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•Image and Graphics Best Practices 
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•UIImage and UIImageView 
•Custom drawing with UIKit 
•Advanced CPU and GPU techniques
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Buffers

Contiguous region of memory 

Often viewed as sequence of elements



Image Buffers

In-memory representation of an image 

Each element describes color of a single pixel 

Buffer size is proportional to image size
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Data Buffers

Store contents of an image file in memory 

Metadata describing dimensions of image 

Image itself encoded as JPEG, PNG, or other 
(usually compressed) form 

Bytes do not directly describe pixels

JPEG
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Decoding Concerns

CPU-intensive process 

Retained for repeat rendering 

Persistent large memory allocation 

Proportional to original image size, not view size

UIImage



Consequences of Excessive Memory Usage

Increased fragmentation 

Poor locality of reference 

System starts compressing memory 

Process termination

Memory

CPU
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// Downsampling large images for display at smaller size

func downsample(imageAt imageURL: URL, to pointSize: CGSize, scale: CGFloat) -> UIImage { 

    let imageSourceOptions = [kCGImageSourceShouldCache: false] as CFDictionary 

    let imageSource = CGImageSourceCreateWithURL(imageURL as CFURL, imageSourceOptions)! 

         

    let maxDimensionInPixels = max(pointSize.width, pointSize.height) * scale 

    let downsampleOptions = 

        [kCGImageSourceCreateThumbnailFromImageAlways: true, 

         kCGImageSourceShouldCacheImmediately: true, 

         kCGImageSourceCreateThumbnailWithTransform: true, 

         kCGImageSourceThumbnailMaxPixelSize: maxDimensionInPixels] as CFDictionary 

     

    let downsampledImage = 

        CGImageSourceCreateThumbnailAtIndex(imageSource, 0, downsampleOptions)! 

    return UIImage(cgImage: downsampledImage) 

} 
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// Downsampling large images for display at smaller size 

func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath) 
  -> UICollectionViewCell { 
    let cell = collectionView.dequeueReusableCell(withReuseIdentifier: "Cell", 
      for: indexPath) as! MyCollectionViewCell 
    cell.layoutIfNeeded() // Ensure imageView is its final size. 

    let imageViewSize = cell.imageView.bounds.size 
    let scale = collectionView.traitCollection.displayScale 
    cell.imageView.image = downsample(imageAt: imageURLs[indexPath.item], 
      to: imageViewSize, scale: scale) 

    return cell 
}
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A Tour of UICollectionView Hall 3 Thursday 2:00PM
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// Asynchronously downsampling on a global queue 

func collectionView(_ collectionView: UICollectionView, 
                    prefetchItemsAt indexPaths: [IndexPath]) { 
    // Asynchronously decode and downsample every image we are about to show 
    for indexPath in indexPaths { 
        DispatchQueue.global(qos: .userInitiated).async { 
            let downsampledImage = downsample(images[indexPath.row]) 
            DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) } 
        } 
    } 
} 
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Thread Explosion

More images to decode than available CPUs 

GCD continues creating threads as new work is enqueued 

Each thread gets less time to actually decode images

Modernizing Grand Central Dispatch Usage WWDC 2017



// Avoiding thread explosion when doing asynchronous work 

let serialQueue = DispatchQueue(label: "Decode queue")  
func collectionView(_ collectionView: UICollectionView, 
                    prefetchItemsAt indexPaths: [IndexPath]) { 
    // Asynchronously decode and downsample every image we are about to show 
    for indexPath in indexPaths { 
        serialQueue.async { 
            let downsampledImage = downsample(images[indexPath.row]) 
            DispatchQueue.main.async { self.update(at: indexPath, with: downsampledImage) } 
        } 
    } 
} 
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Prefer Image Assets 
For artwork bundled with your app

Optimized name- and trait-based lookup 

Smarter buffer caching 

Per-device thinning 

Vector artwork 

Optimizing App Assets Hall 1 Thursday 4:00PM



Vector Artwork

Since iOS 11, image assets support 
“Preserve Vector Data” 

Avoids blurriness and aliasing when drawn 
larger or smaller than natural size 

Preserves legibility of icons in accessibility HUD



Vector Artwork Pipeline
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Vector Artwork Optimizations

Xcode rasterizes artwork for relevant scale 
factors while compiling 

Prerasterized artwork used when image is 
drawn at natural size 

If artwork has fixed sizes, use multiple image 
assets instead of relying on vector rasterization

100
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•Custom Drawing with UIKit
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UIView 
Subclass

UIButton
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// Drawing a custom view by overriding UIView.draw(_:) 
override func draw(_ rect: CGRect) { 
    // Draw rounded rectangle background. 
    let roundRectPath = UIBezierPath(roundedRect: self.bounds, cornerRadius: 4.0) 
    UIColor.yellow.set() 
    roundRectPath.fill() 

