
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Brandon Tennant, Software Engineer
Thomas Deniau, Software Engineer
Rony Fadel, Software Engineer

•Managing Documents In Your iOS Apps
• Session 216

•Document Management on iOS
•What’s new?
•Using the Document Management API
•Raising the bar

•Document Management on iOS

Document Management on iOS
What is it?

API for application developers

File provider API for cloud vendors

Files app

Document Browser UIDocumentBrowserViewController

Document Picker UIDocumentPickerViewController

File Coordination NSFileCoordinator, UIDocument

File Operations NSFileManager

Document Management on iOS
Client API

Building Great Document-based Apps in iOS 11 WWDC 2017

File Provider Extension NSFileProviderExtension

File Provider Custom Actions FPUIActionExtensionViewController

Document Management on iOS
File Provider API

File Provider Enhancements WWDC 2017

Document Management on iOS
File Provider UI

Sign in to your service using FPUIActionExtensionViewController

Cancel

Sign In

Email or username

Password

Sign In

Your Drive

Cancel

Sign In

Email or username

Password

Your Drive

Your Drive Sign In

Sign In

Cancel

Cancel

Sign In

Your Drive

Document Management on iOS
File Provider adoption

Great adoption from cloud vendors and
application developers

Try adopting UIDocumentBrowserViewController
or creating a File Provider extension today!

•What’s New?

Document Management on iOS
File Provider–Validation tool

File Provider Validation tests your FileProvider
Extension and guides you to fix the issues

https://developer.apple.com/download/more/

NEW

Document Management on iOS
File Provider–Validation tool

Download includes
• Source files to add to your project to enable testing
• An iOS app to run on your iPad

Modify your File Provider project

Install File Provider Validation on your device and
launch it

NEW

Your Drive

Your Drive

Your Drive

Document Management on iOS
File Provider–Siri Shortcuts

Surfaces documents that were recently opened or created in Search and 
the Lock Screen

You can also add a shortcut to Siri

NEW

Add NSFileProviderUsesUniqueItemIdentifiersAcrossDevices to your File Provider
Extension’s Info.plist

Document Management on iOS
File Provider–Siri Shortcuts NEW

Introduction to Siri Shortcuts Hall 2 Tuesday 5:00PM

Add NSFileProviderUsesUniqueItemIdentifiersAcrossDevices to your File Provider
Extension’s Info.plist

Document Management on iOS
File Provider–Siri Shortcuts NEW

Introduction to Siri Shortcuts Hall 2 Tuesday 5:00PM

Document Management on iOS
Particles sample app NEW

NEW

Document Management on iOS
Particles sample app NEW

Main UI is a UIDocumentBrowserViewController

Document Management on iOS
Particles sample app NEW

Main UI is a UIDocumentBrowserViewController

Defines a file format

Document Management on iOS
Particles sample app NEW

Main UI is a UIDocumentBrowserViewController

Defines a file format

Implements state restoration

Document Management on iOS
Particles sample app NEW

Main UI is a UIDocumentBrowserViewController

Defines a file format

Implements state restoration

Import assets using UIDocumentPickerViewController

Document Management on iOS
Particles sample app NEW

Main UI is a UIDocumentBrowserViewController

Defines a file format

Implements state restoration

Import assets using UIDocumentPickerViewController

Available at https://developer.apple.com/download/more/

Document Management on iOS
Particles sample app NEW

Thomas Deniau, Software Engineer

•Interacting with Documents in Your App

•Document picker and document browser

•Document picker and document browser
•Demo—add a document picker to an existing app

•Document picker and document browser
•Demo—add a document picker to an existing app
•Document types

Interacting with Documents
What does it mean?

Providing UI to let your customers organize their documents

Interacting with Documents
What does it mean?

Your app

Providing UI to let your customers organize their documents

Accessing documents stored in the cloud

Interacting with Documents
What does it mean?

Your app

Cloud services

Providing UI to let your customers organize their documents

Accessing documents stored in the cloud

Accessing documents from another app

Interacting with Documents
What does it mean?

