Media #WWDC1/

Advances in HTTP Live Streaming

Session 504

Roger Pantos, AVFoundation Engineer
Anil Katti, AVFoundation Engineer

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

But First

HLS Has Been Approved for Publication as an RFC!

draft-pantos-http-live-streaming-23 will be published by the IETF as an RFC

HLS Has Been Approved for Publication as an RFC!

draft-pantos-http-live-streaming-23 will be published by the IETF as an RFC

Once it moves through the publication queue it will be assigned an RFC number

HLS Has Been Approved for Publication as an RFC!

draft-pantos-http-live-streaming-23 will be published by the IETF as an RFC
Once it moves through the publication queue it will be assigned an RFC number

At that point, it will serve as a stable reference for HLS

HLS Has Been Approved for Publication as an RFC!

draft-pantos-http-live-streaming-23 will be published by the IETF as an RFC
Once it moves through the publication queue it will be assigned an RFC number
At that point, it will serve as a stable reference for HLS

Watch for a new Internet-Draft containing future updates

New Video Format: HEVC

Benefits of HEVC

Better encoding efficiency than AVC [H.264

* Reduce segment sizes by up to 40% with same visual quality

On a given network link, this translates to:
 Faster video start at reasonable quality

» Better quality overall

HEVC Will Be Widely Supported

8-bit Hardware Decode
(includes FairPlay Streaming)

10-bit Hardware Decode
(includes FairPlay Streaming)

8-bit Software Decode

10-bit Software Decode

[ON

A9 chip

All iI0S Devices

NEEON

6th Generation Intel Core processor

/th Generation Intel Core processor

All Macs

HEVC Support in HLS

For Apple clients, HEVC must be packaged as fMP4
* No support for HEVC in MPEG-2 TS

HEVC Support in HLS

For Apple clients, HEVC must be packaged as fMP4
* No support for HEVC in MPEG-2 TS

Same encryption format — ‘cbcs' ISO/IEC 23001:7 Common Encryption

HEVC Support in HLS

For Apple clients, HEVC must be packaged as fMP4
* No support for HEVC in MPEG-2 TS

Same encryption format — '‘cbcs' ISO/IEC 23001:7 Common Encryption
Mark your Media Playlists as HEVC with the CODECS attribute

e CODECS= "hvcl.2.4.L123.B0,.."
» See ISO/IEC 14496-15 for the string format

Mixing HEVC and H.264

HEVC and H.264 variants can appear in the same Master playlist

* |-frame playlists too

Mixing HEVC and H.264

HEVC and H.264 variants can appear in the same Master playlist
* |-frame playlists too

 HEVC must be tMP4

* H.264 can be TS or fMP4

Mixing HEVC and H.264

HEVC and H.264 variants can appear in the same Master playlist
* |-frame playlists too

 HEVC must be tMP4

* H.264 can be TS or fMP4

 Label your Media Playlists with correct CODECS attributes!

Mixing HEVC and H.264

HEVC and H.264 variants can appear in the same Master playlist
* |-frame playlists too

 HEVC must be tMP4

* H.264 can be TS or fMP4

 Label your Media Playlists with correct CODECS attributes!

HLS Authoring guidelines have been updated for HEVC
» See the on-demand talk "HLS Authoring Update”

HTTP Live Streaming Authoring and Validation WWDC 2016

New Subtitle Format: IMSC1

New Subtitle Format: IMSC1 @

IMSC1 is a profile of TTML that has been optimized for streaming delivery

New Subtitle Format: IMSC1 @

IMSC1 is a profile of TTML that has been optimized for streaming delivery

Better control over styling, compared to VTT

New Subtitle Format: IMSC1 @

IMSC1 is a profile of TTML that has been optimized for streaming delivery
Better control over styling, compared to VTT

Baseline subtitle format for the Common Media Application Format (CMAF)

 Part of a wider effort to support CMAF features

IMSC1in HLS

Carried as XML text inside fMP4 Segments

IMSC1in HLS

Carried as XML text inside fMP4 Segments
HLS defines support for the IMSC1 Text profile

IMSC1in HLS

Carried as XML text inside fMP4 Segments
HLS defines support for the IMSC1 Text profile
Mark your Media Playlists as IMSC1 with the CODECS attribute

e CODECS="stpp.TTML.1m1t, .."

IMSC1in HLS

Carried as XML text inside fMP4 Segments
HLS defines support for the IMSC1 Text profile
Mark your Media Playlists as IMSC1 with the CODECS attribute

e CODECS="stpp.TTML.1m1t, .."

