
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

•Advances in Networking
•Part 2
• Session 709

System Frameworks

Jeffrey Twu, Apple CFNetwork Engineer
Jeff Jenkins, Apple CFNetwork Engineer
Stuart Cheshire, Apple DEST

Advances in Networking
Part 2

•URLSession Adaptable Connectivity API
•URLSessionTask Scheduling API
•URLSession enhancements
•Best practices
•Ongoing developments

•URLSession
•Adaptable Connectivity API

Introduction
URLSession

Easy-to-use API for networking
• Emphasis on URL loading

Supported on all Apple platforms

Replacement for deprecated NSURLConnection API

What’s New in Foundation Networking WWDC 2013

What’s New in Foundation Networking WWDC 2014

https://developer.apple.com/videos/play/wwdc2013/705/
https://developer.apple.com/videos/play/wwdc2014/707/

URLSession and Connectivity

URLSession with defaultSessionConfiguration fetches or fails

Lack of connectivity causes URLSessionTasks to immediately fail with errors
• NSURLErrorNotConnectedToInternet
• NSURLErrorCannotConnectToHost

Background URLSession has built-in support for monitoring connectivity

Unsatisfactory Connectivity
Examples

No Ethernet cable, not connected to Wi-Fi network, no cellular signal

Device in Airplane Mode

Only cellular connectivity, but allowsCellularAccess prohibits cellular

VPN not connected

Current Solutions

Each app must manually retry URLSessionTasks once connectivity is satisfactory

When is that?
• Monitor conditions with SCNetworkReachability API
• Polling/manual retry

Current mechanisms cannot guarantee connection establishment will succeed

Wouldn’t it be easier to say…

“Please fetch me this resource
 when the network is available.”

URLSession Adaptable Connectivity API
Built-in connectivity monitoring

Indicates URLSession should monitor network conditions and wait to start tasks

Begins network load once connectivity is satisfactory instead of delivering errors
• No longer a need to monitor connectivity and manually retry requests

New URLSessionConfiguration property var waitsForConnectivity: Bool
• Not necessary for background URLSession (does this automatically)

NEW

URLSession Adaptable Connectivity API
Insufficient connectivity notification

Notification that a URLSessionTask is waiting for connectivity before starting

Opportunity to alter app behavior or indicate status

New URLSessionTaskDelegate method 
 urlSession(_:taskIsWaitingForConnectivity:)
• Optional—not required to take advantage of adaptable connectivity functionality
• Called at most one time for each URLSessionTask

NEW

URLSession Adaptable Connectivity API
When to enable it

No downside—if connectivity is available, tasks will start right away

General recommendation
 Always enable waitsForConnectivity

Exception
 Requests that must be completed immediately, or not at all 
 for example, “Fill or Kill” stock trading transaction

URLSession Adaptable Connectivity API
What to expect

Create and resume URLSessionTask

If insufficient connectivity
 urlSession(_:taskIsWaitingForConnectivity:) called (if implemented)
 URLSession waits until connectivity is satisfactory

Existing URLSessionDelegate methods/completion handler called, just as before

// URLSession Adaptable Connectivity API
// Example 1: Enabling adaptive connectivity

let config = URLSessionConfiguration.default
config.waitsForConnectivity = true

let session = URLSession(configuration: config)
let url = URL(string: "https://www.example.com/")!

let task = session.dataTask(with: url) { (data: Data?, response: URLResponse?, error: Error?)
in
 ...
}

task.resume()

Maintain Robustness to Failures

Adaptable connectivity applies to establishing new connections

Network and server problems can still occur once connected, causing failures
• NSURLErrorConnectionLost
• NSURLErrorTimedOut

Application-specific logic must determine resolution
• Refer to Technical Q&A QA1941 on Apple Developer website 
Handling “The network connection was lost” Errors

https://developer.apple.com/library/content/qa/qa1941/_index.html
https://developer.apple.com/library/content/qa/qa1941/_index.html

Recap

Polling for network connectivity is prone to problems

Avoid retrying URLSessionTasks due to lack of network connectivity

Let URLSession do the work
• Monitors network conditions for you
• Begins loading your URLSessionTask once connectivity is satisfactory

•URLSessionTask Scheduling API

Jeff Jenkins, Apple CFNetwork Engineer

Introduction
Background URLSession

Uploads and downloads continue while your app is not running

System monitors conditions (for example, network, battery, etc.) for you

App launched
• When delegate response is required
• When tasks are complete

Background App Refresh
What is it?

