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•App Startup Time:  
Past, Present, and Future 
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•Review of app launch startup advice 
•New tools to help find slow initializers 
•Brief history of dyld 
•The all new dyld that is coming in this  
years Apple OS platforms 

•Best practices
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We want your feedback
• Please file bug reports with “DYLD USAGE:” in the title

Terminology
• Startup time
- For the purposes of this talk startup time is everything  
that happens before main() is called

• Launch Closure
-  All of the information necessary to launch an application
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Improving App Startup Time

Do less!
• Embed fewer dylibs
• Declare fewer classes/methods
• Use fewer initializers

Use more Swift
• No initializers
• Swift size improvements

Optimizing App Startup Time WWDC 2016



Improving App Startup Time 
Static initializer tracing

NEW



Improving App Startup Time 
Static initializer tracing

New in iOS 11 and macOS High Sierra

NEW



Improving App Startup Time 
Static initializer tracing

New in iOS 11 and macOS High Sierra

Provides precise timing for each static initializer

NEW



Improving App Startup Time 
Static initializer tracing

New in iOS 11 and macOS High Sierra

Provides precise timing for each static initializer

Available through Instruments

NEW



Improving App Startup Time 
Static initializer tracing

New in iOS 11 and macOS High Sierra

Provides precise timing for each static initializer

Available through Instruments

NEW



•Demo



Dynamic Linking Through the Ages 
dyld 1.0 (1996–2004)



Dynamic Linking Through the Ages 
dyld 1.0 (1996–2004)

Shipped in NeXTStep 3.3



Dynamic Linking Through the Ages 
dyld 1.0 (1996–2004)

Shipped in NeXTStep 3.3

Predated POSIX dlopen() standardized



Dynamic Linking Through the Ages 
dyld 1.0 (1996–2004)

Shipped in NeXTStep 3.3

Predated POSIX dlopen() standardized
• Third-party wrapper functions



Dynamic Linking Through the Ages 
dyld 1.0 (1996–2004)

Shipped in NeXTStep 3.3

Predated POSIX dlopen() standardized
• Third-party wrapper functions

Before most systems used large C++ dynamic libraries



Dynamic Linking Through the Ages 
dyld 1.0 (1996–2004)

Shipped in NeXTStep 3.3

Predated POSIX dlopen() standardized
• Third-party wrapper functions

Before most systems used large C++ dynamic libraries

Prebinding added in macOS Cheetah (10.0)
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dyld 2.0 (2004–2007)

Shipped in macOS Tiger

Complete rewrite
• Correct C++ initializer semantics
• Full native dlopen()/dlsym() semantics

Designed for speed
• Limited sanity checking
• Security “Issues”

Reduced prebinding
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dyld 2.x (2007–2017)

More architectures and platforms
• x86, x86_64, arm, arm64
• iOS, tvOS, watchOS

Improved security
• Codesigning, ASLR, bounds checking

Improved performance
• Prebinding completely replaced by shared cache



Dynamic Linking Through the Ages 
Shared Cache



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard
• Replaced prebinding



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard
• Replaced prebinding

Single file that contains most system dylibs



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard
• Replaced prebinding

Single file that contains most system dylibs
• Rearranges binaries to improve load speed



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard
• Replaced prebinding

Single file that contains most system dylibs
• Rearranges binaries to improve load speed
• Pre-links dylibs



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard
• Replaced prebinding

Single file that contains most system dylibs
• Rearranges binaries to improve load speed
• Pre-links dylibs
• Pre-builds data structures used dyld and ObjC



Dynamic Linking Through the Ages 
Shared Cache

Introduced in iOS 3.1 and macOS Snow Leopard
• Replaced prebinding

Single file that contains most system dylibs
• Rearranges binaries to improve load speed
• Pre-links dylibs
• Pre-builds data structures used dyld and ObjC

Built locally on macOS, shipped as part of all other Apple OS platforms
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dyld 3 (2017)

Announcing it today

Complete rethink of dynamic linking

On by default for most macOS system apps in this weeks seed

Will be on be the default for system apps for 2017 Apple OS platforms

Will completely replace dyld 2.x in future Apple OS platforms
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dyld 3 
Why?

Performance
• What is the minimum amount of work we can do to start an app?

