
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Johnny Trenh, Software Engineer
Alexander Subbotin, Software Engineer

•What's New with Screen 
Recording and Live Broadcast
• Session 606

Graphics and Games

Screen Recording

Record app visuals and audio

Record microphone input

Share recordings

Live Broadcast

Broadcast app visuals and audio

Xcode Templates

Details

HD quality

Low-performance impact

Minimal power usage

Privacy safeguards

User consent prompt

Adoption

Adoption

•ReplayKit 2

ReplayKit 2
NEW

In-App Screen
Capture

ReplayKit 2
NEW

iOS Screen Record
and Broadcast

In-App Screen
Capture

ReplayKit 2
NEW

iOS Screen Record
and Broadcast

In-App Screen
Capture

Broadcast 
Pairing

ReplayKit 2

iOS Screen Record
and Broadcast

In-App Screen
Capture

Broadcast 
Pairing

Fast Camera
Switching

NEW

Johnny Trenh, Software Engineer

•In-App Screen Capture

Screen Recording

Application

Application

RPScreenRecorder

Screen Recording

Application

Application

RPScreenRecorder

Replay DaemonSystem Movie

Screen Recording

Application

Application

RPScreenRecorder

Replay DaemonSystem Preview and Share Extension

RPPreviewViewController

Movie

In-App Screen Capture

Application

RPScreenRecorder

Application

In-App Screen Capture

Application

Replay DaemonSystem

Application

RPScreenRecorder

Audio/Video Samples

In-App Screen Capture

Application

Replay DaemonSystem

Application

RPScreenRecorder

Audio/Video Samples

Audio/Video Samples

NEW

In-App Screen Capture

Direct access to audio and video samples

More control and flexibility

HD quality

Minimal power usage

Privacy safeguards

Simple API

// Capture API

func startCapture(handler captureHandler: ((CMSampleBuffer, RPSampleBufferType, Error?) ->
Void)?, completionHandler: ((Error?) -> Void)? = nil)

func stopCapture(handler: ((Error?) -> Void)? = nil)

// Initiating Capture

func didPressCaptureButton() {
 let sharedRecorder = RPScreenRecorder.shared()
 sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) in
 // Handle Samples Passed Back from ReplayKit
 }) { (error) in
 // Update UI
 }
}

// Capture Handler Block

func didPressCaptureButton() {
 let sharedRecorder = RPScreenRecorder.shared()
 sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) in
 switch rpSampleType {
 case RPSampleBufferTypeVideo:
 self.videoInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeAudio:
 self.audioInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeMic:
 self.micInput.appendSampleBuffer(samples)
 default:
 println("sample has no matching type")
 }
 }) { (error) in
 updateCaptureButton(didCompleteError:error)
 }
}

// Capture Handler Block

func didPressCaptureButton() {
 let sharedRecorder = RPScreenRecorder.shared()
 sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) in
 switch rpSampleType {
 case RPSampleBufferTypeVideo:
 self.videoInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeAudio:
 self.audioInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeMic:
 self.micInput.appendSampleBuffer(samples)
 default:
 println("sample has no matching type")
 }
 }) { (error) in
 updateCaptureButton(didCompleteError:error)
 }
}

// Completion Handler Block

func didPressCaptureButton() {
 let sharedRecorder = RPScreenRecorder.shared()
 sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) in
 switch rpSampleType {
 case RPSampleBufferTypeVideo:
 self.videoInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeAudio:
 self.audioInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeMic:
 self.micInput.appendSampleBuffer(samples)
 default:
 println("sample has no matching type")
 }
 }) { (error) in
 updateCaptureButton(didCompleteError:error)
 }
}

// Completion Handler Block

func didPressCaptureButton() {
 let sharedRecorder = RPScreenRecorder.shared()
 sharedRecorder.startCapture(handler: { (cmSampleBuffer, rpSampleType, error) in
 switch rpSampleType {
 case RPSampleBufferTypeVideo:
 self.videoInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeAudio:
 self.audioInput.appendSampleBuffer(samples)
 case RPSampleBufferTypeMic:
 self.micInput.appendSampleBuffer(samples)
 default:
 println("sample has no matching type")
 }
 }) { (error) in
 updateCaptureButton(didCompleteError:error)
 }
}