Other apps’ containers

Your app

Cloud services

Document Picker vs Document Browser

Document Picker Document Browser

Document Picker vs Document Browser

Document Picker Document Browser

Browse local and cloud storage ✓ ✓

Document Picker vs Document Browser

Document Picker Document Browser

Browse local and cloud storage ✓ ✓

Access files from other apps ✓ ✓

Document Picker vs Document Browser

Document Picker Document Browser

Browse local and cloud storage ✓ ✓

Access files from other apps ✓ ✓

Use case Quick User Action Main document browsing UI of your app

Document Browser
Main document browsing UI

of a document-based application

UIDocumentBrowserViewController

Starting point of your app

UIDocumentBrowserViewController

Starting point of your app

Full screen

UIDocumentBrowserViewController

Starting point of your app

Full screen

Open and organize your documents

UIDocumentBrowserViewController

Starting point of your app

Full screen

Open and organize your documents

All the features of the Files App

UIDocumentBrowserViewController

Starting point of your app

Full screen

Open and organize your documents

All the features of the Files App

Can be customized

UIDocumentBrowserViewController

Starting point of your app

Full screen

Open and organize your documents

All the features of the Files App

Can be customized
• With your own buttons

UIDocumentBrowserViewController

Starting point of your app

Full screen

Open and organize your documents

All the features of the Files App

Can be customized
• With your own buttons
• To match your app’s look

UIDocumentBrowserViewController

Starting point of your app

Full screen

Open and organize your documents

All the features of the Files App

Can be customized
• With your own buttons
• To match your app’s look

Present your own UI on top

UIDocumentBrowserViewController

The Document Browser is the entry point of your app

Best practice is to make it the root view controller

UIDocumentBrowserViewController

The Document Browser is the entry point of your app

Best practice is to make it the root view controller

Can also be presented full screen

UIDocumentBrowserViewController
Getting started

UIDocumentBrowserViewController
Getting started

UIDocumentBrowserViewController
Getting started

UIDocumentBrowserViewController
Customization

UIDocumentBrowserViewController
Customization

Add your own buttons

UIDocumentBrowserViewController
Customization

Add your own buttons

Set colors and themes

UIDocumentBrowserViewController
Customization

Add your own buttons

Set colors and themes

Customize the open/close document animations

UIDocumentBrowserViewController
Customization

Add your own buttons

Set colors and themes

Customize the open/close document animations

Building Great Document-based Apps in iOS 11 WWDC 2017

UIDocumentBrowserViewController
Customization

Add your own buttons

Set colors and themes

Customize the open/close document animations

Sample code available

Building Great Document-based Apps in iOS 11 WWDC 2017

Document Picker
Open an asset stored in the cloud 

or in another app

Documents might be in multiple locations

UIDocumentPickerViewController

Your container

Documents might be in multiple locations

UIDocumentPickerViewController

Other apps’ containers Cloud services

Your container

Documents might be in multiple locations

UIDocumentPickerViewController

Other apps’ containers Cloud services

Your container

Documents might be in multiple locations

Access / copy / move documents

UIDocumentPickerViewController

Other apps’ containers Cloud services

Your container

Documents might be in multiple locations

Access / copy / move documents

UIDocumentPickerViewController

Other apps’ containers Cloud services

Your container

Documents might be in multiple locations

Quick user action

Access / copy / move documents

UIDocumentPickerViewController

Other apps’ containers Cloud services

Your container

UIDocumentPickerViewController

Use a document picker to
Your container

Other apps’ containers Cloud services

UIDocumentPickerViewController

Use a document picker to

Access files in the cloud  
(.open)

Your container

Other apps’ containers Cloud services

UIDocumentPickerViewController

Use a document picker to

Access files in the cloud  
(.open)

Move files to the cloud
(.moveToService)

Your container

Other apps’ containers Cloud services

UIDocumentPickerViewController

Use a document picker to

Access files in the cloud  
(.open)

Move files to the cloud
(.moveToService)

Copy from/to the cloud
(.import,  
 .exportToService)