Note that IMSC1 does not depend on HEVC, or vice-versa

//IMSC1 alongside WebVTT in a Master Playlist

#EXTM3U

HEXT-X-MEDIA:TYPE=SUBTITLES, GROUP-ID="vtt", LANGUAGE="eng",NAME="English",URI="vtt.m3u8"
#EXT-X-STREAM—-INF : BANDWIDTH=90000, CODECS="avcl.4d00le,ac-3",SUBTITLES="vtt"
bipbop _gearl/prog _index.m3u8

HEXT-X-MEDIA:TYPE=SUBTITLES,GROUP-ID="1msc", LANGUAGE="eng" ,NAME="English",URI="1msc.m3u8"
HEXT-X-STREAM—-INF : BANDWIDTH=90000, CODECS="avcl.4d001le,ac-3,stpp.TTML.1m1t",SUBTITLES="1msc"
bipbop_gearl/prog_index.m3u8

IMSC1 in a Media Playlist

WebVTT # IMSC1

#EXTM3U #EXTM3U
H#EXT-X-TARGETDURATION: 6 H#EXT-X-TARGETDURATION: 6
H#EXTINF 6, H#EXT-X-MAP:URI="header.mp4"
segmentl.vtt #EXTINF 6,

#EXTINF 6, segmentl.mp4

segment2.vtt #EXTINF 6,

segment2.mp4

You Might Switch Your HLS Streams to IMSC1 if ...

You want more control over text styling than VT T alone provides

You Might Switch Your HLS Streams to IMSC1 if ...

You want more control over text styling than VT T alone provides

You produce VTT by translating TTML
» TTML-to-IMSC1 translation is simpler, and may have higher fidelity

You Might Switch Your HLS Streams to IMSC1 if ...

You want more control over text styling than VT T alone provides

You produce VTT by translating TTML
» TTML-to-IMSC1 translation is simpler, and may have higher fidelity

You produce IMSC1 anyway

* Reduce the number of overall streams you produce

You Might Switch Your HLS Streams to IMSC1 if ...

You want more control over text styling than VT T alone provides

You produce VTT by translating TTML
» TTML-to-IMSC1 translation is simpler, and may have higher fidelity

You produce IMSC1 anyway

* Reduce the number of overall streams you produce

Sticking with VTT is fine, too

Is There an IMSC?2?

Not yet. It is currently being defined.

Is There an IMSC?2?

Not yet. It is currently being defined.

We expect it to add advanced styling features for Japanese text

Is There an IMSC?2?

Not yet. It is currently being defined.

We expect it to add advanced styling features for Japanese text

Stay tuned

New Streaming Features

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP: A New m3u8 Tag

EXT-X-GAP Tag Semantics

Gap tag indicates that a Media Segment is missing

EXT-X-GAP Tag Semantics

Gap tag indicates that a Media Segment is missing

 Player will not attempt to download the segment URL

EXT-X-GAP Tag Semantics

Gap tag indicates that a Media Segment is missing
 Player will not attempt to download the segment URL

 Player will attempt to find another variant without a gap to play

EXT-X-GAP Tag Semantics

Gap tag indicates that a Media Segment is missing
 Player will not attempt to download the segment URL
 Player will attempt to find another variant without a gap to play

* If all variants have the same gap, silence will be played until gap ends

EXT-X-GAP Tag Semantics

Gap tag indicates that a Media Segment is missing
 Player will not attempt to download the segment URL
 Player will attempt to find another variant without a gap to play

* If all variants have the same gap, silence will be played until gap ends

See the WWDC HLS beta spec for detalils

Variable Support in m3u8 Playlists @

Simple variable substitution in m3u8 playlists

Variable Support in m3u8 Playlists @

Simple variable substitution in m3u8 playlists

PHP-style syntax for variables: {$filename}. ts

Variable Support in m3u8 Playlists @

Simple variable substitution in m3u8 playlists
PHP-style syntax for variables: {$filename}. ts

EXT-X-DEFINE tag defines a variable

* Or imports it from master playlist

All variables must be defined, or playlist will not parse

Variable Support in m3u8 Playlists @

Simple variable substitution in m3u8 playlists
PHP-style syntax for variables: {$filename}. ts

EXT-X-DEFINE tag defines a variable

* Or imports it from master playlist
All variables must be defined, or playlist will not parse

Allows media playlists to depend on values defined in master playlist

* Media Playlist must explicitly import each variable

Variables in Master Playlists

Variables in Media Playlists

See the WWDC HLS beta spec for detalils

Synchronized Playback of Live Streams @

Playback is synchronized using shared EXT-X-PROGRAM-DATE-TIME tags

Synchronized Playback of Live Streams @

Playback is synchronized using shared EXT-X-PROGRAM-DATE-TIME tags

Use -[AvPlayer setRate:time:atHostTime:] tO start second player I Sync

Synchronized Playback of Live Streams @

Playback is synchronized using shared EXT-X-PROGRAM-DATE-TIME tags

Use -[AvPlayer setRate:time:atHostTime:] tO start second player I Sync
« Sample code avalilable, "SyncStartTV"

