: documentURL)

let documentExpectation = expectation(description: "Document opened")

document.open() { success in
 XCTAssert(success, "Failed to open file")
 documentExpectation.fulfill()
}

waitForExpectations(timeout: 10)

let document = UIDocument(fileURL: documentURL)

let documentExpectation = expectation(description: "Document opened")

document.open() { success in
 XCTAssert(success, "Failed to open file")
 documentExpectation.fulfill()
}

waitForExpectations(timeout: 10)

let document = UIDocument(fileURL: documentURL)

let documentExpectation = expectation(description: "Document opened")

document.open() { success in
 XCTAssert(success, "Failed to open file")
 documentExpectation.fulfill()
}

waitForExpectations(timeout: 10)

Limitations

Limitations

Timeout is a test failure

Limitations

Timeout is a test failure

Waiting requires test object

Limitations

Timeout is a test failure

Waiting requires test object

Hard to factor out

Limitations

Timeout is a test failure

Waiting requires test object

Hard to factor out

No nested waiting

XCTWaiter
NEW

XCTWaiter

Extracted logic from XCTestCase

NEW

XCTWaiter

Extracted logic from XCTestCase

Explicit list of expectations

NEW

XCTWaiter

Extracted logic from XCTestCase

Explicit list of expectations

Calls back to XCTWaiterDelegate

NEW

XCTWaiter

Extracted logic from XCTestCase

Explicit list of expectations

Calls back to XCTWaiterDelegate

Returns XCTWaiter.Result

NEW

let document = UIDocument(fileURL: documentURL)

let documentExpectation = expectation(description: "Document opened")

document.open() { success in
 XCTAssert(success, "Failed to open file")
 documentExpectation.fulfill()
}

// Test case waits implicitly
waitForExpectations(timeout: 10)

// Test case waits implicitly
waitForExpectations(timeout: 10)

// Test case waits implicitly
waitForExpectations(timeout: 10)

// Test case waits explicitly 
wait(for: [documentExpectation], timeout: 10)

// Test case waits implicitly
waitForExpectations(timeout: 10)

// Test case waits explicitly 
wait(for: [documentExpectation], timeout: 10)

// Waiter instance delegates to test 
XCTWaiter(delegate: self).wait(for: [documentExpectation], timeout: 10)

// Test case waits implicitly
waitForExpectations(timeout: 10)

// Test case waits explicitly 
wait(for: [documentExpectation], timeout: 10)

// Waiter instance delegates to test 
XCTWaiter(delegate: self).wait(for: [documentExpectation], timeout: 10)

// Waiter class returns result 
let result = XCTWaiter.wait(for: [documentExpectation], timeout: 10) 
if result == .timedOut { 
 // handling the timeout…
}

XCTestExpectation
NEW

XCTestExpectation

Public initializer

NEW

XCTestExpectation

Public initializer
• Decoupled from XCTestCase

NEW

XCTestExpectation

Public initializer
• Decoupled from XCTestCase

Multiple fulfillments

NEW

XCTestExpectation

Public initializer
• Decoupled from XCTestCase

Multiple fulfillments

Inverted behavior

NEW

XCTestExpectation

Public initializer
• Decoupled from XCTestCase

Multiple fulfillments

Inverted behavior

Ordering enforcement

NEW

Async Testing
NEW

Async Testing

XCTWaiter manages expectations

NEW

Async Testing

XCTWaiter manages expectations

XCTestExpectation has new features

NEW

Async Testing

XCTWaiter manages expectations

XCTestExpectation has new features

Both decoupled from XCTestCase

NEW

•Enhancements
•Async testing
•Multi-app testing
•UI testing performance
•Activities, attachments, and screenshots

XCUIApplication

XCUIApplication

Launch

XCUIApplication

Launch

Terminate

XCUIApplication

Launch

Terminate

Queries

XCUIApplication

Target Application

Project configuration

Target Application

Project configuration

Target Application

Project configuration

Default initializer

Target Application

let targetApp = XCUIApplication()

Multi-app Scenarios

Multi-app Scenarios

App groups

Multi-app Scenarios

App groups

Settings

Multi-app Scenarios

App groups

Settings

Extensions

Additions to XCUIApplication
NEW

New initializers

Additions to XCUIApplication
NEW

init(bundleIdentifier: String)
init(url: URL)

