
#WWDC17

© 2017 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Craig Dooley, Bluetooth Engineer
Duy Phan, Bluetooth Engineer

•What’s New in Core Bluetooth
• Session 712

System Frameworks

•Introduction
•Enhanced reliability
•Platform support
•L2CAP channels
•Best practices
•Getting the most out of Core Bluetooth

•Introduction

Thank you!

Built-in Profiles

Apple Notification Center Service

Apple Media Service

MIDI over Bluetooth Low Energy

iBeacon

Current Time Service

HID Over GATT

Centrals and Peripherals

Centrals and Peripherals

Centrals and Peripherals

Centrals and Peripherals

GATT Database

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

GATT Database

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

GATT Database

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

Reading Characteristics as a Central

Services can be read from a connected Central
• Retrieve by identifier
• Retrieve connected devices

open class CBCentralManager : CBManager {
 open func retrievePeripherals(withIdentifiers identifiers: [UUID]) -> [CBPeripheral]
 open func retrieveConnectedPeripherals(withServices serviceUUIDs: [CBUUID]) ->
[CBPeripheral]
}

•Enhanced Reliability

Summary

iOS Apps can continue using Core Bluetooth in the background

Backgrounded Apps

iOS Apps can continue using Core Bluetooth in the background

Backgrounded Apps

Central operations can continue when your app is not running
• Scan for new devices with services
• Connect to an already known device

CBCentralManager restoration

public let CBCentralManagerOptionRestoreIdentifierKey: String

/*
 * @seealso CBCentralManagerRestoredStatePeripheralsKey;
 * @seealso CBCentralManagerRestoredStateScanServicesKey;
 * @seealso CBCentralManagerRestoredStateScanOptionsKey;
 *
 */
optional public func centralManager(_ central: CBCentralManager, willRestoreState dict:
[String: Any])

Peripheral operations can continue when your app is not running
• Publish local services
• Advertise service UUID

CBPeripheralManager Restoration

public let CBPeripheralManagerOptionRestoreIdentifierKey: String

/*
 * @seealso CBPeripheralManagerRestoredStateServicesKey;
 * @seealso CBPeripheralManagerRestoredStateAdvertisementDataKey;
 *
 */
optional public func peripheralManager(_ peripheral: CBPeripheralManager,
 willRestoreState dict: [String: Any])

State Preservation and Restoration
NEW

State Preservation and Restoration

Works across device reboot or Bluetooth system events

NEW

State Preservation and Restoration

Works across device reboot or Bluetooth system events
• Try to ask for as few system resources as possible

NEW

State Preservation and Restoration

Works across device reboot or Bluetooth system events
• Try to ask for as few system resources as possible
• Background activities will be stopped if

NEW

State Preservation and Restoration

Works across device reboot or Bluetooth system events
• Try to ask for as few system resources as possible
• Background activities will be stopped if

- User force quits the app

NEW

State Preservation and Restoration

Works across device reboot or Bluetooth system events
• Try to ask for as few system resources as possible
• Background activities will be stopped if

- User force quits the app
- User disables Bluetooth

NEW

Write Without Response would be dropped due to memory pressure

New property will tell your app if more data can be sent

Write Without Response

open class CBPeripheral: CBPeer {
 open var canSendWriteWithoutResponse: Bool { get }
}

public protocol CBPeripheralDelegate: NSObjectProtocol {
 optional public func peripheralIsReady(toSendWriteWithoutResponse peripheral:
CBPeripheral)
}