Demo
Synchronized live stream playback

Resolution Cap: preferredMaximumResolution @

Companion to existing bandwidth cap (preferredPeakBitRate)

Resolution Cap: preferredMaximumResolution @

Companion to existing bandwidth cap (preferredPeakBitRate)

Programmatically specify the maximum desired content resolution

Resolution Cap: preferredMaximumResolution @

Companion to existing bandwidth cap (preferredPeakBitRate)
Programmatically specify the maximum desired content resolution

Useful for video thumbnails and multi-stream presentations

Resolution Cap: preferredMaximumResolution @

Companion to existing bandwidth cap (preferredPeakBitRate)
Programmatically specify the maximum desired content resolution

Useful for video thumbnails and multi-stream presentations

If there is no playable variant below the resolution cap, the lowest-resolution
variant is chosen

Resolution Cap Example

HLS Offline Storage Management

9:41 AM 100% (@)

Netflix

App Size

Documents & Data

Offload App

Dave Chappelle: C1 - The Age...

5 & Master of None: S2 - Le Nozze

- Orange Is the New Black: S2 -...
M

9:41 AM 100% (@)

Netflix

App Size

Documents & Data

Offload App

Dave Chappelle: C1 - The Age...

aster of None: S2 - Le Nozze

- Orange Is the New Black: S2 -...
M

HLS Offline Storage Management

The OS can delete offline assets while the app is not running

* Via Settings, or when space is required for a software update

HLS Offline Storage Management

The OS can delete offline assets while the app is not running

* Via Settings, or when space is required for a software update

AVAssetDownloadStorageManager

HLS Offline Storage Management

The OS can delete offline assets while the app is not running

* Via Settings, or when space is required for a software update

AVAssetDownloadStorageManager

Sets the policy for automatic purging of downloaded AVAssets

HLS Offline Storage Management

The OS can delete offline assets while the app is not running

* Via Settings, or when space is required for a software update

AVAssetDownloadStorageManager

Sets the policy for automatic purging of downloaded AVAssets

* AVAssetDownloadStorageManagementPolicy has two properties:

HLS Offline Storage Management

The OS can delete offline assets while the app is not running

* Via Settings, or when space is required for a software update

AVAssetDownloadStorageManager

Sets the policy for automatic purging of downloaded AVAssets
* AVAssetDownloadStorageManagementPolicy has two properties:

- Expiration date

HLS Offline Storage Management

The OS can delete offline assets while the app is not running

* Via Settings, or when space is required for a software update

AVAssetDownloadStorageManager

Sets the policy for automatic purging of downloaded AVAssets
* AVAssetDownloadStorageManagementPolicy has two properties:
- Expiration date

- Priority (important, default)

// AVAssetDownloadStorageManager

// Get the singleton
let storageManager = AVAssetDownloadStorageManager.shared()

// AVAssetDownloadStorageManager

// Get the singleton
let storageManager = AVAssetDownloadStorageManager.shared()

// Set the policy
let newPolicy = AVMutableAssetDownloadStorageManagementPolicy()

newPolicy.explrationDate = myExpiryDate
newPolicy.priority = .important

storageManager.setStorageManagementPolicy(newPolicy, forURL: myDownloadStorageURL)

// AVAssetDownloadStorageManager

// Get the singleton
let storageManager = AVAssetDownloadStorageManager.shared()

// Set the policy
let newPolicy = AVMutableAssetDownloadStorageManagementPolicy()

newPolicy.explrationDate = myExpiryDate
newPolicy.priority = .important

storageManager.setStorageManagementPolicy(newPolicy, forURL: myDownloadStorageURL)

// Get the policy
let currentPolicy = storageManager.storageManagementPolicy(forURL: myDownloadStorageURL)

Batching up Your Offline Downloads @

AVAggregateAssetDownloadTask

» Specify multiple media selections prior to initiating download

Batching up Your Offline Downloads

AVAggregateAssetDownloadTask

» Specify multiple media selections prior to initiating download

let task = myDownloadSession.aggregateAssetDownloadTask(with: AVURLAsset,
mediaSelections: AVMediaSelection[],
assetTitle: String,
assetArtworkData: Data?,
options: [String:Any]?)

