Developer Tools #WWDC17/

Teaching with Swift Playgrounds

Session 416

Bill Dudney, Table Inverter
Elizabeth Salazar, Storyteller

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Passion

Audience

Teaching

Goal

Mathematics

Mathematics

ax*+bx+c=0 sin(x) e’ logo(x)

Polynomials Trigonometry Exponentials Logarithms

When will | use this?!

o~

v ’
bv&. sl x‘vll.h

e M.o',(,c‘tnfs\f !ll‘cu.lxﬂ\ r"t,r‘a.l 4l)
. o 3

S . ot e A > o o o @) L
W s A - -
, $. . L L e Sl . -V, -
e . P S AN 1" o lbﬂ..dw»uolli.

O ~ ..». -l Y . - . \ et |

N - o ¢ L a AL Lot B r -
g n T W 0‘0 R e T « 20 . -
“.“wnlf N — - PP, S, .fo‘ e~ 1 ."~| \ \,.’;idlwlw\.l‘} ’ —— eyt \ v
* = 3 s(\ .* PR vaun.\ -.(Ail.b

-

g — ”

o ' - ~
.) e 5 U - .
et =\ Ve ,....)..\umh gyl e -z V= o
S A ST ; R e T s

-

. . > » . . -
» o - ’

> . B =4 2 . e L g 5 v TR _— K, e ~

Bom vt Y T .-(.....r.$ e e L e - AT o L NSRS

. . S R g eSS e L TSN S ey SN RS e
- o - L on T e
. . ! Py - o~
N at
X e ‘ - . ’ -
- -~ = - . . e

. J‘,,p.Jl‘sJ.‘- Sl 2N s 2 O B

A zueag....h.... . Ly in.mwuur ;.r«m H oo = oS bﬂ...r..%%t-:. s
. b Riren A X g - s ray J\io‘l.‘ij
2 S e i -.me‘:. e R A Sl S

At\} Vs .u....ro»r

- TS L AN

BN o e g S s B N R R s —y T =
PRy o oo e .,.,...snt'....,..»\.n,s_«m...mi u!..l.lc% ..

‘»..‘-—

rs P A TR R =V
e
- . : S n‘sv&
T8 : - - A S a ~
- ,oo
- >
A A el .t.
> g . »? o
S - qﬂ"“"b' e - - N
— - -
AL YV 22 1 ~ 4.|i.|o\ = .
. »
RN AAS s i et i a4
TRl s S e
N WP L ST = Lo e -
< PN
Bt 2 2 \ ,
-

3 > . Ot e i of gl oy . ’ : - » P o . 3 - N
. - vedeo T Al " ¢ ’ : - A1 -
! e o~ X N &\.. ="

¢ ,1: l?lL‘I» tf-) Y A L n_ :
= lu.c..l.c.f‘f\alrl.}-"d sl.. f_..f! - Olnu %?u/-rj
. n. - “’ > J“’
: T g " . (-l-lvOr ’LA\A.’\L =N \uc

.
’ a . e . - <

. . » T v n

p : . ~ b S > N

> .

- N~ e p— - »,.’

- g g - e .\.'nn.'. =

-l.. - .

N) + &' s -
- ..l AR i aﬂ?‘rcr...t.tlo...‘n. \)a - ..:\..u..,uﬁ: S .!.qﬁ(g.ihﬂ,
r.(ar all!.o x? SR e Y A s — ’\’"‘1 B S e] -.I!\vl.,\.iq o

3 e J - -
—— -
:A Lb v ~ ~ —— e b —-—

- g
J.‘.:'.‘ \.hy.
.

o S ‘et - — g - e
2 0(.1’..3..- ¥ s S : . NN gt
. O e Sz .39.. A e XS PN e e e 7 ety s A -

N s y y . e
e ‘)}T, . e 52 g Gl Nl s AT T~ >~ .
‘.l’ql‘ll;‘lﬂn > th:; - W et e T e P W ey aiA v Mm,

i Ty B SRAL ¥ SV oI e e . S .
-l - .