Screen Capture Architecture

Application

Replay DaemonSystem

Application

RPScreenRecorder

Audio/Video Samples

Audio/Video Samples

Create and Manage Video

Edit Replay

Create and Manage Video

Edit Replay

Custom Video Editor

Edit Replay

Custom Video Editor

Edit Replay

Share Application Screen

Share Application Screen

Share Application Screen

•iOS Screen Recording and Broadcast

Handling Interruptions

In-App Recording can be interrupted by iOS Screen Record and Broadcast

Recordings will be discarded if interrupted by iOS Screen Record and Broadcast

Application will get delegate call with appropriate RPError

Alexander Subbotin, Software Engineer

•Live Broadcast

Live Broadcast

Broadcast app visuals and audio

iOS and tvOS

Can include microphone, camera feed

Content is secure

Live Broadcast

ReplayKit

Broadcaster App

Client App

Upload
Extension

A/V StreamA/V Samples

Setup UI
Extension

Live Broadcast

ReplayKit
A/V StreamA/V Samples

Broadcaster App

Client App

Upload
Extension

Setup UI
Extension

Live Broadcast

ReplayKit

Broadcaster App

Client App

Upload
Extension

A/V StreamA/V Samples

Setup UI
Extension

Broadcast API
App Client

RPBroadcastActivityViewController
• Allow user to select broadcaster

RPBroadcastController
• Manage broadcast (start, stop, 
pause, resume)

RPBroadcastControllerDelegate
• Handle broadcast events

User Enters Broadcast Information

User Initiates Broadcast

User Selects Broadcaster

Broadcast Starts

Go Live with ReplayKit WWDC 2016

Live Broadcast

ReplayKit

Broadcaster App

Client App

Upload
Extension

A/V StreamA/V Samples

Setup UI
Extension

Broadcast API
App extensions

Broadcast Setup UI extension
• Account sign-in, broadcast title

Broadcast Upload extension
• Encode samples, upload to service

Each runs in its own process

Installed with broadcaster’s app

Broadcaster App

Upload
Extension

A/V StreamA/V Samples

Setup UI
Extension

Broadcast API
Xcode templates

Broadcast SetupUI Extension

UI to login, get broadcast name and other

Uploads name and icon of the app

Provides broadcast URL back to client app

Broadcast SetupUI Extension

NSExtensionContext(RPBroadcastExtension)
• loadBroadcastingApplicationInfo
• completeRequest(withBroadcast)

// Get name and icon for client application and provide to the broadcast service
class BroadcastSetupViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 extensionContext?.loadBroadcastingApplicationInfo(completion: {
 (bundleID, displayName, appIcon) in
 broadcastSession.setAppInfo(bundleID, displayName, appIcon)
 })
 }
}

// Get name and icon for client application and provide to the broadcast service
class BroadcastSetupViewController: UIViewController {
 override func viewDidLoad() {
 super.viewDidLoad()
 extensionContext?.loadBroadcastingApplicationInfo(completion: {
 (bundleID, displayName, appIcon) in
 broadcastSession.setAppInfo(bundleID, displayName, appIcon)
 })
 }
}

// Complete setup extension request with broadcastURL and setupInfo
class BroadcastSetupViewController: UIViewController {
 func done() {
 let broadcastURL = URL(string:”http://myCompany.com/broadcast/streamID")

 let setupInfo: [String : NSCoding & NSObjectProtocol] =
 ["broadcastName": "example" as NSCoding & NSObjectProtocol]

 extensionContext?.completeRequest(withBroadcast: broadcastURL!, setupInfo: setupInfo)
 }
}

// Complete setup extension request with broadcastURL and setupInfo
class BroadcastSetupViewController: UIViewController {
 func done() {
 let broadcastURL = URL(string:”http://myCompany.com/broadcast/streamID")

 let setupInfo: [String : NSCoding & NSObjectProtocol] =
 ["broadcastName": "example" as NSCoding & NSObjectProtocol]

 extensionContext?.completeRequest(withBroadcast: broadcastURL!, setupInfo: setupInfo)
 }
}