Key Management Enhancements

FairPlay Streaming

FairPlay Streaming

FairPlay Streaming introduced in 2015

FairPlay Streaming

FairPlay Streaming introduced in 2015

Protects HLS content

FairPlay Streaming

FairPlay Streaming introduced in 2015
Protects HLS content

Enhancements to

» Simplify workflow

FairPlay Streaming

FairPlay Streaming introduced in 2015
Protects HLS content

Enhancements to
» Simplify workflow

» Scale adoption

FairPlay Streaming

FairPlay Streaming introduced in 2015
Protects HLS content

Enhancements to
» Simplify workflow
» Scale adoption

» Support new features

FairPlay Streaming Overview

FairPlay Streaming Overview

Securely deliver Content Decryption Keys

FairPlay Streaming Overview

FairPlay Streaming Overview

FairPlay Streaming Overview

FairPlay Streaming Overview

1. Request Playback

FairPlay Streaming Overview

1. Request Playback
2. Request key

2kl

FairPlay Streaming Overview

1. Request Playback
2. Request key

3. Create SPC

0}¢] ¢

FairPlay Streaming Overview

1. Request Playback
2. Request key

3. Create SPC

4. Send SPC; Get CKC ®l @I @I

FairPlay Streaming Overview

1. Request Playback
2. Request key

3. Create SPC

4. Send SPC: Get CKC
5. Respond with CKC

FairPlay Streaming Keys

FairPlay Streaming Keys

FairPlay Streaming Keys

FairPlay Streaming Keys

FairPlay Streaming Keys

FairPlay Streaming Keys

AVAssetResourcelLoader

FairPlay Streaming Keys

FairPlay Streaming Keys

FPS keys are more specialized resources

FairPlay Streaming Keys

FPS keys are more specialized resources

* Freeze dry for future use (offline playback)

FairPlay Streaming Keys

FPS keys are more specialized resources
* Freeze dry for future use (offline playback)

« Set up to expire - need renewal

FairPlay Streaming Keys

FPS keys are more specialized resources
* Freeze dry for future use (offline playback)
« Set up to expire - need renewal

* More such operations as content protection evolves

FairPlay Streaming Keys

FPS keys are more specialized resources
* Freeze dry for future use (offline playback)
« Set up to expire - need renewal

* More such operations as content protection evolves

FPS keys can be loaded independently of assets

FairPlay Streaming Keys

FPS keys are more specialized resources
* Freeze dry for future use (offline playback)
« Set up to expire - need renewal

* More such operations as content protection evolves
FPS keys can be loaded independently of assets

New APl to manage and deliver decryption keys

FairPlay Streaming Keys

FPS keys are more specialized resources
* Freeze dry for future use (offline playback)
« Set up to expire - need renewal

* More such operations as content protection evolves

FPS keys can be loaded independently of assets

New APl to manage and deliver decryption keys

AVContentKeySession

AVContentKeySession

AVFoundation class for decryption keys

AVContentKeySession

AVFoundation class for decryption keys

* Decouples key loading from media loading or playback

AVContentKeySession

AVFoundation class for decryption keys
* Decouples key loading from media loading or playback

» Better control over lifecycle of keys

AVContentKeySession

AVFoundation class for decryption keys
* Decouples key loading from media loading or playback

» Better control over lifecycle of keys

Allows you to load keys at any time

AVContentKeySession

AVFoundation class for decryption keys
* Decouples key loading from media loading or playback

» Better control over lifecycle of keys
Allows you to load keys at any time

Two ways key loading process is triggered:

AVContentKeySession

AVFoundation class for decryption keys
* Decouples key loading from media loading or playback

» Better control over lifecycle of keys

Allows you to load keys at any time

Two ways key loading process is triggered:

Using
AVContentKeySession

AVContentKeySession

AVFoundation class for decryption keys
* Decouples key loading from media loading or playback

» Better control over lifecycle of keys

Allows you to load keys at any time

Two ways key loading process is triggered:

Using After playback starts
AVContentKeySession (content is encrypted)

Improve Playback Startup

Improve Playback Startup

Key load time can significantly impact startup

Improve Playback Startup

Key load time can significantly impact startup

Keys are normally loaded on-demand

Improve Playback Startup

Key load time can significantly impact startup
Keys are normally loaded on-demand

Use AvContentKeySession tO

- Predictively load keys before requesting playback (key preloading)

Scale Live Playback

Scale Live Playback

Huge growth in live content

Scale Live Playback

Huge growth in live content

Extra protection with key rotation and lease renewal

Scale Live Playback

Huge growth in live content
Extra protection with key rotation and lease renewal

Impulse load on key server

Scale Live Playback

Huge growth in live content
Extra protection with key rotation and lease renewal
Impulse load on key server

Use AvContentKeySession tO

* Load balance key requests at the point of origin

Scale Live Playback

Scale Live Playback

Multiple Users
Watching a Live Stream

Initial
Key Request

Scale Live Playback

Scale Live Playback

New Key Request
(Rotation / Renewal)

Scale Live Playback

Scale Live Playback

Scale Live Playback

......../I

New Key Request
(Rotation / Renewal)

Scale Live Playback

Scale Live Playback

Scale Live Playback

O
New Key Request
(Rotation / Renewal)

Scale Live Playback

Scale Live Playback

Scale Live Playback

Scale Live Playback

//Using AVContentKeySession to initiate Key Loading Process

//Create AVContentKeySession 1nstance for FairPlay Streaming Key Delivery

let contentKeySession = AVContentKeySession(keySystem: .fairPlayStreaming)

