Graphics and Games #WWDC1/

What's New with Screen
Recording and Live Broadcast

Session 606

Johnny Trenh, Software Engineer
Alexander Subbotin, Software Engineer

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Screen Recording

Record app visuals and audio
Record microphone input

Share recordings

Live Broadcast

Broadcast app visuals and audio

Xcode Templates

Details

HD quality
Low-performance impact

Minimal power usage

Privacy safeguards

User consent prompt

Adoption

'y
/ GALAXY
ON FIRE

Adoption

ReplayKit 2

ReplayKit 2

In-App Screen
Capture

ReplayKit 2

(I

In-App Screen I0S Screen Record
Capture and Broadcast

ReplayKit 2

In-App Screen I0S Screen Record Broadcast
Capture and Broadcast Pairing

ReplayKit 2

-

§ .
| ®] |
\ -
| . — :_’;F/
\ -/V/
N e
-~ e

In-App Screen I0S Screen Record Broadcast Fast Camera
Capture and Broadcast Pairing Switching

In-App Screen Capture

Johnny Trenh, Software Engineer

Screen Recording

Application

Screen Recording

Application

System

Screen Recording

Application ‘ i

System

In-App Screen Capture

Application ‘

In-App Screen Capture

Application ‘

In-App Screen Capture

Audio/Video Samples

Application

In-App Screen Capture

Direct access to audio and video samples
More control and flexibility

HD quality

Minimal power usage

Privacy safeguards

Simple API

// Capture API

func startCapture(handler captureHandler: ((CMSampleBuffer, RPSampleBufferType, Error?) ->

Void)?, completionHandler: ((Error?) -> Void)? = nil)

func stopCapture(handler: ((Error?) -> Void)? = nil)

// Initiating Capture

func didPressCaptureButton() {

RPScreenRecorder.shared()

let sharedRecorder
sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) 1n
// Handle Samples Passed Back from ReplayKit
}) { (error) 1in
// Update UI

// Capture Handler Block

func didPressCaptureButton() {
let sharedRecorder = RPScreenRecorder.shared()
sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) 1n
switch rpSampleType {
case RPSampleBufferTypeVideo:
self.videoInput.appendSampleBuffer(samples)
case RPSampleBufferTypeAudio:

self.audioInput.appendSampleBuffer(samples)
case RPSampleBufferTypeMic:
self.micInput.appendSampleBuffer(samples)
default:
println("sample has no matching type")
}
}) £ (error) 1in
updateCaptureButton(didCompleteError:error)

// Capture Handler Block

func didPressCaptureButton() {

RPScreenRecorder.shared()

let sharedRecorder
sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) 1n
switch rpSampleType {
case RPSampleBufferTypeVideo:
self.videoInput.appendSampleBuffer(samples)
case RPSampleBufferTypeAudio:

self.audioInput.appendSampleBuffer(samples)
case RPSampleBufferTypeMic:
self.micInput.appendSampleBuffer(samples)
default:
println("sample has no matching type")
}
}) { (error) 1in
updateCaptureButton(didCompleteError:error)

// Completion Handler Block

func didPressCaptureButton() {
let sharedRecorder = RPScreenRecorder.shared()
sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) 1n
switch rpSampleType {
case RPSampleBufferTypeVideo:
self.videoInput.appendSampleBuffer(samples)
case RPSampleBufferTypeAudio:

self.audioInput.appendSampleBuffer(samples)
case RPSampleBufferTypeMic:
self.micInput.appendSampleBuffer(samples)
default:
println("sample has no matching type")
}
}) £ (error) 1in
updateCaptureButton(didCompleteError:error)

// Completion Handler Block

func didPressCaptureButton() {
let sharedRecorder = RPScreenRecorder.shared()
sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) 1n
switch rpSampleType {
case RPSampleBufferTypeVideo:
self.videoInput.appendSampleBuffer(samples)
case RPSampleBufferTypeAudio:

self.audioInput.appendSampleBuffer(samples)
case RPSampleBufferTypeMic:
self.micInput.appendSampleBuffer(samples)
default:
println("sample has no matching type")
}
}) { (error) in

updateCaptureButton(didCompleteError:error)

Screen Capture Architecture

Audio/Video Samples

Application

Create and Manage Video

Create and Manage Video

Video Replays

i _‘ DemoBots
; > i Replay 1
. aallle 2:05pm
- g
>

DemoBots
' Replay 2
- 2:12pm

3 e) DemoBots
) > A Replay 3
V) |/ 2:27pm

Custom Video Editor

e —————————————————————————————————————

EXPAND FOCUS pop-up.