Your container

Other apps’ containers Cloud services

Example—Access a Video from the Cloud

Create a UIDocumentPickerViewController and present it
let picker = UIDocumentPickerViewController(documentTypes: [kUTTypeVideo as String],
 in: .open)
picker.delegate = self
self.present(picker, animated: true)

 
Get the selected file URL
override func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL]) {
 // use the retrieved URLs
}

Example—Access a Video from the Cloud

Create a UIDocumentPickerViewController and present it
let picker = UIDocumentPickerViewController(documentTypes: [kUTTypeVideo as String],
 in: .open)
picker.delegate = self
self.present(picker, animated: true)

 
Get the selected file URL
override func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL]) {
 // use the retrieved URLs
}

Example—Access a Video from the Cloud

Create a UIDocumentPickerViewController and present it
let picker = UIDocumentPickerViewController(documentTypes: [kUTTypeVideo as String],
 in: .open)
picker.delegate = self
self.present(picker, animated: true)

 
Get the selected file URL
override func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL]) {
 // use the retrieved URLs
}

Example—Access a Video from the Cloud

Create a UIDocumentPickerViewController and present it
let picker = UIDocumentPickerViewController(documentTypes: [kUTTypeVideo as String],
 in: .open)
picker.delegate = self
self.present(picker, animated: true)

 
Get the selected file URL
override func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL]) {
 // use the retrieved URLs
}

Example—Access a Video from the Cloud

Create a UIDocumentPickerViewController and present it
let picker = UIDocumentPickerViewController(documentTypes: [kUTTypeVideo as String],
 in: .open)
picker.delegate = self
self.present(picker, animated: true)

 
Get the selected file URL
override func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL]) {
 // use the retrieved URLs
}

•Demo

Document Types

Document Types let the system know which files your application handles

Document Types

Document Types

Important! They let iOS—

Document Types

Important! They let iOS—
• open your app when a file is tapped in the Files app

Document Types

Important! They let iOS—
• open your app when a file is tapped in the Files app
• show your app in the Share Sheet

Document Types

Important! They let iOS—
• open your app when a file is tapped in the Files app
• show your app in the Share Sheet
• use the proper icon for your documents

Document Types

Two steps—
• Declaring the type if it is not already declared by iOS
• Claiming that you can view or edit files of this type

Declaring a Type

Do you need to declare it?

Declaring a Type

Do you need to declare it?

Standard
file type

Declaring a Type

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Declaring a Type

https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/UTIRef/Articles/System-
DeclaredUniformTypeIdentifiers.html

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Declaring a Type

https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/UTIRef/Articles/System-
DeclaredUniformTypeIdentifiers.html

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do

Declaring a Type

https://developer.apple.com/library/content/documentation/Miscellaneous/Reference/UTIRef/Articles/System-
DeclaredUniformTypeIdentifiers.html

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do

Your own file type

Declare as exported

Declaring a New File Type

Info.plist

Use the Xcode UI

Declaring a New File Type

A type definition is—

An identifier

(UTTypeIdentifier)

Declaring a New File Type

A type definition is—

An identifier

(UTTypeIdentifier)

Declaring a New File Type

A type definition is—

Parent types (the type “conforms to” them) (UTTypeConformsTo)

Declaring a New File Type

A type definition is—

Parent types (the type “conforms to” them) (UTTypeConformsTo)

Types form a tree

Type Conformance

Types form a tree

Type Conformance

public.jpeg

Types form a tree

Type Conformance

public.jpeg public.heif-standard

Types form a tree

Type Conformance

public.image

public.jpeg public.heif-standard

Types form a tree

Type Conformance

public.image

public.jpeg public.heif-standard

public.content

Types form a tree

Type Conformance

public.imagepublic.spreadsheet

public.jpeg public.heif-standard

public.content

Types form a tree

Type Conformance

public.imagepublic.spreadsheet

public.jpeg public.heif-standard

com.example….Particles

public.content

Types form a tree

Type Conformance

public.imagepublic.spreadsheet

public.jpeg public.heif-standard

com.example….Particles

public.content

Second tree to describe the on-disk format

Type Conformance

public.content

…particles

Second tree to describe the on-disk format

Type Conformance

public.content

…particles

public.data

Single file on disk

Second tree to describe the on-disk format

Type Conformance

public.content

…particles

com.apple.package

File package

public.data

Single file on disk

Second tree to describe the on-disk format

Type Conformance

public.content

…particles

com.apple.package

File package

public.data

Single file on disk

Second tree to describe the on-disk format

Type Conformance

public.content

…particles

com.apple.package

File package

public.item

Root type

public.data

Single file on disk

Declaring a New File Type

My type conforms to “public.data, public.content”