NEW

•Platform Support

macOS 10.7 iOS 5

macOS 10.7 iOS 5 tvOS 9

macOS 10.7 iOS 5 tvOS 9 watchOS 4

iOS + macOS

iOS + macOS

Foreground and background apps

iOS + macOS

Foreground and background apps

Central and Peripheral

iOS + macOS

Foreground and background apps

Central and Peripheral

15 ms minimum connection interval

iOS + macOS

Foreground and background apps

Central and Peripheral

15 ms minimum connection interval

State Preservation and Restoration on iOS

tvOS

tvOS

Foreground app only

tvOS

Foreground app only

Central role only

tvOS

Foreground app only

Central role only

Limited to 2 simultaneous connections

tvOS

Foreground app only

Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

tvOS

Foreground app only

Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

Peripherals disconnected when app is 
moved to the background

watchOS
NEW

watchOS

Access dictated by system runtime policies

NEW

watchOS

Access dictated by system runtime policies

Central role only

NEW

watchOS

Access dictated by system runtime policies

Central role only

Limited to 2 simultaneous connections

NEW

watchOS

Access dictated by system runtime policies

Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

NEW

watchOS

Access dictated by system runtime policies

Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

Peripherals disconnected when app is
suspended

NEW

watchOS

Access dictated by system runtime policies

Central role only

Limited to 2 simultaneous connections

30 ms minimum connection interval

Peripherals disconnected when app is
suspended

Supported on Apple Watch Series 2

NEW

•L2CAP Channels

NEW

L2CAP Connection Oriented Channels

Bluetooth SIG Protocol underlying all communication

Logical Link Control and Adaptation Protocol

Stream between two devices

Introduced for LE in Bluetooth Core Spec 4.1

L2CAP Channels

CBCentralManager

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

L2CAP Channels

CBCentralManager

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

CBL2CAPChannel CBL2CAPChannel

Open an L2CAP Channel on an existing CBPeripheral connection

Central Side L2CAP

open class CBPeripheral: CBPeer {
 open func openL2CAPChannel(_ PSM: CBL2CAPPSM)
}

public protocol CBPeripheralDelegate: NSObjectProtocol {
 optional public func peripheral(_ peripheral: CBPeripheral,

 didOpen channel: CBL2CAPChannel?, error: Error?)
}

SIG Specified PSM for standardized profiles

Locally assigned PSM for dynamic services

PSM

/*!
 * @const CBUUIDL2CAppSMCharacteristicString
 * @discussion The PSM (a little endian uint16_t) of an L2CAP Channel associated with the
GATT service
 * containing this characteristic. Servers can publish this characteristic with
the UUID
 * ABDD3056-28FA-441D-A470-55A75A52553A
 */
public let CBUUIDL2CAppSMCharacteristicString: String

Listen for incoming L2CAP Channels

Peripheral Side L2CAP

open class CBPeripheralManager : CBManager {
 open func publishL2CAPChannel(withEncryption encryptionRequired: Bool)
 open func unpublishL2CAPChannel(_ PSM: CBL2CAPPSM)
}

public protocol CBPeripheralManagerDelegate : NSObjectProtocol {
 optional public func peripheralManager(_ peripheral: CBPeripheralManager,
 didPublishL2CAPChannel PSM: CBL2CAPPSM,
 error: Error?)
}

Opening an L2CAP Channel

CBCentralManager

MyService

MyData

Opening an L2CAP Channel

CBCentralManager

MyService

MyData

peripheral.publishL2CAPChannel(withEncryption: true)

Opening an L2CAP Channel

CBCentralManager

MyService

MyData

optional public func peripheralManager(_ peripheral: CBPeripheralManager,
didPublishL2CAPChannel PSM: CBL2CAPPSM, error: Error?)

Opening an L2CAP Channel

CBCentralManager

MyService

L2CAP PSM

MyData

optional public func peripheralManager(_ peripheral: CBPeripheralManager,
didPublishL2CAPChannel PSM: CBL2CAPPSM, error: Error?)

L2CAP PSM

Opening an L2CAP Channel

CBCentralManager

MyService

L2CAP PSM

MyData

Opening an L2CAP Channel

CBCentralManager

MyService

L2CAP PSM

MyData

Opening an L2CAP Channel

CBCentralManager

MyService

L2CAP PSM

MyData

peripheral.openL2CAPChannel(PSM)

Opening an L2CAP Channel

CBCentralManager

MyService

L2CAP PSM

MyData

CBL2CAPChannel CBL2CAPChannel

optional public func peripheralManager(_ peripheral: CBPeripheralManager, didOpen channel:
CBL2CAPChannel?, error: Error?)