Custom Video Editor

Edit Replay

X €) ® Center Lower o 7

Share Application Screen

e num
har

Column Chart

Fundraiser Results by Salesperson

PARTICIPANT UNITS SOLD
Andy
Chloe
Daniel
Grace

Sophia

Pie Chart

Concert tickets
Food

Expense 3
Expense 4

Expense 5

Andy

Ryan

EXPENSES
Date

9/5/15 Anc

9/5/15 Ryan

PEOPLE

s in the Expenses

ou can add

Share Application Screen

Fundraiser Results by Salesperson

PARTICIPANT UNITS SOLD
Andy
Chloe
Daniel
Grace

Sophia

Column Chart Pie Chart

Grace

Concert tickets
Food 9/5/15 Ryan
Expense 3

Expense 4

Expense 5

Andy

Ryan

PEOPLE

ns in the Expenses

Ou can -J“,“,I

atea

Share Application Screen

Fundraiser Results by Salesperson

PARTICIPANT UNITS SOLD
Andy
Chloe
Daniel
Grace

Sophia

Column Chart Pie Chart

Grace

EXPENSES
Date

Concert tickets 9/5/15
Food 9/5/15 Ryan
Expense 3

Expense 4

Expense 5

PEOPLE

Andy

Ryan

ns in the Expenses

ou can add

10S Screen Recording and Broadcast

m

9:41 AM

Settings

Cellular

Personal Hotspot

Notifications
Control Center

Do Not Disturb

General

Display & Brightness
Wallpaper

Sounds

Siri

Touch ID & Passcode

Emergency SOS

9:41 AM 100% I

Settings
Q Settings
Cellular

Personal Hotspot

Notifications

Control Center

Do Not Disturb

General

Display & Brightness
Wallpaper

Sounds

Siri

Touch ID & Passcode

—_—
00000 3

9:41 AM

£ Control Center Customize

(—) Camera

= Quick Note

e Home

MORE CONTROLS

Stopwatch

Hearing Devices

Screen Recording

Accessibility Shortcuts

Voice Memos

Low Power

Wallet
Text Size
Timer

Magnifier

e0000 = 9:41 AM

£ Control Center Customize
\ﬂ Camera
Quick Note

Home

MORE CONTROLS

/ Stopwatch

Hearing Devices

Screen Recording
Accessibility Shortcuts
Voice Memos

= Low Power

Wallet
Text Size
- Timer

Magnifier

100% I

SCREEN RECORDING

Screen Recording video saved to Photos

escee = 9:41 AM 100% .

escee = 9:41 AM 100% .

Handling Interruptions

In-App Recording can be interrupted by I0S Screen Record and Broadcast
Recordings will be discarded if interrupted by iIOS Screen Record and Broadcast

Application will get delegate call with appropriate RPError

Live Broadcast

Alexander Subbotin, Software Engineer

Live Broadcast

Broadcast app visuals and audio
10S and tvOS
Can include microphone, camera feed

Content is secure

Live Broadcast

Setup Ul

Extension

A/V Samples
— S

A/V Stream

Upload
Extension

1<_.

Client App

Broadcaster App

Live Broadcast

Gl NG| —
B L
&

Client App

Live Broadcast

Setup Ul

Extension

A/V Samples

Upload
—

Extension

Broadcaster App

Broadcast API
App Client

RPBroadcastActivityViewController

e Allow user to select broadcaster

RPBroadcastController

» Manage broadcast (start, stop,
pause, resume)

RPBroadcastControllerDelegate

 Handle broadcast events

Go Live with ReplayKit WWDC 2016

Live Broadcast

Setup Ul

Extension

A/V Samples
T

A/V Stream

Upload
Extension

Broadcaster App

Broadcast API

App extensions

Setup Ul

Broadcast Setup Ul extension Extension

» Account sign-in, broadcast title

Broadcast Upload extension

A/V Samples Upload
S

* Encode samples, upload to service EXtension

A/V Stream
S

Each runs in its own process

Installed with broadcaster’s app

Broadcaster App

Broadcast API

Xcode templates

Choose a template for your new target:

i0S tvOS macOS Cross-platform @ broadcast

Broadcast Setup Broadcast Upload
Ul Extension Extension

Cancel

Broadcast SetupUI Extension

Ul to login, get broadcast name and other
Uploads name and icon of the app

Provides broadcast URL back to client app

\

W,

Broadcast SetupUI Extension

NSExtensionContext(RPBroadcastExtension)
 [oadBroadcastingApplicationinfo

« completeRequest(withBroadcast)