Declaring a New File Type

My type conforms to “public.data, public.content”

Declaring a New File Type

Declaring a file extension—(UTTypeTagSpecification)

“Files with the .particles extension are of this type”

Declaring a New File Type

Declaring a file extension—(UTTypeTagSpecification)

“Files with the .particles extension are of this type”

Declaration—done!

Declaring a Type

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do

Your own file type

Declare as exported

Declaring a Type

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do

Your own file type

Declare as exported

Declaring a Type

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do

Owned by
another app

Your own file type

Declare as exported

Declaring a Type

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do Declare as imported

Owned by
another app

Your own file type

Declare as exported

Declaring a Type

Do you need to declare it?

Already declared  
by iOS?

Standard
file type

Yes

Nothing to do Declare as imported

No

Owned by
another app

Your own file type

Declare as exported

Claiming Support for a Type

Once the type is defined, you need to claim support for it in Info.plist

Type identifier defined previously

Claiming Support for a Type

Type identifier defined previously

Claiming Support for a Type

Claiming Support for a Type—Handler Rank

Claiming Support for a Type—Handler Rank

Claiming Support for a Type—Handler Rank

Three choices

Claiming Support for a Type—Handler Rank

Three choices

Owner if you own this type

Claiming Support for a Type—Handler Rank

Three choices

Owner if you own this type

Default if you can edit this type

Claiming Support for a Type—Handler Rank

Three choices

Owner if you own this type

Default if you can edit this type

Alternate if you can read it

Claiming Support for a Type—Handler Rank

Three choices

Owner if you own this type

Default if you can edit this type

Alternate if you can read it

⚠ Rules are different on macOS
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CoreFoundationKeys.html#//apple_ref/doc/plist/info/CFBundleDocumentTypes

Be as specific as possible

Don't claim support for catch-alls like public.data or public.content

Claiming Support for a Type

What Can You Do?

What Can You Do?

Use a Document Browser or Document Picker to access documents

What Can You Do?

Use a Document Browser or Document Picker to access documents

Your customers can access their favorite cloud vendor

What Can You Do?

Use a Document Browser or Document Picker to access documents

Your customers can access their favorite cloud vendor

Consider using UIDocumentBrowserViewController instead of your  
custom browser

What Can You Do?

Use a Document Browser or Document Picker to access documents

Your customers can access their favorite cloud vendor

Consider using UIDocumentBrowserViewController instead of your  
custom browser

Configure the Document Types supported by your app in Xcode

Rony Fadel, Software Engineer

•Raising the Bar

Your App and the Sandbox

// MARK: UIDocumentBrowserViewControllerDelegate
func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didPickDocumentURLs documentURLs: [URL])

// MARK: UIDocumentPickerDelegate
func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL])

Your App and the Sandbox

// MARK: UIDocumentBrowserViewControllerDelegate
func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didPickDocumentURLs documentURLs: [URL])

// MARK: UIDocumentPickerDelegate
func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL])

Your App and the Sandbox

// MARK: UIDocumentBrowserViewControllerDelegate
func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didPickDocumentURLs documentURLs: [URL])

// MARK: UIDocumentPickerDelegate
func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL])

Your App and the Sandbox

URL

Document Picker

Your App

Your App and the Sandbox

URL

Your App

Your App and the Sandbox

Error Domain=NSCocoaErrorDomain Code=257 "The file “<filename>” couldn’t be opened
because you don’t have permission to view it." UserInfo={NSFilePath=<path-to-
document>, NSUnderlyingError=0xFFFFFFFFF {Error Domain=NSPOSIXErrorDomain Code=1
"Operation not permitted"}}