: .W‘ .»./ .1....
o v gy ...,....
in‘w}/‘.vr
Dt o
.. ’ s\g". v
~ e r..mww 5

~d . . i
LR) -

. RN s S
Y ol 4% B % ‘
C A TP - o

o = — - * 4
B - a A SRl © o

[

g% o e . . . TR, S ¢ .

2 .. ' 5 - ...yl s S N : . . T e At rgear

R e _..-tﬂms??.? e S ::.:.E." R Y e i

..-’....o.n.. O 0 Y ... r....,.u] a0 ; A. L s - . o v -
- . o - .

- 'r.i~\ i ..-,.n\ v

vf }L’.\d.‘ ok L.\.‘..j\iw‘\\'!vvf.,h\\
ot . %

7 lﬂn\.f,.e Ifov: v\ 1.. o b, P
- z«wﬂ.‘.ﬁh{- .rd...,...e, e

Rl Y.

L Je)

(poco espress.)

a

na ¢ord

u

Start with a question.

Audience

Audience

Typical Teaching—Syntax

#function strings didSet case

operators #avallable false convenience
conditional class do loop declarations protocol
#selector subscript return ll continue #if else
try continue true #line as assoclatedtype

catch Inout var willSet types static

Typical Teaching—
Algorithms and Data Structure

Fermat Primality Test Biconnectivity Dice’s Coefficient Shadow Volume

Interval Halving Laplacian Smoothing Simplex Noise Binary Search

Double Metaphone Soundex Heap Sort Axis Alighed Bounding Boxes

Quick Sort Gradient Descent Hashing Recursion Depth First Search

Gibbs Sampling Rasterisation Spatial Partitioning Gauss-Legendre

Gouraud Shading Hamming distance Newton’s Method

Challenge: Implement the most efficient algorithm to collect the gems and
activate the switches.

For the last challenge of Learn to Code 1, you'll test your algorithm design skills.
There are many different algorithms you could use to solve the puzzle, and many
different ways to structure your code.

If you're not able to find a solution right away, that's okay! Coding often requires
trying different solutions to a problem until you find the one that works best.
When you're ready, you can move on to Learn to Code 2.

Tap to enter code

The easy parts.

Detalls

Open GL Pipeline

Open GL Pipeline

Open GL Pipeline

Fun

Fun

Passion

Passion

Teaching with Swift Playgrounds

Teaching with Swift Playgrounds

Teaching

Designing

Designing Swift Playgrounds

Elizabeth Salazar, Storyteller

What is a Swift Playground?

Using Loops

Goal: Use a for loop to repeat a sequence of commands.

To break down coding tasks, you wrote functions for
repeated patterns. Now you'll call one function multiple
times using a loop. With a loop, you write your code once
and enter the number of times to repeat it.

In this puzzle, there's a gem in the same position in each
row. You will collect the gems by following the same
pattern multiple times. This is the perfect place for a
loop!

Enter the solution for one row inside the curly braces.
Decide how many times to repeat the loop.

Tap the number placeholder and specify the number
of repetitions.

for 1. I8 1

= { Using Loops > =

Goal: Use a for loop to repeat a sequence of commands.

To break down coding tasks, you wrote functions for
repeated patterns. Now you'll call one function multiple
times using a loop. With a loop, you write your code once
and enter the number of times to repeat it.

In this puzzle, there's a gem in the same position in each
row. You will collect the gems by following the same
pattern multiple times. This is the perfect place for a
loop!

Enter the solution for one row inside the curly braces.
Decide how many times to repeat the loop.

Tap the number placeholder and specify the number
of repetitions.

for 1 in 1 ... |number | {

Using Loops

Goal: Use a for loop to repeat a sequence of commands.

To break down tasks, you wrote functions for
repeated . Now you'll one function multiple
times using a . With a loop, you write your code once
and enter the number of times to repeat it.

In this puzzle, there's a gem in the same position in each
row. You will collect the gems by following the same
pattern multiple times. This is the perfect place for a
loop!

1 Enter the solution for one row inside the curly braces.
2 Decide how many times to repeat the loop.

Tap the number placeholder and specify the number
of repetitions.

for 1 in 1 ... l’numberv {

P Run My Code

{ Using Loops >

Goal: Use a for loop to repeat a sequence of commands.