// You should always provide option to cancel broadcast
class BroadcastSetupViewController: UIViewController {
 func cancel() {
 let error = NSError(domain: "broadcast", code: -1, userInfo: nil)
 extensionContext?.cancelRequest(withError: error)
 }
}

// You should always provide option to cancel broadcast
class BroadcastSetupViewController: UIViewController {
 func cancel() {
 let error = NSError(domain: "broadcast", code: -1, userInfo: nil)
 extensionContext?.cancelRequest(withError: error)
 }
}

Broadcast Upload Extension

Receives audio and video samples

Encodes and uploads stream to broadcaster

Broadcaster App

Upload
Extension

A/V StreamA/V Samples

Setup UI
Extension

// SampleHandler created by Xcode templates for Upload Extension
class SampleHandler: RPBroadcastSampleHandler {

 override func broadcastStarted(withSetupInfo setupInfo: [String : NSObject]?) {
 // User has requested to start the broadcast
 }

 override func broadcastPaused() {
 // User has requested to pause the broadcast. Samples will stop being delivered.
 }

 override func broadcastResumed() {
 // User has requested to resume the broadcast. Samples delivery will resume.
 }

 override func broadcastFinished() {
 // User has requested to finish the broadcast
 }

 override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer,
 with sampleBufferType: RPSampleBufferType) {
 // Handle the sample buffer here
 }
}

// Override broadcastStarted to prepare to receive media samples
override func broadcastStarted(withSetupInfo setupInfo: [String : NSObject]?) {
 if (setupInfo != nil) {
 session.broadcastDescription.name = setupInfo["name"]
 } else {
 session.broadcastDescription.iOSScreenBroadcast = true
 }
}

// Override broadcastStarted to prepare to receive media samples
override func broadcastStarted(withSetupInfo setupInfo: [String : NSObject]?) {
 if (setupInfo != nil) {
 session.broadcastDescription.name = setupInfo["name"]
 } else {
 session.broadcastDescription.iOSScreenBroadcast = true
 }
}

Upload
Extension

Broadcast Upload Extension
processSampleBuffer

Video (screen)

Audio (app)

Audio (mic)

VideoToolbox

// Both audio and video samples are handled by processSampleBuffer routine
override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer,
 with sampleBufferType: RPSampleBufferType) {
 switch sampleBufferType {
 case RPSampleBufferType.video:
 var imageBuffer:CVImageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)!
 var pts = CMSampleBufferGetPresentationTimeStamp(sampleBuffer) as CMTime
 VTCompressionSessionEncodeFrame(session, imageBuffer, pts,
 kCMTimeInvalid, nil, nil, nil)
 break
 case RPSampleBufferType.audioApp:
 // Handle audio sample buffer for app audio
 break
 case RPSampleBufferType.audioMic:
 // Handle audio sample buffer for mic audio
 break
 }
}

// Both audio and video samples are handled by processSampleBuffer routine
override func processSampleBuffer(_ sampleBuffer: CMSampleBuffer,
 with sampleBufferType: RPSampleBufferType) {
 switch sampleBufferType {
 case RPSampleBufferType.video:
 var imageBuffer:CVImageBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)!
 var pts = CMSampleBufferGetPresentationTimeStamp(sampleBuffer) as CMTime
 VTCompressionSessionEncodeFrame(session, imageBuffer, pts,
 kCMTimeInvalid, nil, nil, nil)
 break
 case RPSampleBufferType.audioApp:
 // Handle audio sample buffer for app audio
 break
 case RPSampleBufferType.audioMic:
 // Handle audio sample buffer for mic audio
 break
 }
}

Live Broadcast

ReplayKit

Broadcaster App

Client App

Upload
Extension

A/V StreamA/V Samples

Setup UI
Extension

Service Information

ReplayKit Upload
Extension

A/V StreamA/V Samples

Service Info
Chat, likes, other data

Setup UI
Extension

Service Information

Information provided by the service during broadcast
• Dictionary
• KVO observable

