System Frameworks #WWDC17

Core ML in Depth

Krishna Sridhar, Core ML Zach Nation, Core ML

macOS

macOS iOS

macOS iOS watchOS

macOS iOS watchOS tvOS

Think of models as code


```
let model = FlowerClassifier()

if let prediction = try? model.prediction(image: image) {
   return prediction.flowerType
}
```



```
let model = FlowerClassifier()

if let prediction = try? model.prediction(image: image) {
   return prediction.flowerType
}
```

Use Cases

Use Cases

Hardware Optimized

Core ML				
Accelerate	MPS			
CPU	GPU			

Core ML is awesome.

I love using it.

Use Cases

Hardware Optimized

Obtaining Models

Core ML is awesome.

W E R T Y U I O

A S D F G H J K

I love using it.

Use Cases

Hardware Optimized

Obtaining Models

Object Detection

Personalization

Style Transfer

Music Tagging

Gesture Recognition

Object Detection

Personalization

Style Transfer

Music Tagging

Gesture Recognition

Object Detection

Personalization

Style Transfer

Music Tagging

Gesture Recognition

Object Detection

Personalization

Style Transfer

Music Tagging

Gesture Recognition

Object Detection

Personalization

Style Transfer

Music Tagging

Gesture Recognition

Summarization

Generalized Linear Models

Tree Ensembles

Support Vector Machines

Feedforward Neural Networks Convolution
Neural Networks

Recurrent Neural Networks Feedforward Neural Networks Convolution
Neural Networks

Recurrent Neural Networks

Pipeline

Object Detection

Personalization

Style Transfer

Music Tagging

Gesture Recognition

Summarization

Focus on code, not models!

Models as Functions

Numeric

Categories

Images

Arrays

Dictionaries

Numeric and Categories

developer.apple.com/machine-learning

Numeric

Categories

Images

Arrays

Dictionaries

Double, Int64
String, Int64
CVPixelBuffer
MLMultiArray
[String: Double], [Int64: Double]

Images

Numeric

Categories

Images

Arrays

Dictionaries

Double, Int64

String, Int64

CVPixelBuffer

MLMultiArray

[String : Double], [Int64 : Double]

Multi-Dimensional Arrays

Numeric

Categories

Images

Arrays

Dictionaries

Double, Int64

String, Int64

CVPixelBuffer

MLMultiArray

[String : Double], [Int64 : Double]

Dictionaries

Numeric

Categories

Images

Arrays

Dictionaries

Double, Int64

String, Int64

CVPixelBuffer

MLMultiArray

[String : Double], [Int64 : Double]

Working with Text

123

B N M

space

return

Using Other Formats

Word Counts

```
"Core" : 1,
"ML" : 1,
"is" : 1,
"awesome" : 1,
"I" : 1,
"love" : 1,
"using" : 1,
"it" : 1,
```

Using Other Formats

Word Counts

```
"Core" : 1,
"ML" : 1,
"is" : 1,
"awesome" : 1,
"I" : 1,
"love" : 1,
"using" : 1,
"it" : 1,
```

Using Other Formats

Word Counts

```
"Core" : 1,
"ML" : 1,
"is" : 1,
"awesome" : 1,
"I" : 1,
"love" : 1,
"using" : 1,
"it" : 1,
MLMODEL
```

Use NLP to Process Text

♦-----**>**

Use NLP (NSLinguisticTagger)

Use Core ML

Processing Text


```
func tokenizeAndCountWords(rawTxt: String) -> [String : Double] {
    // Tokenize using NSLinguisticTagger
    //
    // Count occurrences of each token
}
```

Making Predictions

```
{
   "Core" : 1,
   "ML" : 1,
   "is" : 1,
   "awesome" : 1,
   "I" : 1,
   "love" : 1,
   "using" : 1,
   "it" : 1,
}
```

```
let model = SentimentAnalysis()
if let prediction = try? model.prediction(wordCounts: counts) {
    print("Sentiment: \(prediction.sentiment)")
}
```