@available(macOS 10.13, iOS 11.0, *)
open class CBL2CAPChannel: NSObject {

 open var peer: CBPeer! { get }

 open var inputStream: InputStream! { get }

 open var outputStream: OutputStream! { get }

 open var psm: CBL2CAPPSM { get }

}

Stream events are delivered through NSStream

Stream Events

public protocol StreamDelegate: NSObjectProtocol {
 optional public func stream(_ aStream: Stream, handle eventCode: Stream.Event)
}

public struct Stream.Event: OptionSet {
 public static var openCompleted: Stream.Event { get }
 public static var hasBytesAvailable: Stream.Event { get }
 public static var hasSpaceAvailable: Stream.Event { get }
 public static var errorOccurred: Stream.Event { get }
 public static var endEncountered: Stream.Event { get }
}

Closing Channels

Channels may be closed due to
• Link loss
• Central close
• Peripheral unpublished
• Peripheral object is released

When Should L2CAP Be Used?

Use GATT where it makes sense

Lowest overhead

Best performance

Best for large data transfers

Great for stream protocols

•Best Practices

Follow the Bluetooth Accessory 
Design Guidelines for Apple Products

Use Existing Profiles and Services

Why does it take so long to connect?

Time to Discover

Peripheral

Central

Advertisement

Advertising

Scanning

Time to Discover

Peripheral

Central

Advertisement Advertisement Advertisement Advertisement

Advertising

Scanning

ScanScan

Connection Speed

Use the shortest advertising interval possible

Optimize for when users are trying to use your accessory

See the Bluetooth Accessory Design Guidelines for power-efficient advertising
intervals

No need to scan for a peripheral for reconnect

Retrieve the peripheral and directly connect

Reconnecting devices

let identifier = UUID()

let peripherals = central.retrievePeripherals(withIdentifiers: [identifier])

central.connect(peripherals[0])

Service Discovery Speed

Battery (16 bit)

Battery Level

MyService (128 bit)

MoreData

OtherData

MyData

Device Information (16 bit)

PnP ID

Software Version

Serial Number

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

Service Discovery Speed

Use as few services/characteristics as possible

Battery (16 bit)

Battery Level

MyService (128 bit)

MoreData

OtherData

MyData

Device Information (16 bit)

PnP ID

Software Version

Serial Number

CBService

CBCharacteristic

CBCharacteristic

CBCharacteristic

Service Discovery Speed

Use as few services/characteristics as possible

Battery (16 bit)

Battery Level

MyService (128 bit)

MoreData

OtherData

MyData

Device Information (16 bit)

PnP ID

Software Version

Serial Number

Service Discovery Speed

Use as few services/characteristics as possible

Group services by UUID size

Battery (16 bit)

Battery Level

MyService (128 bit)

MoreData

OtherData

MyData

Device Information (16 bit)

PnP ID

Software Version

Serial Number

Service Discovery Speed

Use as few services/characteristics as possible

Group services by UUID size

Support GATT Caching

Battery (16 bit)

Battery Level

MyService (128 bit)

MoreData

OtherData

MyData

Device Information (16 bit)

PnP ID

Software Version

Serial Number

Service Discovery Speed

Use as few services/characteristics as possible

Group services by UUID size

Support GATT Caching

Use “Service Changed”

Battery (16 bit)

Battery Level

MyService (128 bit)

MoreData

OtherData

MyData

Device Information (16 bit)