//Register self as Delegate
contentKeySession.setDelegate(self, queue: DispatchQueue(label: "DelegateQueue"))

//Initiate Key Loading Process
contentKeySession.processContentKeyRequest(withIdentifier: "skd://myKey", 1nitializationData:

nil, options: nil)

//Using AVContentKeySession to initiate Key Loading Process

//Create AVContentKeySession instance for FairPlay Streaming Key Delivery
let contentKeySession = AVContentKeySession(keySystem: .fairPlayStreaming)

//Register self as Delegate
contentKeySession.setDelegate(self, queue: DispatchQueue(label: "DelegateQueue"))

//Initiate Key Loading Process
contentKeySession.processContentKeyRequest(withIdentifier: "skd://myKey", 1nitializationData:

nil, options: nil)

//Using AVContentKeySession to initiate Key Loading Process

//Create AVContentKeySession instance for FairPlay Streaming Key Delivery
let contentKeySession = AVContentKeySession(keySystem: .fairPlayStreaming)

//Register self as Delegate
contentKeySession.setDelegate(self, queue: DispatchQueue(label: "DelegateQueue"))

//Initiate Key Loading Process
contentKeySession.processContentKeyRequest(withIdentifier: "skd://myKey", 1nitializationData:

nil, options: nil)

//Using AVContentKeySession to initiate Key Loading Process

//Create AVContentKeySession 1nstance for FairPlay Streaming Key Delivery
let contentKeySession = AVContentKeySession(keySystem: .fairPlayStreaming)

//Register self as Delegate
contentKeySession.setDelegate(self, queue: DispatchQueue(label: "DelegateQueue"))

//Initiate Key Loading Process
contentKeySession.processContentKeyRequest(withIdentifier: "skd://myKey", 1nitializationData:

nil, options: nil)

//Tag in your Media Playlist
HEXT—X—-KEY :METHOD=SAMPLE-AES,URI="skd://myKey",KEYFORMAT="com.apple.streamingkeydelivery",
KEYFORMATVERSIONS="1"

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {

//Delegate callback that delivers AVContentKeyRequest

func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
1f let ckcBytes = getCKCFromKeyServer(forSPC: spcBytes) {
//Create Response using the CKC you obtalned from Key Server
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: ckcBytes)
//Set Response on the Key Request object when you are about to start playback
keyRequest.processContentKeyResponse(response)

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) {
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
1f let ckcBytes = getCKCFromKeyServer(forSPC: spcBytes) {
//Create Response using the CKC you obtalned from Key Server
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: ckcBytes)
//Set Response on the Key Request object when you are about to start playback
keyRequest.processContentKeyResponse(response)

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
1f let ckcBytes

//Create Response using the CKC you obtalned from Key Server

getCKCFromKeyServer(forSPC: spcBytes) {

let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: ckcBytes)
//Set Response on the Key Request object when you are about to start playback
keyRequest.processContentKeyResponse(response)

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
1f let ckcBytes = getCKCFromKeyServer(forSPC: spcBytes) {
//Create Response using the CKC you obtalned from Key Server
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: ckcBytes)
//Set Response on the Key Request object when you are about to start playback
keyRequest.processContentKeyResponse(response)

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
1f let ckcBytes = getCKCFromKeyServer(forSPC: spcBytes) {
//Create Response using the CKC you obtalned from Key Server
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: ckcBytes)
//Set Response on the Key Request object when you are about to start playback

keyRequest.processContentKeyResponse(response)

Responding to Key Requests

¢

Responding to Key Requests

Be mindful while responding to key requests

¢

Responding to Key Requests

Be mindful while responding to key requests

» Secure decrypt slots - limited resource

¢

Responding to Key Requests

Be mindful while responding to key requests
» Secure decrypt slots - limited resource

» Set CKC as response only for required key requests

¢

Responding to Key Requests

Be mindful while responding to key requests
» Secure decrypt slots - limited resource
» Set CKC as response only for required key requests

* Respond to key requests just before requesting playback

¢

Persistent FPS Keys

Persistent FPS Keys

Persistent FPS keys protect offline HLS assets

Persistent FPS Keys

Persistent FPS keys protect offline HLS assets

Use AvContentKeySession tO

 Create persistent keys before requesting HLS asset download

Persistent FPS Keys

Persistent FPS keys protect offline HLS assets

Use AvContentKeySession tO

 Create persistent keys before requesting HLS asset download

Simpler and cleaner workflow

Persistent FPS Keys

Persistent FPS keys protect offline HLS assets

Use AvContentKeySession tO
 Create persistent keys before requesting HLS asset download