NITTITE
\

L) /

// Get name and 1icon for client application and provide to the broadcast service
class BroadcastSetupViewController: UIViewController {

override func viewDidLoad() {

super.viewDidLoad()
extensionContext?.loadBroadcastingApplicationInfo(completion: {
(bundleID, displayName, appIcon) in
broadcastSession.setAppInfo(bundleID, displayName, appIcon)
1)

// Get name and 1con for client application and provide to the broadcast service
class BroadcastSetupViewController: UIViewController {

override func viewDidLoad() {

super.viewDidLoad ()
extensionContext?.loadBroadcastingApplicationInfo(completion: {
(bundleID, displayName, appIcon) 1in
broadcastSession.setAppInfo(bundleID, displayName, appIcon)
1)

Search

Tower Dash

Phoenix Il Vainglory Galaxy on Fire...
qiwlefrjtjiylu
aljsldiflglih]]

B ZIixlicliviblnimPEs

Call of Champi... Atomic Super...

Phoenix Il Vainglory Galaxy on Fire...

B zZIixicliviblInim)

— -
— — —_—

Search

// Complete setup extension request with broadcastURL and setupInfo
class BroadcastSetupViewController: UIViewController {
func done() A
let broadcastURL = URL(string:"http://myCompany.com/broadcast/streamID")

let setupInfo: [String : NSCoding & NSObjectProtocol] =
["broadcastName": "example" as NSCoding & NSObjectProtocol]

extensionContext?.completeRequest(withBroadcast: broadcastURL!, setupInfo: setupInfo)

// Complete setup extension request with broadcastURL and setupInfo
class BroadcastSetupViewController: UIViewController {
func done() A
let broadcastURL = URL(string:"http://myCompany.com/broadcast/streamID")

let setupInfo: [String : NSCoding & NSObjectProtocol] =
["broadcastName": "example" as NSCoding & NSObjectProtocol]

extensionContext?.completeRequest(withBroadcast: broadcastURL!, setupInfo: setupInfo)

// You should always provide option to cancel broadcast
class BroadcastSetupViewController: UIViewController {
func cancel() {

let error NSError (domain: "broadcast", code: -1, userInfo: nil)

extensionContext?.cancelRequest(withError: error)

// You should always provide option to cancel broadcast
class BroadcastSetupViewController: UIViewController {
func cancel() {

let error NSError (domain: "broadcast", code: -1, userInfo: nil)

extensionContext?.cancelRequest(withError: error)

Broadcast Upload Extension

Recelves audio and video samples

Encodes and uploads stream to broadcaster

A/V Samples

A/V Stream |
—_— *

Upload

Extension

Broadcaster App

// SampleHandler created by Xcode templates for Upload Extension

class SampleHandler: RPBroadcastSampleHandler {

override func broadcastStarted(withSetupInfo setupInfo: [String : NSObject]?) {
// User has requested to start the broadcast

¥

override func broadcastPaused() {
// User has requested to pause the broadcast. Samples will stop being delivered.

¥

override func broadcastResumed() {
// User has requested to resume the broadcast. Samples delivery will resume.

¥

override func broadcastFinished() A
// User has requested to finish the broadcast

¥

override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer,

with sampleBufferType: RPSampleBufferType) {
// Handle the sample buffer here

// Override broadcastStarted to prepare to receive media samples
override func broadcastStarted(withSetupInfo setupInfo: [String : NSObject]?) {

if (setupInfo != nil) {
session.broadcastDescription.name = setupInfol"name"]
} else {

session.broadcastDescription.10SScreenBroadcast = true

if (setupInfo != nil) {
session.broadcastDescription.name = setupInfol"name"]
} else {

session.broadcastDescription.10SScreenBroadcast = true

Broadcast Upload Extension
processSampleBuffer

Upload
Extension

// Both audio and video samples are handled by processSampleBuffer routine
override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer,

with sampleBufferType: RPSampleBufferType) {
switch sampleBufferType {

case RPSampleBufferType.video:
var 1mageBuffer:CVImageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)!
var pts = CMSampleBufferGetPresentationTimeStamp(sampleBuffer) as CMTime
VTCompressionSessionEncodeFrame(session, 1mageBuffer, pts,
kCMTimeInvalid, nil, nil, nil)
break
case RPSampleBufferType.audioApp:
// Handle audio sample buffer for app audio
break
case RPSampleBufferType.audioMic:

// Handle audio sample buffer for mic audio
break

// Both audio and video samples are handled by processSampleBuffer routine
override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer,

with sampleBufferType: RPSampleBufferType) {
switch sampleBufferType {

case RPSampleBufferType.video:
var 1mageBuffer:CVImageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)!
var pts = CMSampleBufferGetPresentationTimeStamp(sampleBuffer) as CMTime
VTCompressionSessionEncodeFrame(session, 1mageBuffer, pts,
kCMTimeInvalid, nil, nil, nil)
break
case RPSampleBufferType.audioApp:
// Handle audio sample buffer for app audio
break
case RPSampleBufferType.audioMic:

// Handle audio sample buffer for mic audio
break

Live Broadcast

Setup Ul

Extension

A/V Samples
— S

A/V Stream

Upload
Extension

1<_.