To break down coding tasks, you wrote functions for
repeated patterns. Now you'll call one function multiple
times using a loop. With a loop, you write your code once
and enter the number of times to repeat it.

In this puzzle, there's a gem in the same position in each
row. You will collect the gems by following the same
pattern multiple times. This is the perfect place for a
loop!

Enter the solution for one row inside the curly braces.
Decide how many times to repeat the loop.

Tap the number placeholder and specify the number
of repetitions.

P Run My Code

{ Using Loops >

Goal: Use a for loop to repeat a sequence of commands.

To break down coding tasks, you wrote functions for
repeated patterns. Now you'll call one function multiple
times using a loop. With a loop, you write your code once
and enter the number of times to repeat it.

In this puzzle, there's a gem in the same position in each
row. You will collect the gems by following the same
pattern multiple times. This is the perfect place for a
loop!

Enter the solution for one row inside the curly braces.
Decide how many times to repeat the loop.

Tap the number placeholder and specify the number
of repetitions.

for i in 1 ... |number | {

Using Loops

Goal: Use a for loop to repeat a sequence of commands.

To break down coding tasks, you wrote functions for
repeated patterns. Now you'll call one function multiple
times using a loop. With a loop, you write your code once
and enter the number of times to repeat it.

In this puzzle, there's a gem in the same position in each
row. You will collect the gems by following the same
pattern multiple times. This is the perfect place for a
loop!

Enter the solution for one row inside the curly braces.
Decide how many times to repeat the loop.

Tap the number placeholder and specify the number
of repetitions.

for 1. I8 1

A few other features...

Cutscenes

Hints

)

Hints

)

Solutions

Solutions

Assessments

()

Assessments

()

Coding time?

To the drawing board! @&

A ——

e .

e —

D —
e e At St

- ————

- — ———

| Nomb'. wnode\ |

e e g ——

e —— i — = S —— e ——

e —————— o S——— S ————"

—— ———— T — - ——

- - . —
e e —— —— . ——

What Is the learner's goal?

What Is the learner's goal?

Learner Goals

Learner Goals

Complete a task

"Collect 6 gems anad
flip all the switches."

Learner Goals

Complete a task

Experiment

"Try changing the radius to a negative
number—see what happens!”

Learner Goals

Complete a task

Experiment

"Remember for loops?
Use one now for the fastest solution

Practice a new skill

|II

Learner Goals

Complete a task

Experiment

Practice a new skill "Cryptography is the science
of studying hidden writing."

Think about a concept

Learner Goals

Complete a task

Experiment ,

"Now you have all the skills you need:
Practice a new skill create your own work of art in the
Think about a concept LiveView!"

Create

Prose Tools

Prose Tools—Glossary Entries

Prose Tools—Glossary Entries

You'll need to write an algorithm that lets you keep
your character moving efficiently around the puzzle
world, picking up gems that appear.

Prose Tools—Glossary Entries

You'll need to write an algorlthm that lets you keep
your charactsg lgorithm fthe puzzle
world, picking

A step-by-step set of instructions or rule for solving
a problem.

Prose Tools—Diagrams

"A Substitution Cipher is one in which each letter of
the message Is substituted (or exchanged) for a
different letter."

Prose Tools—Diagrams

"A Substitution Cipher is one in which each letter of
the message is substituted (or exchanged) for a
different letter."

Prose Tools—Callouts

Here's a lot of prose, lots and lots of it oh yes | could go on like this forever. First I'll
start making a point and giving you a bit of color and explanation.

Then I'll start the second point and etc etc etc.

Hello There

Here's the important bit!

newAwesomeFunction()

And now for the wrap-up and a bit more prose, yes, on we go. Lorem ipsum dolor
sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat.

Prose Tools—Callouts

Hello There

Here's the important bit!

newAwesomeFunction()

Prose Tools—Shortcut Bar

Prose Tools—Shortcut Bar

Only include relevant choices

Prose Tools—Shortcut Bar

Only include relevant choices

Use concise method names

Prose Tools—Shortcut Bar

Only include relevant choices
Use concise method names

Provide common keywords

Who Is your audience?

Who Is your audience?

Complete a Task—Beginner

{ Adding a Background >

Goal: Set a background image for the scene.