Simpler and cleaner workflow

Work with AvPersistableContentKeyRequest

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Check 1f you are creating a Persistent Decryption Key
1f (creatingPersistentDecryptionKey(keyRequest.identifier)) {
//Request a Persistable Key Request
keyRequest.respondByRequestingPersistableContentKeyRequest()
return

¥

//Continue with AVContentKeyRequest while loading non-Persistent Decryption Key

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Check 1f you are creating a Persistent Decryption Key
1f (creatingPersistentDecryptionKey(keyRequest.identifier)) {
//Request a Persistable Key Request
keyRequest.respondByRequestingPersistableContentKeyRequest()
return

¥

//Continue with AVContentKeyRequest while loading non-Persistent Decryption Key

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Check 1f you are creating a Persistent Decryption Key
1f (creatingPersistentDecryptionKey(keyRequest.identifier)) {
//Request a Persistable Key Request
keyRequest.respondByRequestingPersistableContentKeyRequest()
return

¥

//Continue with AVContentKeyRequest while loading non-Persistent Decryption Key

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Check 1f you are creating a Persistent Decryption Key
1f (creatingPersistentDecryptionKey(keyRequest.identifier)) {
//Request a Persistable Key Request
keyRequest.respondByRequestingPersistableContentKeyRequest()
return

¥

//Continue with AVContentKeyRequest while loading non-Persistent Decryption Key

//Delegate callback that delivers AVContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVContentKeyRequest) {
//Check 1f you are creating a Persistent Decryption Key
1f (creatingPersistentDecryptionKey(keyRequest.identifier)) {
//Request a Persistable Key Request
keyRequest.respondByRequestingPersistableContentKeyRequest()

return

¥

//Continue with AVContentKeyRequest while loading non-Persistent Decryption Key

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:

AVPersistableContentKeyRequest) {

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:

AVPersistableContentKeyRequest) {

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
if let ckcBytes = getCKCFromKeyServer (forSPC: spcBytes) {
//Request Persistent Decryption Key by providing the CKC
let persistentkKey = try? keyRequest.persistableContentKey(fromKeyVendorResponse:
ckcBytes!, options: nil)

//Stow persistentKey data blob for future use

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) {
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
if let ckcBytes = getCKCFromKeyServer (forSPC: spcBytes) {
//Request Persistent Decryption Key by providing the CKC
let persistentkKey = try? keyRequest.persistableContentKey(fromKeyVendorResponse:
ckcBytes!, options: nil)

//Stow persistentKey data blob for future use

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
if let ckcBytes = getCKCFromKeyServer(forSPC: spcBytes) {
//Request Persistent Decryption Key by providing the CKC
let persistentkKey = try? keyRequest.persistableContentKey(fromKeyVendorResponse:
ckcBytes!, options: nil)

//Stow persistentKey data blob for future use

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Request SPC
keyRequest.makeStreamingContentKeyRequestData(forApp: appCertificate, contentIdentifier:
assetID, options: keyRequestOptions) <
(spcBytes: Data?, spcCreationError: Error?) 1in
//Send SPC to Key Server and obtain CKC
if let ckcBytes = getCKCFromKeyServer (forSPC: spcBytes) {
//Request Persistent Decryption Key by providing the CKC
let persistentkKey = try? keyRequest.persistableContentKey(fromKeyVendorResponse:
ckcBytes!, options: nil)

//Stow persistentKey data blob for future use

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Create Response using the Persistent Key that was created earlier
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: persistentKey)
//Set Response on the Persistable Key Request Object
keyRequest.processContentKeyResponse(response)

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Create Response using the Persistent Key that was created earlier
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: persistentKey)
//Set Response on the Persistable Key Request Object
keyRequest.processContentKeyResponse(response)

//Delegate callback that delivers AVPersistableContentKeyRequest
func contentKeySession(_ session: AVContentKeySession, didProvide keyRequest:
AVPersistableContentKeyRequest) {
//Create Response using the Persistent Key that was created earlier
let response = AVContentKeyResponse(falrPlayStreamingKeyResponseData: persistentKey)
//Set Response on the Persistable Key Request Object
keyRequest.processContentKeyResponse(response)

AVContentKeySession

AVContentKeySession

Works similarly to AvAssetResourceloader

AVContentKeySession

Works similarly to AvAssetResourceloader

AVAssetResourcelLoadingRequest —» AVContentKeyRequest

AVContentKeySession

Works similarly to AVAssetResourcelLoader

AVAssetResourcelLoadingRequest —» AVContentKeyRequest

AVAssetResourcelLoaderDelegate —» AVContentKeySessionDelegate

AVContentKeySession

Works similarly to AVAssetResourcelLoader

AVAssetResourcelLoadingRequest —» AVContentKeyRequest

AVAssetResourcelLoaderDelegate —» AVContentKeySessionDelegate

Except not tied to AVURLAsset at the time of creation

AVContentKeySession

Works similarly to AVAssetResourcelLoader

AVAssetResourcelLoadingRequest —» AVContentKeyRequest

AVAssetResourcelLoaderDelegate —» AVContentKeySessionDelegate
Except not tied to AVURLAsset at the time of creation