Need data from network to present fresh information to user
• Stock prices, flight status
• News, social network feed
• Weather forecast

Applies to apps and watchOS complications

What’s New with Multitasking WWDC 2013

Keeping Your Watch App Up to Date WWDC 2016

https://developer.apple.com/videos/play/wwdc2013/204/
https://developer.apple.com/videos/play/wwdc2016/218/

Background App Refresh in Action

Time

Request  
background  
launch for

information refresh

New
URLSessionTask  
in background
URLSession

URLSessionTask
complete

User launches app
and sees fresh
information

Running Suspended Background

App State

Room for Improvement

Extra background launch just to create a URLSessionTask to fetch future data
• Extra launch impacts battery life

Context may change between request creation and start of networking
• Stale request wastes network data

System lacks information about your task to know the best time to schedule it

URLSessionTask Scheduling API

Indicate the desired start time of a URLSessionTask

New URLSessionTask property var earliestBeginDate: Date?
• Guaranteed that task will not begin networking earlier than this
• Only applicable to background URLSession

Time

resume() earliestBeginDate timeoutInterval
ForResource

EligibleWaiting
Timeout

NEW

Background App Refresh in Action
Original workflow

URLSessionTask
complete

User launches app
and sees fresh
information

Request background
launch for

information refresh

New
URLSessionTask in

background
URLSession

Running Suspended Background

App State

Time

Background App Refresh in Action
Improved workflow

URLSessionTask
complete

User launches app
and sees fresh
information

Request background
launch for

information refresh

New
URLSessionTask in

background
URLSession

New
URLSessionTask

with
earliestBeginDate

Running Suspended Background

App State

Time

URLSessionTask Scheduling API

Opportunity to alter future request when system is ready to begin networking

New URLSessionTaskDelegate method 
 urlSession(_:task:willBeginDelayedRequest:completionHandler:)
• Only called for tasks with earliestBeginDate set
• Background URLSession only
• Optional—not required to take advantage of URLSessionTask scheduling
• Completion handler—proceed, change request (URL and headers), or cancel

NEW

Background App Refresh in Action

Time

New
URLSessionTask  

with
earliestBeginDate

Change
URLSessionTask
before starting
network load?

URLSessionTask
complete

User launches app
and sees fresh
information

Advanced workflow

Running Suspended Background

App State

URLSessionTask Scheduling API

Indicate estimated transfer size of each URLSessionTask

Allows better background task scheduling by the system

Two new URLSessionTask properties:
var countOfBytesClientExpectsToSend: Int64
var countOfBytesClientExpectsToReceive: Int64

Provide “best guess” (approximate upper bound) 
 or NSURLSessionTransferSizeUnknown

NEW

// URLSessionTask Scheduling API
// Example 1: Scheduling a background task to start no earlier than 2 hours in the future

let config = URLSessionConfiguration.background(withIdentifier: "...")
let session = URLSession(configuration: config, delegate: ..., delegateQueue: ...)

var request = URLRequest(url: URL(string: "https://www.example.com/")!)
request.addValue("...", forHTTPHeaderField: "...")

let task = session.downloadTask(with: request)

// Indicate desired scheduling
task.earliestBeginDate = Date(timeIntervalSinceNow: 2 * 60 * 60)

// Request is small (no body, one added header) and response is ~2 KiB
task.countOfBytesClientExpectsToSend = 80
task.countOfBytesClientExpectsToReceive = 2048

task.resume()

// URLSessionTask Scheduling API
// Example 2: Altering HTTP request headers to avoid a stale request

func urlSession(_ session: URLSession, task: URLSessionTask, willBeginDelayedRequest request:
URLRequest, completionHandler: @escaping (URLSession.DelayedRequestDisposition, URLRequest?) ->
Void) {

 var updatedRequest = request
 updatedRequest.addValue("...", forHTTPHeaderField: "...")