Think of the scene as a bit like a scene in a movie, with graphics as actors. And
just like In a movie, a scene can have a background. You can set a background

Image for the scene.

scene.backgroundImage

1T Write scene.backgroundImage = inthe code, and then choose from

the shortcut bar.

2 Choose an image for your background.

// Set the background image.

Complete a Task—Beginner

- — { Adding a Background

Goal: Set a background image for the scene.

Think of the scene as a bit like a scene in a movie, with graphics as actors. And
just like in a movie, a scene can have a background. You can set a background

Image for the scene.

scene.backgroundImage = Q&8

1T Write scene.backgroundImage = inthe code, and then choose from

the shortcut bar.

2 Choose an image for your background.

// Set the background image.

Complete a Task—Beginner

{ Adding a Background

Goal: Set a background image for the scene.

Think of the scene as a bit like a scene in a movie, with graphics as actors. And
just like in a movie, a scene can have a background. You can set a background

Image for the scene.

I~ ~ b i v i n TSR R e
backgroundImage = @

Write scene.backgroundImage = inthe code, and then choose from

the shortcut bar.

Choose an image for your background.

// Set the background image.

Complete a Task—Beginner

r— { Adding a Background >

Goal: Set a background image for the scene.

Think of the scene as a bit like a scene in a movie, with graphics as actors. And
just like in a movie, a scene can have a background. You can set a background

Image for the scene.
scene.backgroundImage

Write scene.backgroundImage = Inthe code, and then choose from

the shortcut bar.

Choose an image for your background.

// Set the background image.

Complete a Task—Beginner

- — { Adding a Background

Goal: Set a background image for the scene.

Think of the scene as a bit like a scene in a movie, with graphics as actors. And
just like in a movie, a scene can have a background. You can set a background

Image for the scene.
scene.backgroundImage = Q&8

1T Write scene.backgroundImage = inthe code, and then choose from

the shortcut bar.

2 Choose an image for your background.

the background 1image.

Complete a Task—Advanced

{ Breadth-First Search >

Goal: Use a breadth-first search algorithm to escape the maze.

Breadth-first search is a type of pathfinding algorithm. In the name of this
algorithm, breadth refers to the number of things it checks at each step in the
search. When the algorithm looks at a tile, it also checks all four of its neighbors,
searching a broad area to find a path.

Start by adding all neighbors of the starting tile to a queue.
Pop tiles from the queue to see what kind of tiles they are.

Each time you pop a tile from the queue, add all of that tile's neighbors to the
queue.

func findPath(in maze: Maze) {
// Use the types, methods, and properties from the

introduction page to write your own maze-solving code.

Complete a Task—Advanced

— { Breadth-First Search >

Goal: Use a breadth-first search algorithm to escape the maze.

Breadth-first search is a type of pathfinding algorithm. In the name of this
algorithm, breadth refers to the number of things it checks at each step in the
search. When the algorithm looks at a tile, it also checks all four of its neighbors,
searching a broad area to find a path.

1 Start by adding all neighbors of the starting tile to a queue.
2 Pop tiles from the queue to see what kind of tiles they are.

3 Each time you pop a tile from the queue, add all of that tile's neighbors to the
queue.

func findPath(in maze: Maze) {
// Use the types, methods, and properties from the

introduction page to write your own maze-solving code.

Complete a Task—Advanced

= {_ Breadth-First Search) -

Goal: Use a breadth-first search algorithm to escape the maze.

Breadth-first search is a type of pathfinding algorithm. In the name of this
algorithm, breadth refers to the number of things it checks at each step in the
search. When the algorithm looks at a tile, it also checks all four of its neighbors,
searching a broad area to find a path.

1 Start by adding all neighbors of the starting tile to a queue.
Pop tiles from the queue to see what kind of tiles they are.

Each time you pop a tile from the queue, add all of that tile's neighbors to the
queue.

func findPath(in maze: Maze) {
// Use the types, methods, and properties from the

introduction page to write your own maze-solving code.

Complete a Task—Advanced

= {_ Breadth-First Search) -

Goal: Use a breadth-first search algorithm to escape the maze.

Breadth-first search is a type of pathfinding algorithm. In the name of this
algorithm, breadth refers to the number of things it checks at each step in the
search. When the algorithm looks at a tile, it also checks all four of its neighbors,
searching a broad area to find a path.