Create AVContentKeySession at any time

AVContentKeySession

Works similarly to AVAssetResourcelLoader

AVAssetResourcelLoadingRequest —» AVContentKeyRequest

AVAssetResourcelLoaderDelegate —» AVContentKeySessionDelegate
Except not tied to AVURLAsset at the time of creation
Create AVContentKeySession at any time

Add asset as a content key recipient before requesting playback

» Using addContentKeyRecipient()

Recommended Usage

Recommended Usage

AVContentKeySession for

» Content decryption keys

Recommended Usage

AVContentKeySession for

» Content decryption keys

AVAssetResourceloader for

 Playlists, media data, and metadata

Recommended Usage

AVContentKeySession for

» Content decryption keys

AVAssetResourcelLoader for
* Playlists, media data, and metadata

» Key loading is still supported

Recommended Usage

AVContentKeySession for

» Content decryption keys

AVAssetResourcelLoader for
* Playlists, media data, and metadata

» Key loading is still supported

What if AVURLAsset has both delegates installed?

Recommended Usage

AVContentKeySession for

» Content decryption keys

AVAssetResourcelLoader for
* Playlists, media data, and metadata

» Key loading is still supported

What if AVURLAsset has both delegates installed?

* AVAssetResourcelLoader delegate should defer key requests to AvContentKeySession

func resourcelLoader(_ resourcelLoader: AVAssetResourceloader,

shouldWaitForLoadingOfRequestedResource loadingRequest: AVAssetResourcelLoadingRequest) ->
Bool

1

//Check 1f the resource loading request 1s for Content Decryption Key
1f (requestIsForContentDecryptionKey(request: loadingRequest)) {
//Defer loading of Content Decryption Key to AVContentKeySession
loadingRequest.contentInformationRequest?.contentType =
AVStreamingKeyDeliveryContentKeyType
loadingRequest.finishlLoading()
return true

//Contlinue loading all other resources (playlists, media data & metadata)

return true

func resourcelLoader(_ resourcelLoader: AVAssetResourceloader,

shouldWaitForLoadingOfRequestedResource loadingRequest: AVAssetResourcelLoadingRequest) —->
Bool

1

//Check 1f the resource loading request 1s for Content Decryption Key
1f (requestIsForContentDecryptionKey(request: loadingRequest)) {
//Defer loading of Content Decryption Key to AVContentKeySession
loadingRequest.contentInformationRequest?.contentType =
AVStreamingKeyDeliveryContentKeyType
loadingRequest.finishlLoading()
return true

//Contlinue loading all other resources (playlists, media data & metadata)

return true

func resourcelLoader(_ resourcelLoader: AVAssetResourceloader,

shouldWaitForLoadingOfRequestedResource loadingRequest: AVAssetResourcelLoadingRequest) —->
Bool

1

//Check 1f the resource loading request 1s for Content Decryption Key
1f (requestIsForContentDecryptionKey(request: loadingRequest)) {
//Defer loading of Content Decryption Key to AVContentKeySession
loadingRequest.contentInformationRequest?.contentType =
AVStreamingKeyDeliveryContentKeyType
loadingRequest.finishlLoading()
return true

//Contlinue loading all other resources (playlists, media data & metadata)

return true

func resourcelLoader(_ resourcelLoader: AVAssetResourceloader,

shouldWaitForLoadingOfRequestedResource loadingRequest: AVAssetResourcelLoadingRequest) —->
Bool

1

//Check 1f the resource loading request 1s for Content Decryption Key
1f (requestIsForContentDecryptionKey(request: loadingRequest)) {
//Defer loading of Content Decryption Key to AVContentKeySession
loadingRequest.contentInformationRequest?.contentType =
AVStreamingKeyDeliveryContentKeyType
loadingRequest.finishLoading()
return true

//Contlinue loading all other resources (playlists, media data & metadata)

return true

func resourcelLoader(_ resourcelLoader: AVAssetResourceloader,

shouldWaitForLoadingOfRequestedResource loadingRequest: AVAssetResourcelLoadingRequest) —->
Bool

1

//Check 1f the resource loading request 1s for Content Decryption Key
1f (requestIsForContentDecryptionKey(request: loadingRequest)) {
//Defer loading of Content Decryption Key to AVContentKeySession
loadingRequest.contentInformationRequest?.contentType =
AVStreamingKeyDeliveryContentKeyType
loadingRequest.finishlLoading()
return true

