
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Will Li, Cocoa Frameworks
Patrick Heynen, Cocoa Frameworks

•Optimizing App Assets
• Session 227

Optimizing App Assets

•Use new features of Asset Catalogs to optimize the
deployment of your application assets

Design and
Production Cataloging DeploymentCompression

Design and
Production Cataloging DeploymentCompression

Compression

Image Compression
Choose the appropriate compression type

•Automatic image packing
•Lossy compression
•Lossless compression
•Deployment target and app thinning
•App variant export

Automatic Image Packing

Loose images have hidden costs

Difficult to manage large number of files

Inconsistent and uncertain image formats

Automatic Image Packing

Loose image files
D
is
k
sp

ac
e
(K
B)

0

12.5

25

37.5

50

Asset footprint on disk

Image atlas Loose image files

Automatic Image Packing

Image atlas
D
is
k
sp

ac
e
(K
B)

0

12.5

25

37.5

50

Asset footprint on disk

Image atlas Loose image files

Automatic Image Packing

Image atlas
D
is
k
sp

ac
e
(K
B)

0

12.5

25

37.5

50

Asset footprint on disk

Image atlas Loose image files

•Automatic image packing
•Lossy compression
•Lossless compression
•Deployment target and app thinning
•App variant export

Lossy Compression

Quality versus size tradeoff

Best suited for certain scenarios

•High Efficiency Image File Format

High Efficiency Image File Format

Better compression ratio than JPEG

Supports transparency

Automatic conversion from other formats

High Efficiency Image File Format WWDC 2017

•Automatic image packing
•Lossy compression
•Lossless compression
•Deployment target and app thinning
•App variant export

Lossless Compression

Icons and simple artwork Complex artwork

Lossless Compression

Icons and simple artwork Complex artwork

•Apple Deep Pixel Image Compression

Apple Deep Pixel Image Compression

Adaptive to image color spectrum

Selects optimal compression algorithm

15–20% size improvement

NEW

Apple Deep Pixel Image Compression
Size improvement

O
ve

ra
ll
As

se
ts
 S
iz
e
(M

B)

0

40

80

120

160

iOS macOS tvOS

Apple Deep Pixel Image Compression Current lossless compression

Apple Deep Pixel Image Compression
Size improvement

O
ve

ra
ll
As

se
ts
 S
iz
e
(M

B)

0

40

80

120

160

iOS macOS tvOS

Apple Deep Pixel Image Compression Current lossless compression

20%

Apple Deep Pixel Image Compression
Decode time improvement

D
ec

od
e
tim

e
(m

s)

0

4

8

12

16

iOS 12

Apple Deep Pixel Image Compression Current lossless compression

•Automatic image packing
•Lossy compression
•Lossless compression
•Deployment target and app thinning
•App variant export

Deployment Target and App Thinning

iOS 12 iOS 11.x iOS 10.x iOS 9.x

Traditional Backward Deployment

Deployment Target and App Thinning

iOS 12 iOS 11.x iOS 10.x iOS 9.x

Traditional Backward Deployment

Deployment Target and App Thinning

Traditional Backward Deployment

iOS 12 iOS 11.x iOS 10.x iOS 9.x

Backward Deployment with OS Variant Thinning

iOS 12 iOS 11.x iOS 10.x iOS 9.x

Deployment Target and App Thinning

Traditional Backward Deployment

iOS 12 iOS 11.x iOS 10.x iOS 9.x

Backward Deployment with OS Variant Thinning

iOS 12 iOS 11.x iOS 10.x iOS 9.x

•App Thinning Export

App Thinning Export
Si
ze

 (M
B)

0

30

60

90

120

150

Variants

iPhone 6 iPhone 7 - iPhone 8 iPhone 10 iPad 4 - iPad 6

0000 0000

App Thinning Export
Si
ze

 (M
B)

0

30

60

90

120

150

Variants

iPhone 6 iPhone 7 - iPhone 8 iPhone 10 iPad 4 - iPad 6

0000

109
125

9494

iOS 11 and earlier (MB) iOS 12 (MB)

App Thinning Export
Si
ze

 (M
B)

0

30

60

90

120

150

Variants

iPhone 6 iPhone 7 - iPhone 8 iPhone 10 iPad 4 - iPad 6

95

111

7274

109
125

9494

iOS 11 and earlier (MB) iOS 12 (MB)

App Thinning Export
Si
ze

 (M
B)

0

30

60

90

120

150

Variants

iPhone 6 iPhone 7 - iPhone 8 iPhone 10 iPad 4 - iPad 6

95

111

7274

109
125

9494

iOS 11 and earlier (MB) iOS 12 (MB)

22%
Size reduction

23%
Size reduction

11%
Size reduction 13%

Size reduction

Design and
Production Cataloging DeploymentCompression

Design and
Production Cataloging DeploymentCompression

Design and
Production

Artwork Assets

Assets come from many sources

They all come from humans!

Being organized pays big dividends

•Color management
•Working space
•Stretchable images
•Vector assets
•Design for 2x

•Color management
•Working space
•Stretchable images
•Vector assets
•Design for 2x

Color Management

Pixels without color are just bytes!

Color profiles supply intended appearance

Maintain color profiles

Keep designer intent

Color Management

Pixels without color are just bytes!

