
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Kyle Sluder, iOS System Experience

•Image and Graphics Best Practices
• Session 219

•UIImage and UIImageView
•Custom drawing with UIKit
•Advanced CPU and GPU techniques

Memory

CPU

Memory CPU

Battery Life Responsiveness

Memory CPU

Battery Life Responsiveness

Memory CPU

Battery Life Responsiveness

UIImage

Content

UIImage

Content

UIImage

Iconography

UIImageView

UIImage

UIImage

Content

Iconography

UIImage UIImageView

Model View

Load Render

Model View

Load Render

Model View

Image Rendering Pipeline

Load Decode Render

Buffers

Contiguous region of memory

Buffers

Contiguous region of memory

Often viewed as sequence of elements

Image Buffers

In-memory representation of an image

Each element describes color of a single pixel

Buffer size is proportional to image size

Image Buffers
The frame buffer

UIWindow

UIImageView

UIImage

Image Buffers
The frame buffer

UIWindow

UIImageView
Render

UIImage

Image Buffers
The frame buffer

UIWindow

UIImageView
Render

UIImage

Image Buffers
The frame buffer

UIWindow

UIImageView
Render

UIImage

Image Buffers
The frame buffer

Render

UIImageUIImage

UIWindow

UIImageView

60–120 Hz

Image Buffers
The frame buffer

Render

UIImageUIImage

UIWindow

UIImageView

60–120 Hz

Image Buffers
The frame buffer

Render

UIImageUIImage

UIWindow

UIImageView

60–120 Hz

Image Buffers
The frame buffer

Render

UIImage

UIWindow

UIImageView

UIImage

60–120 Hz

Image Buffers
The frame buffer

UIWindow

UIImageView
Render

UIImageUIImage

60–120 Hz

Image Buffers
The frame buffer

UIWindow

UIImageView
Render

UIImageUIImage

60–120 Hz

Image Buffers
The frame buffer

UIWindow

UIImageView
Render

UIImageUIImage

Data Buffers

Store contents of an image file in memory

Metadata describing dimensions of image

Image itself encoded as JPEG, PNG, or other
(usually compressed) form

Bytes do not directly describe pixels

JPEG

Pipeline in Action

UIImage

UIImageView

Data Buffer

Pipeline in Action

UIImage

UIImageView

Image BufferData Buffer

Decode

Pipeline in Action

UIImage

UIImageView

Image BufferData Buffer

Decode

Pipeline in Action

UIImage

UIImageView

Image BufferData Buffer

Decode

Decoding Concerns

CPU-intensive process

Retained for repeat rendering

Persistent large memory allocation

Proportional to original image size, not view size

UIImage

Consequences of Excessive Memory Usage

Increased fragmentation

Poor locality of reference

System starts compressing memory

Process termination

Memory

CPU

Proactively Saving Memory
Downsampling

Render
(UIImageView)

JPEG

DecodeLoad 
(UIImage)

Proactively Saving Memory
Downsampling

Load 
(CGImage 
Source)

Render
(UIImageView)

Thumbnail
(CGImageRef)

JPEG

Decode

v

UIImage

Proactively Saving Memory
Downsampling

Render
(UIImageView)

v

UIImage

// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage {

 let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary

 let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)!

 let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale

 let downsampleOptions =

 [kCGImageSourceCreateThumbnailFromImageAlways: true,

 kCGImageSourceShouldCacheImmediately: true,

 kCGImageSourceCreateThumbnailWithTransform: true,

 kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary

 let downsampledImage =

 CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)!

 return UIImage(cgImage: downsampledImage)

}

// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage {

 let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary

 let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)!

 let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale

 let downsampleOptions =

 [kCGImageSourceCreateThumbnailFromImageAlways: true,

 kCGImageSourceShouldCacheImmediately: true,

 kCGImageSourceCreateThumbnailWithTransform: true,

 kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary

 let downsampledImage =

 CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)!

 return UIImage(cgImage: downsampledImage)

}

// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage {

 let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary

 let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)!

 let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale

 let downsampleOptions =

 [kCGImageSourceCreateThumbnailFromImageAlways: true,

 kCGImageSourceShouldCacheImmediately: true,

 kCGImageSourceCreateThumbnailWithTransform: true,

 kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary

 let downsampledImage =

 CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)!

 return UIImage(cgImage: downsampledImage)

}

// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage {

 let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary

 let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)!

 let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale

 let downsampleOptions =

 [kCGImageSourceCreateThumbnailFromImageAlways: true,

 kCGImageSourceShouldCacheImmediately: true,

 kCGImageSourceCreateThumbnailWithTransform: true,

 kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary

 let downsampledImage =

 CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)!

 return UIImage(cgImage: downsampledImage)

}

// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage {

 let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary

 let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)!

 let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale

 let downsampleOptions =

 [kCGImageSourceCreateThumbnailFromImageAlways: true,

 kCGImageSourceShouldCacheImmediately: true,

 kCGImageSourceCreateThumbnailWithTransform: true,

 kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary

 let downsampledImage =

 CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)!

 return UIImage(cgImage: downsampledImage)