Start by adding all neighbors of the starting tile to a queue.
Pop tiles from the queue to see what kind of tiles they are.

Each time you pop a tile from the queue, add all of that tile's neighbors to the
queue.

func findPath(in maze: Maze) {
// Use the types, methods, and properties from the

introduction page to write your own maze-solving code.

Think About a Concept

Think About a Concept

Introduction

Blink: A Cell Simulator

Blink is a simulation that explores how a living cell reproduces or dies given a
certain set of rules. Your goal is to understand the algorithms that run the
simulation so that you can create your own version, with your own rules.

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:

Any living cell with fewer than two living neighbors dies.

Any living cell with two or three living neighbors lives on.
Any living cell with more than three living neighbors dies.

Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.
Experiment with stepping through the simulation to watch this happen. On the
next page, you'll explore modifying this algorithm.

Think About a Concept

b
/

Introduction

Blink: A Cell Simulator

Blink is a simulation that explores how a living cell reproduces or dies given a
certain set of rules. Your goal is to understand the algorithms that run the
simulation so that you can create your own version, with your own rules.

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:
Any living cell with fewer than two living neighbors dies.
Any living cell with two or three living neighbors lives on.
Any living cell with more than three living neighbors dies.
e Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.

Think About a Concept

Introduction >

Blink: A Cell Simulator

Blink is a simulation that explores how a living cell reproduces or dies given a
certain set of rules. Your goal is to understand the algorithms that run the
simulation so that you can create your own version, with your own rules.

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:

e Any living cell with fewer than two living neighbors dies.
Any living cell with two or three living neighbors lives on.
Any living cell with more than three living neighbors dies.

e Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.

Think About a Concept

— Introduction >

Blink: A Cell Simulator

Blink is a simulation that explores how a living cell reproduces or dies given a
certain set of rules. Your goal is to understand the algorithms that run the
simulation so that you can create your own version, with your own rules.

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:
Any living cell with fewer than two living neighbors dies.
Any living cell with two or three living neighbors lives on.
Any living cell with more than three living neighbors dies.

Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.

Think About a Concept

Introduction >

Blink: A Cell Simulator

Blink is a simulation that explores how a living cell reproduces or dies given a
certain set of rules. Your goal is to understand the algorithms that run the
simulation so that you can create your own version, with your own rules.

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:
e Any living cell with fewer than two living neighbors dies.
Any living cell with two or three living neighbors lives on.
Any living cell with more than three living neighbors dies.
e Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.

Think About a Concept

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:
Any living cell with fewer than two living neighbors dies.
Any living cell with two or three living neighbors lives on.

Any living cell with more than three living neighbors dies.

Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.
Experiment with stepping through the simulation to watch this happen. On the
next page, you'll explore modifying this algorithm.

Think About a Concept

This playground is running a modified version of Conway's Game of Life, which
presents cells reproducing and dying based upon the status of the 8 neighboring
cells. You will see this simulation in the live view when you run the code.

The rules for this simulation are:
Any living cell with fewer than two living neighbors dies.
Any living cell with two or three living neighbors lives on.

Any living cell with more than three living neighbors dies.

Any dead cell with exactly three living neighbors becomes a living cell.

The cell simulator uses a loop to evaluate all cells on the grid. For each iteration
of the loop, the rules are applied and a new generation of cells is created.
Experiment with stepping through the simulation to watch this happen. On the
next page, you'll explore modifying this algorithm.

s It coding time yet?

\Q
7

o
s

@
§
t“m'\hn-..
|
Y
Q" M(};\W"-
l S
X DaQues x>

—

Tt R
\"'{“\\Q&—
\w‘*
S
(¢
ADIY e

-

Bring your passion.

Bring your passion.

J

"

J

%

Teaching Designing

Finally, time to code.

Goal

Goal Audience

Passion

Audience

Now go forth, and teach!

More Information
https://developer.apple.com/wwdc1//416

Related Sessions

SceneKit in Swift Playgrounds WWDC 2017

What's New in Swift Playgrounds WWDC 2017/

Localizing Content for Swift Playgrounds WWDC 2017