//Continue loading all other resources (playlists, media data & metadata)

return true

Dual Expiry Windows for Persistent Keys @

Dual Expiry Windows for Persistent Keys @

Support dual expiry windows for persistent FPS keys

Dual Expiry Windows for Persistent Keys @

Support dual expiry windows for persistent FPS keys

Dual expiry window model for rentals

Dual Expiry Windows for Persistent Keys

Support dual expiry windows for persistent FPS keys
Dual expiry window model for rentals

Works for both online and offline playback

Dual Expiry Windows for Persistent Keys @

Support dual expiry windows for persistent FPS keys
Dual expiry window model for rentals
Works for both online and offline playback

Server opts in by sending suitable descriptor in CKC

Dual Expiry Windows for Persistent Keys @

Support dual expiry windows for persistent FPS keys
Dual expiry window model for rentals
Works for both online and offline playback

Server opts in by sending suitable descriptor in CKC

» Storage expiry

Dual Expiry Windows for Persistent Keys @

Support dual expiry windows for persistent FPS keys
Dual expiry window model for rentals
Works for both online and offline playback

Server opts in by sending suitable descriptor in CKC
» Storage expiry

* Playback expiry

Dual Expiry Windows for Persistent Keys

Dual Expiry Windows for Persistent Keys

Dual Expiry Windows for Persistent Keys

o

User rents
content

Dual Expiry Windows for Persistent Keys

Create Persistent Key
with CKC

User rents
content

Dual Expiry Windows for Persistent Keys

Create Persistent Key
with CKC

_.—.

Dual Expiry Windows for Persistent Keys

Dual Expiry Windows for Persistent Keys

—.—.

User starts
playback

I

Dual Expiry Windows for Persistent Keys

Use K1 to answer
Key Request

User starts
playback

Dual Expiry Windows for Persistent Keys

Use K1 to answer
Key Request

Receive updated
Persistent Key

Dual Expiry Windows for Persistent Keys

Receive updated
Persistent Key

Dual Expiry Windows for Persistent Keys

Receive updated
Persistent Key

Dual Expiry Windows for Persistent Keys

Dual Expiry Windows for Persistent Keys

Updated Persistent Key sent through delegate callback:
didUpdatePersistableContentKey

—.—.
e e

Summary

Summary

HEVC video and IMSC1 subtitles now available in HLS

Summary

HEVC video and IMSC1 subtitles now available in HLS

New EXT-X-GAP tag and metavariable support in m3u8

Summary

HEVC video and IMSC1 subtitles now available in HLS
New EXT-X-GAP tag and metavariable support in m3u8

Synchronized playback of live HLS streams

Summary

HEVC video and IMSC1 subtitles now available in HLS
New EXT-X-GAP tag and metavariable support in m3u8
Synchronized playback of live HLS streams

Better control over offline storage and aggregate asset downloads

Summary

HEVC video and IMSC1 subtitles now available in HLS

New EXT-X-GAP tag and metavariable support in m3u8
Synchronized playback of live HLS streams

Better control over offline storage and aggregate asset downloads

AVContentKeySession APl to manage and deliver content keys

Summary

HEVC video and IMSC1 subtitles now available in HLS

New EXT-X-GAP tag and metavariable support in m3u8
Synchronized playback of live HLS streams

Better control over offline storage and aggregate asset downloads
AVContentKeySession APl to manage and deliver content keys

Rental support for persistent FPS keys

More Information
https://developer.apple.com/wwdc1/7/504

Related Sessions

Error Handling Best Practices for HTTP Live Streaming

WWDC 2017 Video

HLS Authoring Update

WWDC 2017 Video

Introducing HEIF and HEVC

Executive Ballroom

Tuesday 4:10PM

Media and Gaming Accessibility

Grand Ballroom A

Wednesday 3:10PM

Introducing AirPlay 2

Executive Ballroom

Thursday 4:10PM

Working with HEIF and HEVC

Hall 2

Friday 11:00PM

Labs

AVFoundation Lab 1

Technology Lab F

Tue 1:00 - 410 PM

HTTP Live Streaming Lab 1

Technology Lab F

Wed 9:00 - 11:00 AM

AVFoundation Lab 2

Technology Lab G

Wed 11:00 AM - 1:00 PM

AVFoundation Lab 3

Technology Lab F

Thur 12:00 - 3:00 PM

HTTP Live Streaming Lab 2

Technology Lab G

Thur 3:10 - 6:00 PM

Labs (continued)

AVKit Lab 1 Technology Lab F Tue 1:00 - 4110 PM
HEIF/HEVC Lab 1 Technology Lab A Wed 9:00 - 11:00 AM
AirPlay Lab 1 Technology Lab A Wed 11:00 AM - 1:00 PM
AVKit Lab 2 Technology Lab G Wed 11:00 AM - 1:00 PM
AirPlay Lab 2 Technology Lab A Fri 9:00 - 11:00 AM

HEIF/HEVC Lab 2

Technology Lab F

Fri 12:00 - 1:50 PM