}

// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage {

 let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary

 let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)!

 let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale

 let downsampleOptions =

 [kCGImageSourceCreateThumbnailFromImageAlways: true,

 kCGImageSourceShouldCacheImmediately: true,

 kCGImageSourceCreateThumbnailWithTransform: true,

 kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary

 let downsampledImage =

 CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)!

 return UIImage(cgImage: downsampledImage)

}

Without downsampling

31.5MiB
Persistent memory use

Without downsampling

31.5MiB
Persistent memory use

With downsampling

18.4MiB

// Downsampling large images for display at smaller size

func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath)
 -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(withReuseIdentifier: "Cell",
 for: indexPath) as! MyCollectionViewCell
 cell.layoutIfNeeded() // Ensure imageView is its final size.

 let imageViewSize = cell.imageView.bounds.size
 let scale = collectionView.traitCollection.displayScale
 cell.imageView.image = downsample(imageAt: imageURLs[indexPath.item],
 to: imageViewSize, scale: scale)

 return cell
}

CPU 1

CPU 2

Decoding in Scrollable Views

CPU 1

CPU 2

Decoding in Scrollable Views

CPU 1

CPU 2

Decoding in Scrollable Views

CPU 1

CPU 2

Decoding in Scrollable Views

CPU 1

CPU 2

Decoding in Scrollable Views

Responsiveness

Battery Life

Decoding in Scrollable Views

Prefetching
CPU 1

CPU 2

A Tour of UICollectionView Hall 3 Thursday 2:00PM

Decoding in Scrollable Views

Prefetching

Background decoding/downsampling
CPU 1

CPU 2

Decoding in Scrollable Views

Prefetching

Background decoding/downsampling

Responsiveness

Battery Life

CPU 1

CPU 2

// Asynchronously downsampling on a global queue

func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 DispatchQueue.global(qos: .userInitiated).async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

// Asynchronously downsampling on a global queue

func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 DispatchQueue.global(qos: .userInitiated).async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

// Asynchronously downsampling on a global queue

func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 DispatchQueue.global(qos: .userInitiated).async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

// Asynchronously downsampling on a global queue

func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 DispatchQueue.global(qos: .userInitiated).async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

Thread Explosion

More images to decode than available CPUs

GCD continues creating threads as new work is enqueued

Each thread gets less time to actually decode images

Modernizing Grand Central Dispatch Usage WWDC 2017

// Avoiding thread explosion when doing asynchronous work

let serialQueue = DispatchQueue(label: "Decode queue")
func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 serialQueue.async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

// Avoiding thread explosion when doing asynchronous work

let serialQueue = DispatchQueue(label: "Decode queue")
func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 serialQueue.async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

// Avoiding thread explosion when doing asynchronous work

let serialQueue = DispatchQueue(label: "Decode queue")
func collectionView(_ collectionView: UICollectionView,
 prefetchItemsAt indexPaths: [IndexPath]) {
 // Asynchronously decode and downsample every image we are about to show
 for indexPath in indexPaths {
 serialQueue.async {
 let downsampledImage = downsample(images[indexPath.row])
 DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) }
 }
 }
}

Image Sources

Image assets in asset catalog

Files in application/framework bundle

Files in Documents and Caches directories

Data downloaded from network

Image Sources

Image assets in asset catalog

Files in application/framework bundle

Files in Documents and Caches directories

Data downloaded from network

Prefer Image Assets
For artwork bundled with your app

Optimized name- and trait-based lookup

Smarter buffer caching

Per-device thinning

Vector artwork

Optimizing App Assets Hall 1 Thursday 4:00PM

Vector Artwork

Since iOS 11, image assets support 
“Preserve Vector Data”

Avoids blurriness and aliasing when drawn
larger or smaller than natural size

Preserves legibility of icons in accessibility HUD

Vector Artwork Pipeline

100

100

Load 
(UIImage)

Render
(UIImageView)Rasterize

200

200

Resize

Vector Artwork Optimizations

Xcode rasterizes artwork for relevant scale
factors while compiling

Prerasterized artwork used when image is
drawn at natural size

If artwork has fixed sizes, use multiple image
assets instead of relying on vector rasterization

100

100

UIImage

UIImageView

100

100

•Custom Drawing with UIKit

UIButton

UIImageView

UIView 
Subclass

UIButton

UIImageView

// Drawing a custom view by overriding UIView.draw(_:)
override func draw(_ rect: CGRect) {
 // Draw rounded rectangle background.
 let roundRectPath = UIBezierPath(roundedRect: self.bounds, cornerRadius: 4.0)
 UIColor.yellow.set()
 roundRectPath.fill()

 // Draw Live Photo icon.
 let image = UIImage(named: "LivePhotosIcon")
 image.draw(at: CGPoint(x: 2.0, y: 2.0))

 // Draw label.
 let text: NSAttributedString(string: "LIVE", attributes: ...)
 text.draw(at: CGPoint(x: 20.0, y: 2.0))
}

// Drawing a custom view by overriding UIView.draw(_:)
override func draw(_ rect: CGRect) {
 // Draw rounded rectangle background.
 let roundRectPath = UIBezierPath(roundedRect: self.bounds, cornerRadius: 4.0)
 UIColor.yellow.set()
 roundRectPath.fill()