New initializers

Additions to XCUIApplication
NEW

init(bundleIdentifier: String)
init(url: URL)

func activate()Activate method

New initializers

Additions to XCUIApplication
NEW

init(bundleIdentifier: String)
init(url: URL)

func activate()

var state: XCUIApplication.State { get }

Activate method

State property

let readerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Reader")
let writerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Writer")

readerApp.launch()
// interact with first app

writerApp.launch()
// interact with second app

readerApp.activate()
// return to first app without relaunching

let readerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Reader")
let writerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Writer")

readerApp.launch()
// interact with first app

writerApp.launch()
// interact with second app

readerApp.activate()
// return to first app without relaunching

let readerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Reader")
let writerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Writer")

readerApp.launch()
// interact with first app

writerApp.launch()
// interact with second app

readerApp.activate()
// return to first app without relaunching

let readerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Reader")
let writerApp = XCUIApplication(bundleIdentifier: "com.mycompany.Writer")

readerApp.launch()
// interact with first app

writerApp.launch()
// interact with second app

readerApp.activate()
// return to first app without relaunching

Warren Ma, Xcode Engineer

•Demo
•Multi-app UI testing

•Enhancements
•Async testing
•Multi-app testing
•UI testing performance
•Activities, attachments, and screenshots

User Interface Elements

Buttons, labels, etc.

User Interface Elements

Buttons, labels, etc.

Queries are used to find elements

User Interface Elements

Buttons, labels, etc.

Queries are used to find elements

User Interface Elements

let button = app.navigationBars.buttons["Done"]

Queries Use Accessibility Data

Test process fetches atomic “snapshot”

Queries Use Accessibility Data

Test process fetches atomic “snapshot”

Request snapshot

Queries Use Accessibility Data

Test process fetches atomic “snapshot”

Queries Use Accessibility Data

Create
Snapshot

Test process fetches atomic “snapshot”

Snapshot

Queries Use Accessibility Data

Test process fetches atomic “snapshot”

Finds all matching elements

Queries Use Accessibility Data

Evaluate
Query

Performance Challenges

Performance Challenges

Time and memory

Performance Challenges

Time and memory

Timeouts

Performance Challenges

Time and memory

Timeouts

Low memory reports

How can we improve 
snapshot performance?

Optimization 1: Remote Queries
Reduce serialization and transport overhead

Don’t fetch the snapshot

Optimization 1: Remote Queries
Reduce serialization and transport overhead

Don’t fetch the snapshot

Transmit the query

Transmit Query

Optimization 1: Remote Queries
Reduce serialization and transport overhead

Don’t fetch the snapshot

Transmit the query

Optimization 1: Remote Queries
Reduce serialization and transport overhead

Create
Snapshot

Don’t fetch the snapshot

Transmit the query

Evaluate remotely

Optimization 1: Remote Queries
Reduce serialization and transport overhead

Evaluate
Query

Don’t fetch the snapshot

Transmit the query

Evaluate remotely

Return results

Optimization 1: Remote Queries
Reduce serialization and transport overhead

Return Matches

Remote Query Performance

Remote Query Performance

Time Memory

Fetched Snapshot Remote Query

Remote Query Performance

Time Memory

20%  
Faster

Fetched Snapshot Remote Query

Remote Query Performance

Time Memory

30% 
Less Memory

20%  
Faster

Fetched Snapshot Remote Query

Optimization 2: Query Analysis
Reduce snapshot size

Optimization 2: Query Analysis
Reduce snapshot size

Minimal set of attributes

Optimization 2: Query Analysis
Reduce snapshot size

Minimal set of attributes

Fetch others on demand

Query Analysis Performance

Time Memory

Query Analysis Performance

Full Snapshot Reduced Snapshot

Time Memory

Query Analysis Performance

Full Snapshot Reduced Snapshot

50% 
Faster

Time Memory

Query Analysis Performance

Full Snapshot Reduced Snapshot

35% 
Less Memory

50% 
Faster

Optimization 3: Eliminate Snapshots
“First match” API

NEW

Queries search entire tree

Optimization 3: Eliminate Snapshots
“First match” API

NEW

Queries search entire tree

First match halts early

Optimization 3: Eliminate Snapshots
“First match” API

var firstMatch: XCUIElement { get }

NEW

Queries search entire tree

First match halts early

Optimization 3: Eliminate Snapshots
“First match” API

var firstMatch: XCUIElement { get }

NEW

Queries search entire tree

First match halts early

Optimization 3: Eliminate Snapshots
“First match” API

var firstMatch: XCUIElement { get }

NEW

let button = app.navigationBars.buttons["Done"].firstMatch

First Match Performance

Time Memory

First Match Performance

Match All First Match

Time Memory

First Match Performance

Match All First Match

Order of
magnitude

faster

Time Memory

First Match Performance

Match All First Match

No  
memory spike

Order of
magnitude

faster

First Match vs. Match All

Match all detects ambiguity

First Match vs. Match All

Match all detects ambiguity

First match requires precision

First Match vs. Match All

Match all detects ambiguity

First match requires precision

First Match vs. Match All

Match all detects ambiguity

First match requires precision

First Match vs. Match All

app.buttons.firstMatch // not a good idea!!