PnP ID

Software Version

Serial Number

New Accessory Recommendations

Use the newest chipset / Bluetooth standard available

4.2 and 5.0 are backward compatible

Follow these best practices

Duy Phan, Bluetooth Engineer

•Getting the Most out of Core Bluetooth

1MB = 3,240 seconds
 2.5 kbps

Protocol Overhead

Controller

L2CAP

ATT

Application

GATT

Controller

L2CAP

ATT

Application

GATT

L2CAP
4 Bytes

Attribute Data 
20 Bytes

ATT
3 Bytes

Packet

Protocol Overhead

Controller

L2CAP

ATT

Application

GATT

Controller

L2CAP

ATT

Application

GATT

L2CAP
4 Bytes

Attribute Data 
20 Bytes

ATT
3 Bytes

Packet

Write With Response

Peripheral

Central

In
te

rv
al

In
te

rv
al

In
te

rv
al

Write With Response

Peripheral

Central

Write

Response

In
te

rv
al

In
te

rv
al

In
te

rv
al

Write With Response

Peripheral

Central

In
te

rv
al

In
te

rv
al

In
te

rv
al

Write Without Response

Reliable with Core Bluetooth flow control

Use all available connection events to transmit

Takes advantage of larger Connection Event Length

Write Without Response
In

te
rv

al

In
te

rv
al

In
te

rv
al

Write Without Response

Default MTU

37kbps

In
te

rv
al

In
te

rv
al

In
te

rv
al

Write Without Response

Default MTU

37kbps

In
te

rv
al

In
te

rv
al

In
te

rv
al

Write Without Response

Default MTU

Larger MTU

37kbps

In
te

rv
al

In
te

rv
al

In
te

rv
al

48kbps

Apple devices determine the optimal MTU

Accessories should support a large MTU

Use large attributes aligned to MTU

Fitting your data

open class CBPeripheral: CBPeer {
 open func maximumWriteValueLength(for type: CBCharacteristicWriteType) -> Int
}

open class CBCentral: CBPeer {
 open var maximumUpdateValueLength: Int { get }
}

Write Without Response

Default MTU

Larger MTU

In
te

rv
al

In
te

rv
al

In
te

rv
al

37kbps

48kbps

Write Without Response

EDL

Default MTU

Larger MTU

In
te

rv
al

In
te

rv
al

In
te

rv
al

37kbps

48kbps

Write Without Response

EDL

Default MTU

Larger MTU

10x 10x 10x

In
te

rv
al

In
te

rv
al

In
te

rv
al

37kbps

48kbps

135kbps

Extended Data Length

New Feature in Bluetooth 4.2

Much larger packets (251 vs 27 bytes)

Transparent to the application

4x throughput with the same radio time

Available on iPhone 7 and Apple Watch Series 2

L2CAP Connection Oriented Channels

ATT

Application

GATT

Controller

L2CAP

Controller

L2CAP

ATT

Application

GATT

L2CAP
4 Bytes

Attribute Data 
247 Bytes

Packet

L2CAP Connection Oriented Channels

Application

Controller

L2CAP

Controller

L2CAP

Application

L2CAP
4 Bytes

Attribute Data 
247 Bytes

Packet

197 kbps

Faster Connection Interval

L2CAP + EDL

In
te

rv
al

In
te

rv
al

In
te

rv
al

Faster Connection Interval

L2CAP + EDL

In
te

rv
al

In
te

rv
al

In
te

rv
al

394 kbps

In
te

rv
al

In
te

rv
al

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

5.2

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

5.2

37

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

5.2

37

48

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

5.2

37

48

135

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

5.2

37

48

135

197

Throughput (kbps)

Write With Response

Write Without Response

Packed CE Length

Larger MTU

EDL

L2CAP + EDL

L2CAP + EDL + 15ms Int

0 40 80 120 160 200 240 280 320 360 400

2.5

5.2

37

48

135

197

394

Summary

Request a shorter Connection Interval

Take advantage of GATT optimizations

Use L2CAP Channel for large transfers and stream protocols

Update your hardware (4.2 EDL, 5.0) for best performance and battery life

Craig Dooley, Bluetooth Engineer

•Wrap Up

Key Takeaways

Check out State Restoration

Expand your app to tvOS and watchOS

Use L2CAP for stream protocols or large data transfers

Use the newest Bluetooth chipset available

Follow the Bluetooth Accessory Design Guidelines

More Information
https://developer.apple.com/wwdc17/712

Related Sessions

Core Bluetooth 101 WWDC 2012

Core Bluetooth WWDC 2013

Labs

Bluetooth Lab Technology Lab J Thur 12:00PM–2:00PM

Bluetooth Lab Technology Lab J Fri 12:00PM–2:00PM