 // Draw Live Photo icon.
 let image = UIImage(named: "LivePhotosIcon")
 image.draw(at: CGPoint(x: 2.0, y: 2.0))

 // Draw label.
 let text: NSAttributedString(string: "LIVE", attributes: ...)
 text.draw(at: CGPoint(x: 20.0, y: 2.0))
}

Custom Drawing Versus UIImageView

UIImageView UIView
Subclass

Custom Drawing Versus UIImageView

UIImageView CALayer UIView
Subclass CALayer

Custom Drawing Versus UIImageView

UIImageView CALayer

Decoded image

CALayerUIView
Subclass

Custom Drawing Versus UIImageView

UIImageView CALayer

Decoded image

CALayerUIView
Subclass

Custom Drawing Versus UIImageView

UIImageView CALayer

Decoded image

UIView
Subclass CALayer

Custom Drawing Versus UIImageView

UIImageView CALayer

contents

Decoded image

UIView
Subclass CALayer

Custom Drawing Versus UIImageView

UIImageView CALayer

contents

Decoded image Backing store

UIView
Subclass CALayer

Custom Drawing Versus UIImageView

UIImageView CALayer

contents

Decoded image

contents

Backing store

UIView
Subclass CALayer

Custom Drawing Versus UIImageView

UIImageView CALayer

contents

Decoded image

draw

contents

Backing store

UIView
Subclass CALayer

Custom Drawing Versus UIImageView

UIImageView CALayer

contents

Decoded image

draw

UIView
Subclass CALayer

contents

Backing store

Custom Drawing Versus UIImageView

UIImageView CALayer

contents

Decoded image

Frame
Buffer

draw

UIView
Subclass CALayer

contents

Backing store

Backing Store Memory Costs

Proportional to pixel size of view

 Element size grows to accommodate
color range used by drawing

Setting CALayer.contentsFormat opts out

Update layerWillDraw(_:) implementations

NEW

UILabelUIViewUIImageView

Reducing Backing Store Use

Refactor larger views into subview hierarchies

Reduce or eliminate overrides of draw(_:)

Eliminate duplicate copies of image data

Use optimized view properties and subclasses

LIVE

LIVE

UIView

Reducing Backing Store Use
Alternatives to custom drawing

Overriding draw(_:) opts into backing store

UIView.backgroundColor can render directly to
frame buffer without a backing store
• …except for pattern colors
• Use UIImageView with tiling image instead

Frame Buffer

Reducing Backing Store Use
Masking versus corner radius

UIView.maskView and CALayer.maskLayer render
view hierarchy into temporary image buffer

CALayer.cornerRadius does not require any
image buffer

Consider UIImageView with resizable image
instead of masking for transparent backgrounds

UIView

Frame Buffer

Reducing Backing Store Use
Eliminating duplicate image data

UIImageView can colorize monochrome images
while rendering directly into frame buffer

UIImage.withRenderingMode(_:) or Rendering
Mode popup in asset inspector

Set tintColor of image view to any solid color
Decoded 
image

UIImageView Frame Buffer

tint

Reducing Backing Store Use
UILabel optimizations for rendering text

UILabel is optimized for monochrome strings

Uses 75% smaller backing store when possible

Automatically upgrades to larger backing store
for multicolor strings, emoji

iOS Memory Deep Dive Hall 1 Friday 2:00PM

Drawing Off-Screen

Use UIGraphicsImageRenderer to create and draw to an image buffer

Supports Wide Color, unlike UIGraphicsBeginImageContext()

Combine with UIImageView for efficient offscreen rendering

Working with Wide Color WWDC 2016

Drawing Off-Screen
Optimizing image buffers

Similar automatic Wide Color support as backing stores

Prior to iOS 12 and tvOS 12, defaults to Wide Color support based on hardware

Set prefersExtendedRange on UIGraphicsImageRendererFormat for direct control

UIImage.imageRendererFormat may offer an intermediate representation

NEW

•Advanced CPU and GPU Techniques

Advanced Image Effects
Core Image

Consider Core Image for realtime effects

Executes on GPU, freeing up CPU

UIImageView renders CIImages efficiently

UIImage.init(ciImage:)

Advanced Image Processing
Interfacing with other frameworks

Use CVPixelBuffer to move data to frameworks like Metal, Vision, and Accelerate

Use the best initializer—don’t unwind work that’s already been done

Guard against moving work between GPU and CPU

Ensure buffers are correct format for Accelerate

Using Accelerate and simd Executive Ballroom Tuesday 10:00AM

Summary

Implement prefetching to prepare asynchronously

Reduce backing store usage by using UIImageView and UILabel

Don’t accidentally disable new optimizations for custom drawing

Prefer image assets for bundled artwork

Avoid over-reliance on Preserve Vector Data

More Information
https://developer.apple.com/wwdc18/219

Practical Approaches to Great App Performance Hall 1 Wednesday 5:00PM

UIKit and Layout Technology Lab 2 Thursday 11:00AM

UIKit and Collection View Lab Technology Lab 11 Friday 9:00AM