    // Draw Live Photo icon. 
    let image = UIImage(named: "LivePhotosIcon") 
    image.draw(at: CGPoint(x: 2.0, y: 2.0)) 

    // Draw label. 
    let text: NSAttributedString(string: "LIVE", attributes: ...) 
    text.draw(at: CGPoint(x: 20.0, y: 2.0)) 
}



// Drawing a custom view by overriding UIView.draw(_:) 
override func draw(_ rect: CGRect) { 
    // Draw rounded rectangle background. 
    let roundRectPath = UIBezierPath(roundedRect: self.bounds, cornerRadius: 4.0) 
    UIColor.yellow.set() 
    roundRectPath.fill() 

    // Draw Live Photo icon. 
    let image = UIImage(named: "LivePhotosIcon") 
    image.draw(at: CGPoint(x: 2.0, y: 2.0)) 

    // Draw label. 
    let text: NSAttributedString(string: "LIVE", attributes: ...) 
    text.draw(at: CGPoint(x: 20.0, y: 2.0)) 
}
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Custom Drawing Versus UIImageView
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Backing Store Memory Costs

Proportional to pixel size of view 

           Element size grows to accommodate 
color range used by drawing 

Setting CALayer.contentsFormat opts out 

Update layerWillDraw(_:) implementations

NEW



UILabelUIViewUIImageView

Reducing Backing Store Use

Refactor larger views into subview hierarchies 

Reduce or eliminate overrides of draw(_:) 

Eliminate duplicate copies of image data 

Use optimized view properties and subclasses

LIVE

LIVE



UIView

Reducing Backing Store Use 
Alternatives to custom drawing

Overriding draw(_:) opts into backing store 

UIView.backgroundColor can render directly to 
frame buffer without a backing store 
• …except for pattern colors 
• Use UIImageView with tiling image instead

Frame Buffer



Reducing Backing Store Use 
Masking versus corner radius

UIView.maskView and CALayer.maskLayer render 
view hierarchy into temporary image buffer 

CALayer.cornerRadius does not require any 
image buffer 

Consider UIImageView with resizable image 
instead of masking for transparent backgrounds

UIView

Frame Buffer



Reducing Backing Store Use 
Eliminating duplicate image data

UIImageView can colorize monochrome images 
while rendering directly into frame buffer 

UIImage.withRenderingMode(_:) or Rendering 
Mode popup in asset inspector 

Set tintColor of image view to any solid color
Decoded 
image

UIImageView Frame Buffer

tint



Reducing Backing Store Use 
UILabel optimizations for rendering text

UILabel is optimized for monochrome strings 

Uses 75% smaller backing store when possible 

Automatically upgrades to larger backing store 
for multicolor strings, emoji

iOS Memory Deep Dive Hall 1 Friday 2:00PM



Drawing Off-Screen

Use UIGraphicsImageRenderer to create and draw to an image buffer 

Supports Wide Color, unlike UIGraphicsBeginImageContext() 

Combine with UIImageView for efficient offscreen rendering

Working with Wide Color WWDC 2016



Drawing Off-Screen 
Optimizing image buffers

Similar automatic Wide Color support as backing stores 

Prior to iOS 12 and tvOS 12, defaults to Wide Color support based on hardware 

Set prefersExtendedRange on UIGraphicsImageRendererFormat for direct control 

UIImage.imageRendererFormat may offer an intermediate representation

NEW



•Advanced CPU and GPU Techniques



Advanced Image Effects 
Core Image

Consider Core Image for realtime effects 

Executes on GPU, freeing up CPU 

UIImageView renders CIImages efficiently 

UIImage.init(ciImage:)



Advanced Image Processing 
Interfacing with other frameworks

Use CVPixelBuffer to move data to frameworks like Metal, Vision, and Accelerate 

Use the best initializer—don’t unwind work that’s already been done 

Guard against moving work between GPU and CPU 

Ensure buffers are correct format for Accelerate

Using Accelerate and simd Executive Ballroom Tuesday 10:00AM



Summary

Implement prefetching to prepare asynchronously 

Reduce backing store usage by using UIImageView and UILabel 

Don’t accidentally disable new optimizations for custom drawing 

Prefer image assets for bundled artwork 

Avoid over-reliance on Preserve Vector Data



More Information
https://developer.apple.com/wwdc18/219

Practical Approaches to Great App Performance Hall 1 Wednesday 5:00PM 

UIKit and Layout Technology Lab 2 Thursday 11:00AM 

UIKit and Collection View Lab Technology Lab 11 Friday 9:00AM