URL

Your App

Your App and the Sandbox

App
Container

Your App

Other App

Cloud Service

Cloud Service Container

App Container

Your App and the Sandbox

App
Container

Your App

Other App

Cloud Service

Unrestricted
access

Cloud Service Container

App Container

Your App and the Sandbox

App
Container

Your App

Other App

Cloud Service

Unrestricted
access

Restricted
access

Cloud Service Container

App Container

Your App and the Sandbox

App
Container

Your App

Unrestricted
access

Other App

App Container

Restricted
access

URL

Your App and the Sandbox

App
Container

Your App

Unrestricted
access

Other App

App Container

Restricted
access

URL

Your App and the Sandbox

App
Container

Your App

Unrestricted
access

Other App

App Container

 URL
Security
scoped

resource

Restricted
access

URL

Your App and the Sandbox

App
Container

Your App

Unrestricted
access

Other App

App Container

 URL
Security
scoped

resource

func startAccessingSecurityScopedResource() -> Bool

func stopAccessingSecurityScopedResource()

Restricted
access

URL

Your App and the Sandbox

App
Container

Your App

Unrestricted
access

Other App

App Container

 URL
Security
scoped

resource

func startAccessingSecurityScopedResource() -> Bool

func stopAccessingSecurityScopedResource()

Access
granted

URL

Your App and the Sandbox

App
Container

Your App

Unrestricted
access

Other App

App Container

 URL
Security
scoped

resource

func startAccessingSecurityScopedResource() -> Bool

func stopAccessingSecurityScopedResource()

Restricted
access

Your App and the Sandbox

Your App and the Sandbox

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Your App and the Sandbox

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Your App and the Sandbox

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Your App and the Sandbox

Balance start/stopAccessing calls

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Your App and the Sandbox

Balance start/stopAccessing calls

Only call stopAccessing if startAccessing returns true

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Your App and the Sandbox

Balance start/stopAccessing calls

Only call stopAccessing if startAccessing returns true

Keep resource access time as small as possible

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Your App and the Sandbox

Balance start/stopAccessing calls

Only call stopAccessing if startAccessing returns true

Keep resource access time as small as possible

When in doubt, call these APIs

let didStartAccessing = url.startAccessingSecurityScopedResource()
defer {
 if didStartAccessing {
 url.stopAccessingSecurityScopedResource()
 }
}
// do something with URL

Coordinating File Access

Your App Other App

Cloud Service

Cloud Service Container

Coordinating File Access

Your App Other App

Cloud Service

Cloud Service Container

Coordinating File Access

Your App Other App

Cloud Service

Cloud Service Container

Coordinating File Access

File Coordination—NSFileCoordinator and NSFilePresenter

Coordinating File Access

File Coordination—NSFileCoordinator and NSFilePresenter

System-wide multiple reader/single writer lock

Coordinating File Access

File Coordination—NSFileCoordinator and NSFilePresenter

System-wide multiple reader/single writer lock

Instructs the system to download the document

Coordinating File Access

Make My Life Simpler!
UIDocument

Available since iOS 5

Make My Life Simpler!
UIDocument

Available since iOS 5

Recommended way for displaying and editing your documents

Make My Life Simpler!
UIDocument

Available since iOS 5

Recommended way for displaying and editing your documents

No need to call start/stopAccessingSecurityScopedResource

Make My Life Simpler!
UIDocument

Available since iOS 5

Recommended way for displaying and editing your documents

No need to call start/stopAccessingSecurityScopedResource

Handles file coordination for you

Make My Life Simpler!
UIDocument

Available since iOS 5

Recommended way for displaying and editing your documents

No need to call start/stopAccessingSecurityScopedResource

Handles file coordination for you

Make My Life Simpler!
UIDocument

Building Document Based Apps WWDC 2015

Foreground

Your App

Foreground

Your App

Background

Foreground

Your App

Background Suspended

Foreground

Your App

Background Suspended Terminated

Memory Pressure

Foreground

Your App

Background Suspended Terminated

Memory Pressure

Relaunched

Foreground

Your App

Background Suspended Terminated

Memory Pressure

Relaunched

Restore the UI State

State Restoration
How do we implement it?