 completionHandler(.useNewRequest, updatedRequest)

}

Recap

Background URLSession allows apps to upload and download when not running

New URLSessionTask scheduling API gives you control
• Delay tasks to when you need them for the freshest information
• Opportunity to alter tasks before network load begins to avoid stale requests

Help us deliver the best customer experience
• Specify expected byte counts for every URLSessionTask

•URLSession Enhancements

Stuart Cheshire, Apple DEST

URLSession Enhancements

ProgressReporting

Brotli compression

Public Suffix List updates

URLSessionStreamTask and authenticating proxies

URLSessionTask Progress Tracking
Old API for progress calculation

Extra work for URLSession API clients

Need Key-value Observing setup for
countOfBytesExpectedToReceive, countOfBytesReceived
countOfBytesExpectedToSend, countOfBytesSent

Not always available
countOfBytesExpectedToReceive
countOfBytesExpectedToSend

URLSessionTask Adopts ProgressReporting
Improved API for progress calculation

Implements ProgressReporting protocol
class URLSessionTask : NSObject, NSCopying, ProgressReporting

class URLSessionTask : NSObject, NSCopying, ProgressReporting
public var progress: Progress { get }

NEW

URLSessionTask Adopts ProgressReporting
Improved API for progress calculation

URLSessionTask overall work completed
var fractionCompleted: Double [0.0, 1.0]

General and more specific progress description
var localizedDescription: String!
var localizedAdditionalDescription: String!

Can attach Progress object to a UIProgressView or NSProgressIndicator

Progress of multiple tasks by using a parent progress object

Key-value observing and Cocoa bindings

Progress

func resume()

func pause()

func cancel()

URLSessionTask Adopts ProgressReporting
URLSessionTask and Progress object state management

Progress state management methods change URLSessionTask state

URLSessionTask

func resume()

func suspend()

func cancel()

URLSession Brotli Support

RFC 7932 “Brotli Compressed Data Format”

Content-Encoding: br
Faster URL loads
• Median 15% improvement in compressed sizes 
versus gzip for text-based assets (HTML, JS, CSS, ...)

Requires HTTPS (TLS)

NEW

https://tools.ietf.org/html/rfc7932

URLSession Public Suffix List
Effective top level domain list

Public Suffix List
• https://publicsuffix.org

Heuristic to determine administrative boundaries
• “apple.com” is one organization
• “com.au” is many organizations

https://publicsuffix.org

URLSession Public Suffix List Updates
Effective top level domain list

URLSession can now receive updates over the air

Update can be pushed biweekly (or even more frequently) 
depending on the number of TLDs added to the list

Better security for users against cookie attacks
• URLSession APIs
• HTTPCookieStorage

NEW

URLSessionStreamTask

Allows for direct TCP/IP connection to a host and port

Optional secure handshaking (STARTTLS)

Ability to convert to legacy NSInputStream/NSOutputStream

For new code we recommend using native URLSessionStreamTask APIs

Navigation of authenticating HTTPS proxies

Networking with NSURLSession WWDC 2015

NEW

https://developer.apple.com/videos/play/wwdc2015/711/

URLSession Enhancements

ProgressReporting

Brotli compression

Public Suffix List updates

URLSessionStreamTask and authenticating proxies

•Networking Best Practices
•Tips to remember

Networking Best Practices

Don’t use BSD sockets

Don’t embed networking libraries

Do use Apple’s APIs to get benefits of future improvements
• Wi-Fi Assist
• Power efficiency
• Discretionary/background work

Do use connect-by-name APIs

Networking Best Practices
URLSession timers

var timeoutIntervalForResource: TimeInterval

var timeoutIntervalForRequest: TimeInterval

Fires if entire resource not received in time

Once started, fires if no forward progress being made

Networking Best Practices
URLSession usage

Generally one URLSession per app

Multiple concurrent URLSessionTasks can share single URLSession

Clean up any dynamic URLSession objects that you create
• finishTasksAndInvalidate
• invalidateAndCancel