Security
• Can we have more aggressive security checks?

Reliability
• Can we design something that is easier to test?
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Parse mach-o headersParse mach-o headers

Find dependencies

Identify security sensitive components
• Bounds checking

Map mach-o files

Bind and rebase

Run initializers
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Find dependencies

Parse mach-o headersParse mach-o headers

Find dependencies

Identify security sensitive components
• Bounds checking
• @rpath confusion attacks

Identify components that are cache-able
• Dependencies don’t change  
between launches

Map mach-o files

Bind and rebase

Run initializers

dyld 2

dyld 3 
How?

Perform symbol lookups



Perform symbol lookups

Find dependencies

Parse mach-o headersParse mach-o headers

Find dependencies

Identify security sensitive components
• Bounds checking
• @rpath confusion attacks

Identify components that are cache-able
• Dependencies don’t change  
between launches

• Symbol locations within a mach-o do not 
change between launches

Map mach-o files

Bind and rebase

Run initializers

dyld 2
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dyld 3 
Architecture

dyld 3 is a small in-process engine
• Validates launch closure
• Maps in all dylibs
• Applies fixups
• Runs initializers
• Jumps to main()

Never needs to parse mach-o headers or 
access the symbol tables

Parse mach-o headers

Find dependencies

Perform symbol lookups

dyld 3

Map mach-o files

Bind and rebase

Run initializers

Write closure to disk

Read in closure

Validate closure
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Architecture

dyld 3 is a launch closure cache
• System app launch closures built into shared cache
• Third-party app launch closures built during install
- Rebuilt during software update

• On macOS the in process engine can call out to a daemon if necessary
- Not necessary on other Apple OS platforms
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Potential issues

Fully compatible with dyld 2.x
• Some existing APIs disable dyld 3’s optimizations or require slow fallback paths
• Some existing optimizations done for dyld 2.x no longer have any impact

Stricter linking semantics
• Workarounds for old binaries
• New binaries will cause linker errors 
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Unaligned pointers in __DATA

When you have a global struct it is placed in the data segment
• Unaligned pointers in the struct will be embedded in the __DATA segment

Fixing up unaligned pointers is more complex
• Can span multiple pages
• Can have atomicity issues

The static linker already emits a warning
ld: warning: pointer not aligned at address 0x10056E59C
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Eager symbol resolution

dyld 2 performs lazy symbol resolution
• Symbol lookups are too expensive to do them up front
• Each symbol is looked up the first time you call it
• Missing symbols cause a crash the first time they are called

dyld 3 performs eager symbol resolutions
• Since all symbol lookups are cached it is very fast
• Makes it possible to check if all symbols are present
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Eager symbol resolution

Apps built against current SDKs will run with 
unknown symbols
• Identical behavior to dyld 2, on first call it 
will crash

Apps built against future SDKs will fail to 
launch with unknown symbols
• Can simulate behavior today with  
-bind_at_load linker flag

• Only use on test builds, not release
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dlopen()/dlsym()/dladdr()

Still have problematic semantics
• Still necessary in some cases

Symbols found with dlsym() must be found at runtime
• Cannot be pre-linked by dyld 3

We are working on better alternatives
• Want to hear about your use cases
• Not going away, but may be slower in dyld 3
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Preparing for dyld 3 
dlclose()

Misnomer
• Decrements a refcount, does not necessarily close the dylib
• Not appropriate for resource management

Features that prevent a dylib from unloading
•  Objective-C classes
• Swift classes
• C __thread and C++ thread_local variables

Considering making dlclose() a no-op everywhere except macOS 
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all_image_infos

Interface for introspecting dylibs in a process
• Struct in memory
• Wastes a lot of memory
• Going away in future releases
• We will be providing replacement APIs
• Please let us know how you use it
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Preparing for dyld 3 
Best Practices

Make sure your app launches when built with -bind_at_load added to LD_FLAGS
• Debug builds only

Fix any unaligned pointers in your app’s __DATA segment
ld: warning: pointer not aligned at address 0x100001004

Make sure you are not depending on terminators running when you call dlclose()

Let us know why you are using dlopen()/dlsym()/dladdr()/all_image_infos
• File bug reports with “DYLD USAGE:” in their titles



More Information
https://developer.apple.com/wwdc17/413
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