URL

Cloud Service

Cloud Service Container

State Restoration
How do we implement it?

URL

Cloud Service

Cloud Service Container

State Restoration
How do we implement it?

URL

Cloud Service

Cloud Service Container

State Restoration
How do we implement it?

URL

Cloud Service

Document could have been moved or renamed

Cloud Service Container

State Restoration
How do we implement it?

URL

Cloud Service

Document could have been moved or renamed

URL loses security scope when encoded

Cloud Service Container

State Restoration
How do we implement it?

Bookmark

Cloud Service

Cloud Service Container

State Restoration
How do we implement it?

Bookmark

Cloud Service

Cloud Service Container

// Save security scoped bookmark
let bookmarkData = try? url.bookmarkData()

// Restore security scoped bookmark
var bookmarkDataIsStale = false
let documentURL = try? URL(resolvingBookmarkData: bookmarkData,
 bookmarkDataIsStale: &bookmarkDataIsStale)

State Restoration
How do we implement it?

// Save security scoped bookmark
let bookmarkData = try? url.bookmarkData()

// Restore security scoped bookmark
var bookmarkDataIsStale = false
let documentURL = try? URL(resolvingBookmarkData: bookmarkData,
 bookmarkDataIsStale: &bookmarkDataIsStale)

State Restoration
How do we implement it?

// Save security scoped bookmark
let bookmarkData = try? url.bookmarkData()

// Restore security scoped bookmark
var bookmarkDataIsStale = false
let documentURL = try? URL(resolvingBookmarkData: bookmarkData,
 bookmarkDataIsStale: &bookmarkDataIsStale)

State Restoration
How do we implement it?

•Demo

Copy to

Copy to

Open in place

Open in place

Open In Place
Adoption

Already enabled in "Document Based App" template

Open In Place
Adoption

Already enabled in "Document Based App" template

Open In Place
Adoption

Add LSSupportsOpeningDocumentsInPlace key to Info.plist

Open In Place
Adoption

Open In Place
Adoption

func application(_ app: UIApplication, open inputURL: URL,
 options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool

Open In Place
Adoption

func application(_ app: UIApplication, open inputURL: URL,
 options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool

Document Browser based apps

func revealDocument(at url: URL, importIfNeeded: Bool,
 completion: ((URL?, Error?) -> Void)? = nil)

// Present the document in the completion handler

Progress reporting

Progress reporting

Support cancellation

Open In Place
Progress reporting

Free when you call revealDocument on UIDocumentBrowserViewController

Open In Place
Progress reporting

Free when you call revealDocument on UIDocumentBrowserViewController

extension UIDocument: ProgressReporting {
 var progress: Progress? { get }
}

Open In Place
Progress reporting

UIDocument conforms to ProgressReporting

Free when you call revealDocument on UIDocumentBrowserViewController

extension UIDocument: ProgressReporting {
 var progress: Progress? { get }
}

Open In Place
Progress reporting

UIDocument conforms to ProgressReporting

Ship it!

Raising the Bar

Adopt UIDocument

Raising the Bar

Adopt UIDocument

Adopt start/stopAccessing best practices

Raising the Bar

Adopt UIDocument

Adopt start/stopAccessing best practices

Coordinate file access

Raising the Bar

Adopt UIDocument

Adopt start/stopAccessing best practices

Coordinate file access

Implement state restoration

Raising the Bar

Adopt UIDocument

Adopt start/stopAccessing best practices

Coordinate file access

Implement state restoration

Implement Open In Place and report progress

Raising the Bar

Summary

Summary

What did we see today?

Summary

What did we see today?
• Document browser and document picker

Summary

What did we see today?
• Document browser and document picker
• Raising the bar

Summary

What did we see today?
• Document browser and document picker
• Raising the bar
• Siri Shortcuts

Summary

What did we see today?
• Document browser and document picker
• Raising the bar
• Siri Shortcuts
• FileProvider and FileProviderUI

More Information
https://developer.apple.com/wwdc18/216

Introduction to Siri Shortcuts WWDC 2018