Networking Best Practices
Convenience methods and delegate callbacks

Delegate callbacks
• Intermediate progress reported to the delegate object

Convenience methods
• Final outcome reported to completionHandler

Don’t use both on the same URLSession
• If using completionHandler, no delegate callbacks delivered
• Two exceptions: taskIsWaitingForConnectivity 
 didReceiveAuthenticationChallenge

Default and Ephemeral Configuration
+ waitsForConnectivity Background Configuration

Background Configuration  
+ discretionary

In-process Out-of-process Out-of-process

No retry Automatic retry until
timeoutIntervalForResource

Automatic retry until
timeoutIntervalForResource

Delegate + convenience Delegate only Delegate only

Tasks start immediately
If fails, will call taskIsWaitingForConnectivity

and automatically retry as necessary

Tasks will consider
connectivity, power, etc.

Scheduled for optimal
system performance

URLSession Best Practices
Impact of URLSessionConfiguration and loading control properties

Application loading requirements
More urgent Less urgent

•Ongoing Developments

TLS 1.3
Transport Layer Security

Update to TLS 1.2

TLS 1.3 standard expected to be finalized by the end of this year

Apple is participating

Draft implementation available for testing now

Your Apps and Evolving Network Security Standards WWDC 2017

https://developer.apple.com/videos/play/wwdc2017/701/

QUIC
Quick UDP internet connections

End-to-End Transport Protocol, like TCP

Started as Google experiment

Now an IETF Working Group

Specification is making rapid progress, but still far from complete

Apple is participating

15 years

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

Bonjour Launch
Mac OS X 10.2

Jaguar

Bonjour for
Windows,
Linux, Java

Avahi (GPL)
for Linux

Wide-area (Unicast)
Bonjour

Mac OS X 10.4
Tiger

Back to My Mac
Mac OS X 10.5

Leopard

Bonjour Sleep Proxy
Mac OS X 10.6
Snow Leopard

Bonjour in Android 4.1
“Jelly Bean”  
(API Level 16)

Windows 10 adds native
Bonjour (DNS-SD) APIs

Bonjour
Continued development

IETF DNS Service Discovery (DNSSD) Working Group
• Enhancements for enterprise and mesh networks

For app developers
• No change to APIs
• Remember that browse results might not be “local”

For device makers
• Remember to support IPv6 link-local addressing

https://datatracker.ietf.org/wg/dnssd/

Summary
Part 1

Explicit Congestion Notification
• Supported in clients and server—the stage is set for network adoption

Continue testing your apps on a NAT64 network
• Update your servers to native IPv6

User-space networking

NEHotspotConfiguration, NEDNSProxyProvider

Multipath protocols for multipath devices

Summary
Part 2

URLSession enhancements
• waitsForConnectivity
• ProgressReporting
• Public Suffix List

Best Practices

Ongoing developments—TLS 1.3, QUIC, Bonjour

• earliestBeginDate
• Brotli compression
• URLSessionStreamTask

More Information
Part 1

https://developer.apple.com/wwdc17/707

Part 2
https://developer.apple.com/wwdc17/709

https://developer.apple.com/wwdc17/707
https://developer.apple.com/wwdc17/709

Related Sessions

Your Apps and Evolving Network Security Standards WWDC 2017

Privacy and Your Apps WWDC 2017

Advances in HTTP Live Streaming WWDC 2017

What’s New in HomeKit WWDC 2017

What’s New in Safari View Controller Executive Ballroom Thursday 10:00AM

What’s New in Device Configuration, Deployment, and Management Grand Ballroom B Thursday 1:50PM

https://developer.apple.com/videos/play/wwdc2017/701/
https://developer.apple.com/videos/play/wwdc2017/702/
https://developer.apple.com/videos/play/wwdc2017/504/
https://developer.apple.com/videos/play/wwdc2017/705/
https://developer.apple.com/videos/play/wwdc2017/225/
https://developer.apple.com/videos/play/wwdc2017/304/

Labs

Networking Lab Technology Lab D Thu 9:00AM-11:00AM

Networking Lab Technology Lab J Fri 1:50PM-3:50PM