Text Gotchas

Predictive Keyboard

I'm not sure Oliver will eat oysters, but he will Love

Predictive Keyboard

I'm not sure Oliver will eat oysters, but he will

Love

Task - Next word prediction

Language Models


```
if let output = try? model.prediction(input: input) {
    // Send the best 3 words to the user
    displayTopPredictions(output.nextWordProb)
}

// Update state for next prediction
input.state = output.state
input.currentWord = getNextWordFromUser()
```



```
if let output = try? model.prediction(input: input) {
    // Send the best 3 words to the user
    displayTopPredictions(output.nextWordProb)
}

// Update state for next prediction
input.state = output.state
input.currentWord = getNextWordFromUser()
```



```
if let output = try? model.prediction(input: input) {
    // Send the best 3 words to the user
    displayTopPredictions(output.nextWordProb)
}

// Update state for next prediction
input.state = output.state
input.currentWord = getNextWordFromUser()
```



```
if let output = try? model.prediction(input: input) {
    // Send the best 3 words to the user
    displayTopPredictions(output.nextWordProb)
}

// Update state for next prediction
input.state = output.state
input.currentWord = getNextWordFromUser()
```

Come to the Labs

Thursday 11:00–3:30

Friday 1:30–4:00

This Session

Core ML is awesome.

W E R T Y U I O F

I love using it.

Use Cases

Hardware Optimized

Obtaining Models

Built on Performance Primitives

Runs on GPU

MPS

Runs on GPU

Runs on CPU

MPS

Accelerate

Context Switching

This Session

Core ML is awesome.

WERTYUIOP

I love using it.

Use Cases

Hardware Optimized

Obtaining Models

Deploying Core ML Models

Deploying Core ML Models

Where do models come from?

Example Models

Task specific Core ML models

Places205-GoogLeNet

Detects the scene of an image from 205 categories such as an airport terminal, bedroom, forest, coast, and more.

View original model details >

Download Core ML Model

File size: 24.8 MB

ResNet50

Detects the dominant objects present in an image from a set of 1000 categories such as trees, animals, food, vehicles, people, and more.

View original model details >

Download Core ML Model

File size: 102.6 MB

Tap into ML Community

Popular ML libraries

Many models

Thriving communities

Caffe

Tap into ML Community

Popular ML libraries

Many models

Thriving communities

Core ML Tools

Core ML Tools Open Source

Conversion Workflow

Conversion Workflow

Conversion Workflow

Getting Started

```
## Download and install python package
> pip install coremltools
```


dmlc **XGBoost**

Caffe

What Is coremitools?

Converters

Core ML Bindings

Converter Library

Core ML Specification

Convert from other formats

What Is coremitools?

Converters

Core ML Bindings

Converter Library

Core ML Specification

Convert from other formats

Build your own converter

What Is coremitools?

Converters

Core ML Bindings

Converter Library

Core ML Specification

Convert from other formats

Build your own converter

Write your own models

Compatible and Extensible

Caffe

Converters

Core ML Bindings

Converter Library

Core ML Specification

Compatible

Compatible and Extensible

Extensible

Core ML Model

developer.apple.com/machine-learning

Single document

Encapsulates

- Functional description (inputs → outputs)
- Trained parameters

Public format

Core ML Bindings Converter Library

Core ML Specification

Xcode Model View

Xcode Model View

Image<RGB,227,227>

Dictionary<String,Double>

String

Input image of a flower

Most likely flower type in image

Probability of each flower type

▼ inputs

▼ outputs

flowerImage

flowerType

flowerTypeProbs

Core ML Converters

Unified APIs to convert models from various formats to Core ML

Flower Classification in Caffe

Caffe

Flower Classification in Caffe

Caffe

Flower Classification in Caffe

Needed for conversion to Core ML format

Demo

Demo Summary

Demo Summary

Supported Packages

Pipelines

Tree Ensembles

Linear Models
Support Vector Machines

Obtaining Models

Summary

ResNet50

Detects the dominant objects present in an image from a set of 1000 categories such as trees, animals, food, vehicles, people, and more.

View original model details >

Download Core ML Model

File size: 102.6 MB

developer.apple.com/machine-learning

Caffe

LIBSVM

dmlc **XGBoost**

Easy integration of ML models

Easy integration of ML models

Rich datatype support

Easy integration of ML models

Rich datatype support

Hardware optimized

Easy integration of ML models

Rich datatype support

Hardware optimized

Compatible with popular formats

More Information

https://developer.apple.com/wwdc17/710

Related Sessions

Introducing Core ML		WWDC 2017
Vision Framework: Building on Core ML		WWDC 2017
Natural Language Processing and your Apps		WWDC 2017
Accelerate and Sparse Solvers	Grand Ballroom A	Thursday 10:00AM
Using Metal 2 for Compute	Grand Ballroom A	Thursday 4:10PM

Labs

Core ML and Natural Language Processing Lab	Technology Lab D	Thu 11:00AM-3:30PM
Core ML and Natural Language Processing Lab	Technology Lab D	Fri 1:50PM-4:00PM

SWWDC17