Can use to communicate service data back to user
• Likes, viewer count, and chat

class SampleHandler: RPBroadcastSampleHandler {
 func updateViewersCount(_ count: UInt) {
 updateServiceInfo(["count": (count)])
 }
}

Johnny Trenh, Software Engineer

•Broadcast Pairing

Broadcast
Extension

Broadcast Pairing Flow

Conference AppBudget App

Broadcast
Extension

Broadcast Pairing Flow

Conference AppBudget App

Application

RPBroadcastActivity 
ViewController

Broadcast Pairing Flow

Conference AppBudget App

NEW

Application

RPBroadcastActivity 
ViewController

Broadcast
Extension

BudgetApp would like to live 
stream to ConferenceStream

Broadcast Pairing Flow

Conference AppBudget App

Application

RPBroadcastActivity 
ViewController

User Enters Broadcast  
Information

Broadcast
Extension

Broadcast Pairing Flow

Application

RPBroadcastActivity 
ViewController

User Enters Broadcast  
Information

Broadcast Starts

Conference AppBudget App

Broadcast
Extension

// Broadcast Pairing API

class func load(withPreferredExtension preferredExtension: String?, handler: @escaping
(RPBroadcastActivityViewController?, Error?) -> Void)

Initiating Broadcast Pairing

func didPressBroadcastPairButton () {

RPBroadcastActivityViewController.load(withPreferredExtension:"com.conferenceApp.broadcastExten
stion") { (broadcastAVC, error) in
 broadcastAVC?.delegate = self
 self.present(broadcastAVC, animated: true, completion: nil)
 }
}

func didPressBroadcastPairButton () {

RPBroadcastActivityViewController.load(withPreferredExtension:"com.conferenceApp.broadcastExten
stion") { (broadcastAVC, error) in
 broadcastAVC?.delegate = self
 self.present(broadcastAVC, animated: true, completion: nil)
 }
}

Initiating Broadcast Pairing

BudgetApp would like to live 
stream to ConferenceStream

func didPressBroadcastPairButton () {

RPBroadcastActivityViewController.load(withPreferredExtension:"com.conferenceApp.broadcastExten
stion") { (broadcastAVC, error) in
 broadcastAVC?.delegate = self
 self.present(broadcastAVC, animated: true, completion: nil)
 }
}

Initiating Broadcast Pairing

BudgetApp would like to live 
stream to ConferenceStream

Broadcast Pairing

Application provides extension bundleID

User approves extension

•Fast Camera Switching

Fast Camera Switching

Front Camera and Back Camera switching

Camera preview view available in RPScreenRecorder

Subclass of UIView

Developer is responsible for UI elements for fast switching

Fast Camera Switching

RPScreenRecorder.cameraPosition

var cameraPosition: RPCameraPosition

public enum RPCameraPosition: Int {
 case front

 case back
}

RPCameraPosition

Initiating Camera Preview

 func showPreviewView() {
 let sharedRecorder = RPScreenRecorder.shared()
 let cameraView = sharedRecorder.cameraPreviewView
 self.view.addSubview(cameraView!)
 }

Initiating Camera Switching

func didPressCameraSwitch() {
 let sharedRecorder = RPScreenRecorder.shared()
 if (sharedRecorder.cameraPosition == RPCameraPosition.back) {
 sharedRecorder.cameraPosition = RPCameraPosition.front
 }
 else {
 sharedRecorder.cameraPosition = RPCameraPosition.back
 }
 }

Initiating Camera Switching

func didPressCameraSwitch() {
 let sharedRecorder = RPScreenRecorder.shared()
 if (sharedRecorder.cameraPosition == RPCameraPosition.back) {
 sharedRecorder.cameraPosition = RPCameraPosition.front
 }
 else {
 sharedRecorder.cameraPosition = RPCameraPosition.back
 }
 }

Summary

In-App Screen Capture

iOS Screen Record and Broadcast

Broadcast Pairing

Fast Camera Switching

More Information
https://developer.apple.com/wwdc17/606

Labs

ReplayKit 2 Lab Technology Lab A Fri 11:00AM–1:50PM