Match all detects ambiguity

First match requires precision

First Match vs. Match All

app.buttons.firstMatch // not a good idea!! app.buttons.firstMatch // not a good idea!!
app.buttons["Done"].firstMatch // better

Match all detects ambiguity

First match requires precision

First Match vs. Match All

app.buttons.firstMatch // not a good idea!! app.buttons.firstMatch // not a good idea!!
app.buttons["Done"].firstMatch // better
app.navigationBars.buttons["Done"].firstMatch // best

app.buttons.firstMatch // not a good idea!!
app.buttons["Done"].firstMatch // better

Block-based NSPredicate

Block-based NSPredicate

Prevents optimizations

Block-based NSPredicate

Prevents optimizations

No serialization
• Remote query
• First match

Block-based NSPredicate

Prevents optimizations

No serialization
• Remote query
• First match

No introspection
• Reduced snapshot

Block-based NSPredicate

Block-based NSPredicate

Replace block predicates
• Format string
• NSExpression

Block-based NSPredicate

Replace block predicates
• Format string
• NSExpression

File enhancement requests!

UI Testing Performance

Faster in Xcode 9

UI Testing Performance

Time Memory

Faster in Xcode 9

Best on newest OS

UI Testing Performance

Time Memory

•Enhancements
•Async testing
•Multi-app testing
•UI testing performance
•Activities, attachments, and screenshots

Activities
NEW

Activities

Create structure for long tests

NEW

Activities

Create structure for long tests

XCTContext.runActivity(named name: String, block: (XCTActivity))

NEW

// Compose and send a new message
let composeView = writerApp.textViews["Compose message"]
composeView.tap()
composeView.typeText("Any good coffee places around McEnery? ☕ /cc @jane")
writerApp.buttons["return"].tap()
writerApp.buttons["send"].tap()

XCTContext.runActivity(named: "Compose coffee message") { _ in

}

// Compose and send a new message
let composeView = writerApp.textViews["Compose message"]
composeView.tap()
composeView.typeText("Any good coffee places around McEnery? ☕ /cc @jane")
writerApp.buttons["return"].tap()
writerApp.buttons["send"].tap()

Attachments
NEW

Attachments
NEW

XCTAttachment

Data from tests

Attachments
NEW

XCTAttachment

Data from tests

Improved triage

Attachments
NEW

XCTAttachment

Data from tests

Improved triage

Post-processing

Attachments
NEW

XCTAttachment

Attachments
NEW

XCTAttachment

Attachments

Raw binary data

NEW

XCTAttachment

Attachments

Raw binary data

Strings

NEW

XCTAttachment

Attachments

Raw binary data

Strings

Property lists

NEW

XCTAttachment

Attachments

Raw binary data

Strings

Property lists

Codable objects

NEW

XCTAttachment

Attachments

Raw binary data

Strings

Property lists

Codable objects

Files

NEW

XCTAttachment

Attachments

Raw binary data

Strings

Property lists

Codable objects

Files

Images

NEW

XCTAttachment

Screenshots!
NEW

Screenshots!

XCUIScreenshotProviding

NEW

Screenshots!

API for capturing on demand

XCUIScreenshotProviding

NEW

Screenshots!

API for capturing on demand

XCUIElement.screenshot

XCUIScreenshotProviding

NEW

Screenshots!

API for capturing on demand

XCUIElement.screenshot

XCUIScreen.screenshot

XCUIScreenshotProviding

NEW

Attachment Lifetime Policies

Attachment Lifetime Policies

Delete if test passes

Attachment Lifetime Policies

Delete if test passes

Scheme option

Attachment Lifetime Policies

Delete if test passes

Scheme option

Attachment Lifetime Policies

Delete if test passes

Scheme option

XCTAttachment API

Honza Dvorsky, Xcode Engineer

•Demo
•Activities, attachments, and screenshots

What’s New in Testing?

What’s New in Testing?

Many new APIs!

What’s New in Testing?

Many new APIs!

Workflow and CI features

What’s New in Testing?

Many new APIs!

Workflow and CI features

Performance improvements

More Information
https://developer.apple.com/wwdc17/409

Related Sessions

Engineering for Testability Hall 3 Friday 1:50PM

Localizing with Xcode 9 WWDC 2017

What’s New in Signing for Xcode and Xcode Server WWDC 2017

What’s New in Accessibility WWDC 2017

Advanced Testing and Continuous Integration WWDC 2016

UI Testing in Xcode WWDC 2015

Testing in Xcode 6 WWDC 2014

Labs

Source Control, Simulator, Testing, and  
Continuous Integration with Xcode Lab Technology Lab K Thu 4:10PM–6:00PM

Xcode Open Hours Technology Lab K Fri 1:50PM–4:00PM