Client App

Broadcaster App

Service Information

Chat, likes, other data

Service Information

Information provided by the service during broadcast
* Dictionary
* KVO observable

Can use to communicate service data back to user
| ikes, viewer count, and chat
class SampleHandler: RPBroadcastSampleHandler <

func updateViewersCount(_ count: UInt) {
updateServiceInfo(["count": (count)])

Broadcast Pairing

Johnny Trenh, Software Engineer

Broadcast Pairing Flow

e MONTHLY GOAL

MONTHLY BUDGET

Budget App

Budget Report MONTHLY GOAL

MONTHLY BUDGE

v.

a

Tom
~ The budget looks great!

Lisa
Im really excited about our financial outlook.

Conference App

Broadcast Pairing Flow

| 4

e MONTHLY GOAL

MONTHLY BUDGET

Budget App

Budget Report MONTHLY GOAL

MONTHLY BUDGE'I

v.

Tom
| The budget looks great!

Lisa
Im really excited about our financial outlook.

Conference App

Broadcast Pairing Flow

ReplayKit Broadcast

BudgetApp would like to live
stream to ConferenceStream

Cancel Accept

Budget App

Budget Report MONTHLY GOAI

MONTHLY BUDGE'I
o
n

Tom

_ The budget looks great!

Lisa
Im really excited about our financial outlook.

\ J/

Conference App

J

Broadcast Pairing Flow

Budget App Conference App

Broadcast Pairing Flow

MONTHLY GO

BROHAC Repo: MONTHLY GOAL

MONTHLY BUDGIE

Tom

_ The budget looks great!

Lisa
Im really excited about our financial outlook.

\ -,

Budget App Conference App

// Broadcast Pairing API

class func load(withPreferredExtension preferredExtension: String?, handler: @escapilng

(RPBroadcastActivityViewController?, Error?) —> Void)

Initiating Broadcast Pairing

MONTHLY GOAL

MONTHLY BUDGET

L]
' - '
\
|

a @

X J

func didPressBroadcastPairButton () {

RPBroadcastActivityViewController.load(withPreferredExtension:"com.conferenceApp.broadcastExten
stion") { (broadcastAVC, error) in

broadcastAVC?.delegate = self
self.present(broadcastAVC, animated: true, completion: nil)

Initiating Broadcast Pairing

Budget Report MONTHLY GOAL

MONTHLY BUDGET

Summary By Category
Transactions

ReplayKit Broadcast

BudgetApp would like to live
stream to ConferenceStream

Initiating Broadcast Pairing

ReplayKit Broadcast

BudgetApp would like to live
stream to ConferenceStream

Cancel Accept

func didPressBroadcastPairButton () {

RPBroadcastActivityViewController.load(withPreferredExtension:"com.conferenceApp.broadcastExten
stion") { (broadcastAVC, error) in

broadcastAVC?.delegate = self
self.present(broadcastAVC, animated: true, completion: nil)

Broadcast Pairing

Application provides extension bundlelD

User approves extension

Fast Camera Switching

Fast Camera Switching

Front Camera and Back Camera switching

Camera preview view available in RPScreenRecorder

Subclass of UlView

Developer is responsible for Ul elements for fast switching

Fast Camera Switching

RPScreenRecorder.cameraPosition

RPCameraPosition

Initiating Camera Preview

Initiating Camera Switching

Initiating Camera Switching

func didPressCameraSwitch() {

let sharedRecorder = RPScreenRecorder.shared()

1f (sharedRecorder.cameraPosition == RPCameraPosition.back) {
sharedRecorder.cameraPosition = RPCameraPosition.front

r
else {

sharedRecorder.cameraPosition = RPCameraPosition.back
b

Summary

In-App Screen Capture
I0S Screen Record and Broadcast

Broadcast Pairing

Fast Camera Switching

More Information
https://developer.apple.com/wwdc1/7/606

Labs

ReplayKit 2 Lab Technology Lab A Fri 11:00AM-1:50PM