Color profiles supply intended appearance

Maintain color profiles

Keep designer intent

Color Management

Apps run on broad range of displays

Color matching maps colors to device

Color Management

Asset Catalogs perform color matching at build time

Artwork ready on device

Bonus: Color Profile eliminated

•Color management
•Working space
•Stretchable images
•Vector assets
•Design for 2x

Working Space

Use consistent color settings for all design files

Working Space

Use consistent color settings for all design files

sRGB / 8 bits for broad applicability

Display P3 / 16 bits for vibrant designs

Flexible Wide Color options

Working Space

Use consistent color settings for all design files

sRGB / 8 bits for broad applicability

Display P3 / 16 bits for vibrant designs

Flexible Wide Color options

Working with Wide Color WWDC 2016

Working with P3 iOS Design Resources

•Color management
•Working space
•Stretchable images
•Vector assets
•Design for 2x

Stretchable Images

Adaptive UI uses stretching elements

Stretchable Images

Adaptive UI uses stretching elements

Stretchable Images

Design tools support slicing

Identify stretchable portion of image

Stretchable Images

Design tools support slicing

Identify stretchable portion of image

Split image resources require complex drawing to reassemble

Stretchable Images

Single image + metadata = smooth GPU animation

Stretchable Images

Single image + metadata = smooth GPU animation

Stretchable Images

Asset Catalog “Show Slicing”

Asset Catalog “Show Slicing”

Asset Catalog “Show Slicing”

Asset Catalog “Show Slicing”

Asset Catalog Slicing

Keeps stretching metadata close to artwork

Better positioned for design updates

•Color management
•Working space
•Stretchable images
•Vector assets
•Design for 2x

Vector Assets

Distinct assets for different displays (1x, 2x, 3x)

1x 2x 3x

Vector Assets

Distinct assets for different displays (1x, 2x, 3x)

Address all needs with one vector asset in PDF format

PDF

Vector Assets

Xcode generates optimized bitmaps per scale

Preserve Vector Data enables runtime resizing

Works better with Dynamic Type!

•Color management
•Working space
•Stretchable images
•Vector assets
•Design for 2x

Design for 2x

Retina 2x is the most common display density

Strokes landing between pixels still look fuzzy

Design for 2x

Point boundary snapping ensures device pixel alignment

Vector assets can use a 2x grid for optimal stroke placement

✉

Design for 2x

Point boundary snapping ensures device pixel alignment

Vector assets can use a 2x grid for optimal stroke placement

✉

Design for 2x

Point boundary snapping ensures device pixel alignment

Vector assets can use a 2x grid for optimal stroke placement

✉

Design for 2x

Drop asset into ‘2x’ slot in Xcode

Remaining scales are prepared automatically

Hinted Assets

More control of results

Drop into any slot

Design and
Production Cataloging DeploymentCompression

Design and
Production Cataloging DeploymentCompression

Cataloging

Lots of options

Use only what makes sense

•Bundles
•Namespaces

•Bundles
•Namespaces

Bundles

Large projects present challenges

Solve it with multiple bundles

Effective reuse strategy!

Bundles

Retrieve with:
UIImage(named: UIImage.Name, in: Bundle, compatibleWith: UITraitCollection)
Bundle.image(forResource: NSImage.Name) -> NSImage?

Uniqueness only within bundle scope

•Bundles
•Namespaces

Namespaces

Large collections are a naming challenge

Namespaces

Large collections are a naming challenge

Folders with namespace for grouping!

Design and
Production Cataloging DeploymentCompression

Design and
Production Cataloging DeploymentCompression

Deployment

App Thinning

You provide all the content variants

App Thinning picks the right subset per device

•Performance classes
•Sprite atlases

•Performance classes
•Sprite atlases

Performance Classes

Hardware capabilities vary

Don’t constrain to least capable device!

Solve with adaptive resources

Memory Classes

1GB 2GB 3GB 4GB

Graphics Classes

Metal 1 Metal 2 Metal 3 Metal 4

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Full Capability Matrix

Metal 4 Metal 3 Metal 2 Metal 1 Any

4GB

3GB

2GB

1GB

Any

Using Performance Classes

Higher memory —> larger / richer assets

Higher graphics —> more complex assets

Using Performance Classes

NSDataAsset provides flexible container

Example: Cut scene video

Example: Scene configuration via plist

Using Performance Classes

NSDataAsset provides flexible container

Example: Cut scene video

Example: Scene configuration via plist

Using Performance Classes

NSDataAsset provides flexible container

Example: Cut scene video

Example: Scene configuration via plist

•Performance classes
•Sprite atlases

Sprite Atlases

Pack related images into a single unit

Entire atlas gets loaded at once

Images reference location within atlas

Sprite Atlases

Access images using UIImage / NSImage

Use asynchronous loading for special cases
SKTextureAtlas.preloadTextureAtlasesNamed(_: [String],
 withCompletionHandler: (Error?, [SKTextureAtlas]) -> Void)

Sprite Atlases

Xcode automatically optimizes for App Thinning

Split by pixel format, device traits and compression type

Design and
Production Cataloging DeploymentCompression

Optimizing App Assets

Best choice for image resources

10–20% less space for iOS 12 apps

App Thinning optimizes for latest OS

Use cataloging to adapt resources to your app

More Information
https://developer.apple.com/wwdc18/227

